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Pulses and disorder in a continuum version of step-bunching dynamics
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Starting from the Burton-Cabrera-Frank model in the presence of electromigration, we derive a nonlinear
continuum version of step dynamics, where steps undergo a bunching instability. The obtained equation for the
steps density is a mixture of the Korteweg—de Vries equation, which leads to solitons, and the Burger equation,
which exhibits spatiotemporal chaos. For a small dispersive term, spatiotemporal chaotic pulses prevail. On
increasing this term, we observe gradually a transition towards regular plBd€¥63-651X%96)51705-9

PACS numbsg(s): 81.10.Aj, 05.70.Fh, 81.30.Fb, 68.70m

One of the most common causes for morphology alterkept in mind, however, that the type of equation we shall
ation of an initially vicinal surface is due to step bunching.derive is generic, and it should therefore apply to the above
Step bunching can occur in a variety of situations. For ex-mentioned situations as well.
ample, during heteroepitaxial growth, the strain energy can The step flow model incorporates adatom diffusion, elec-
cause a step-bunching instability, which may be either offomigration, evaporation, and sticking at the steps. Let
thermodynamical origin(the Asaro-Tiller-Grinfeld effect C(r.t) denote the adatom areal density. Mass conservation
[1-3]), or may result from a kinetic instabilify4]. Similarly,  Imposes
during homoepitaxial growth the impurity pinning on the
terrace can lead to step bunchifg6]. A more familiar ex- —DV2%— —— — = (1)
ample of the step bunching instability arises during sublima- at 7 kgT ox’
tion provided that an asymmetry of the sticking between the
upper and lower terraces at the steps exigty (the Wherer is the desorption timeD the diffusion constant:
Schwoebel effegt On the experimental level, perhaps thethe electromigration force, ankisT the thermal excitation
most controllable situation corresponds to the case of sublienergy. At each steg=xq(t) (m labels themth step the
mating silicon(111) by a dc heating current. In such a situ- Kinetic equation takes the form
ation, it has been reported by several groLfs12| that the
surface morphology depends on the direction of the heating +
current. More precisely, when the current direction coincides N
with the ascendent one, step bunches appear in the tempera-
ture range ~1300-1500 K, disappear in the range wherev. is a kinetic coefficienthaving the dimension of a
~1500-1600 K and again reappear above 1600 K. Reversvelocity). The + sign refers to the lower side, and — to the
ing the current direction leads to a complementary picturaipper one. Our convention is that the descendent direction is
(stable intervals become unstable, and vice yerdastep  along the positivex axis. The quantity designates the elas-
forward was made by Stoyan¢¥3], who evoked the elec- tic interaction. For homoepitaxy, and if only first neighbors
tromigration effect on adatoms. This explains nicely the firstinteraction is taken into accounf=A[ (Xp— Xm_1+10) "2
transition(from stable to unstabjebut it gives no hint to the  + (x, 1—Xm+10) “2], where A=2(1-¢?)f?%xE, ¢ and
reappearence of step bunches at higher temperature. We ha@eare the Poisson ratio, and Young modulus, &mdforce.
recently showrj14] that the inclusion of advacancies in the The quantity.A measures the strength of the elastic interac-
step flow model reproduces the high temperature behavior afon [16] and has a dimension of an energy multiplied by a
vicinal surfaces. Another alternative based on the assumptioength. From a dimensional analydis Ea? wherea is an
of incomplete melting was suggested which seems to acatomic length, so thatd~Ea*. Typically E~10° Pa,
count for the low temperature behavidr5]. a~(1-3 %10 °m, and thend~ (10 - 10739 J m. This

All these studies were linear. The main outcome of a |in-is consistent with the experimenta"y measured value
ear theory is the determination of the onset of instability, and- 1073 3 m for silicon[17].
the range of those perturbations which are likely to grow Finally, if J.=D(dc/dx—Fc/kgT)y_o= denotes the
first. If the new structure is to be determined, and/or the longnass current across the step, the normal velocity is given by
time evolution to be ascertained, then a nonlinear analysis is
necessary. The aim of this Rapid Communication is to deal v=003,.-J). 3)
with the nonlinear behavior above the step-bunching insta-
bility. For the sake of simplicity, and without loss of gener- The set of equation§l)—(3) completely describes step dy-
ality, we shall consider the case of relatively low tempera-namics during sublimation. Before proceeding to the analy-
tures where advacancies can be neglected, and focus on this, some remarks are in order. We disregard step meander-
case of electromigration-induced step bunching, whichng which will be the subject of a future work. We shall
seems to us as a canonical experimental example. It must lmeake use of the quasisteady approximation, which is valid

@

C—Ceq

L8
keT ox

1063-651X/96/58)/43184)/$10.00 53 R4318 © 1996 The American Physical Society



53 PULSES AND DISORDER IN A CONTINUUM VERSION OF ... R4319

for all practical purposes. The diffusion field on a given ter-tion factors which are easily determined by making use of
race can easily be found to be given by acosh{/ag) Egs.(2). Finally use of the continuity equatiaf3) provides
+bsinh/ap), ag= \/x§2+ 1/482, xs=\D7, £€=kgT/F (it us with the step position evolution as a function of neighbor-
has a dimension of a lengthand wherea andb are integra- ing steps
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where d.=D/v. is the Schwoebel length,Ax,.;  Sis developed below, it will be recognized that this is suffi-
=Xmi1—Xm. etc, D(x)=[1+d,.d_/x3+(d,—d_)/ cient. There are two types of terms. The first type concerns
2¢]sinh(a ) +ag(d_+d,)cosh@eX), A=AxS—Ax3 the odd derivativeswhich would not affect the stability—
(i=0,1,2), andA=607c,A/kgT. Equation(4) represents, (Nese are propagative tenmsand the second the even ones.
in principle, an infinite set of equations. Rather than using &) Wxx may be destabilizing or stabilizing acg%rdlng to
microscopic picture of step dynamicsy treating each step Whether 1/Z is smaller or larger thamlA/(2cegxslo). In
separately our aim here is to use a “coarse-grained” image °ther words, electromigratiofrecall that 1{~F) destabi-

of step bunches by resorting to a contiuum limit. For that!Z€S the vicinal surfacgonly if F>0), while elasticity al-
purpose we assume that the interstep distance is mudffays stabilizes Itii) Wiy IS always stabilizing fog>0. It

smaller than the diffusion lengtk,. This holds, in particu- ' composed 0:; tvr\]/o COI’]tI‘ItéUtIOI’]SZ (f)ne colmm.g. from elec-
lar, in the case of $111) for moderate temperatures. We tromigration and the second stems from elasticity. For very

’ A ) " "~ short interstep distances the latter dominates. Note that the
shall simplify the analysis further by assuming

fi ivative in Eq. I V
d,—d_—d. That is, we neglect the asymmetry due to the irst derivative in Eq.(5) can always be absorbed W, by

means of a Galilean transformation—x—uvt (where

Schwoebel barrier. The asymmetry is caused by the eleci?():()ceqlr is nothing but the step velocity in the original

tromigration force. It must be emphasized however that jcinal train for a unit interstep distance—recall thatis
finite sticking rate { finite) is necessary in order to account gcgjed byh), and we shall omit it in the following.
for linear InStablllty of the vicinal surface. Equa“c(n-) is Our treatment is expected to be valid in the |Ong wave-
highly nonlinear. We shall truncate it to some order. Forjength limit. As we shall see immediately, this situation is
such an operation to be legitimate we assume that the growiéhcountered close to the instability threshold. The critical
rate of the instability is small enougtsee below. This is  condition for the onset of instability is obtained for
satisfied by concentrating on the situation close to the in5t31/2§=dA/(chqx§Ig). As in other context§18], we intro-
bility threshold. Our strategy then {§) to expand Eq(4) in duce a small parametef:1—2dA§/chqx2I§ which mea-
powers ofAx;, and(ii) to treat the subscriph as a continu- ¢ ;res the distance from the threshold. In Fourier space
ous vari_able. Our trgatment is valid for long Wa\_/elength W~el®* ety e obtain from Eq.(5) w~ eq?—q*+ig°.
modulations. Let us first extract from E@) only the linear e reqi part controls the instability. The fastest growing
part and letmh=x and W(X)=Xm:1~Xn. EQuation(4) e (obtained by settingiRew/dgq=0) corresponds to a
yields wave vector which scales age (in real space this corre-
sponds to the long wavelength regimand the correspond-

ing growth rate scales a£. The imaginary part ofs would
3/2

(LD C)[W;— (QCeq/ IIW,]

1582 A scale ase®< and it dominates in principlésee below: This
= —ﬂszx—( + =3 )Wxxxx means that in a multiscale analysis we must introduce a short
12 215dQcceq time associated with propagation, and a long time, the scale
1 A of which determines that of the amplification or the attenua-
_ (_2 _ —3> W, (5)  tion of the instability. The total timg= €°t; + €%%,, where
6xs  2Qceqédly t, is the long time and, the short one. Now we go back to

Eq. (4) and pursue our expansion in a manner very similar to
whereB,=[1/(2¢d) — A/(Qcex213)]. The quantityly is the  that developed ii18]. The first nonlinear term that appears
zeroth order interstep distance. Note that we have truncated of the formWW,, and the next oneWiJrWWXX. Both
the expansion at the fourth derivative. In a multiscale analyterms scale ag/?. However, the first term contains only one
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FIG. 1. The spatiotemporal portrait of the step density for FIG. 2. The same quantity as in Fig. 1 but fe=3. The
B=0.5. The pattern is chaotic. The vertical coordinate representbunches are ordered.
the step density at different times as a function of the coordinate
along the vicinal direction. The time unit is arbitrary. 1 and 2 show the spatiotemporal portrait of the step density

for two different values of the dispersive terg For small

derivative, and it is this one which dominatés the long g (Fig. 1, 8=0.5) we obtain spatiotemporal chaos. That is to
wavelength regime we are interestegl. We can then show say the pattern would not have any intrinsic order: the
using a balance between the nonlinear term and the |iner’unches would be Spatia”y disordered. On increagﬂ)g
ones that the amplitude will scale &g~ e*2 Rather than there is an emergence of more pronounced pulses with a
using the quantityV/, we may as well use the steps density tendency towards an “ordering” of the bunches. Figure 2
m=1W=my+m,;, wherem;y is the initial density(in the  shows the pattern fg8=3. It is interesting to note that when
vicinal regimg. Using Eq.(4) together with the nonlinear starting from a pattern witi8=0 (which is disordered and
term, it is a simple matter to show that to leading order thethen switching on tg8~1 we observe the birth of a localized

steps density obeys the following equation: pulse which propagates sideways. The successive passages
of the “soliton” on the initially disordered pattern leaves
PT= "~ Pxx™ Pxxxx~ BPxxx~ PPx (6)  pehind it a more ordered structure. It seems as if the “soli-

., o4 ) ton” acts as a sort of order selector. This phenomenon bears
where we have set7=e D(chy) lo/(2AdETTt, X 3 strong resemblance to the situation encountered during di-
= Vel o[ Qceq/ (A%, p=e¥m;x18(20c.)"¥  rectional growth of a nematic phase at the expense of the
[(2£)%2AY2d?], and B=e Y15d(£Qce) V¥ (3x2AY)  isotropic phas¢20]. In that problem there are some circum-
—1g 'AYA(£Qceg)Y]. That the right hand side of Eq6)  stances where a “solitarylike” wave propagates along the
can be written as a derivative is no surprise; this simplycellular structure which had initially a rather strong wave-
expresses the conservation of steps. In the absence of thength dispersion. The successive passages of the “solitary”
dispersive termpyxx, EQ. (6) reduces to the Burger equa- wave reduces drastically the dispersion. The “soliton” there
tion, which is a variant of the Kuramoto-SivashinsigS) is believed to play the role of a wavelength selector.
equation[18]. Note, for example, that the KS equation de- We are investigating experimental regimes in order to
scribes the meandering of an advancing isolated i8p  evaluate the coefficien®, and thus to decide which type of
When the destabilizing ternpg ) together with the smooth- structure would be expected in a real situatidisorder, or-
ing one pyxxx are both absent, Eq6) reduces to the der, or a somewhat intermediate situajiomhis coefficient
Korteweg—de Vries equatioKDV) [19]. Thus Eq.(6) isa  stems from the dispersion of the wave train indicating
mixture of the KS and the KDV equations. The KS equationthereby that the phase velocity is different from the group
is known to produce spatiotemporal chaos, while the KDVvelocity of the bunches. The definition @f seems to imply
one gives rise to solitons. that this coefficient is large since it scaleseas’2. Our treat-

It is thus an important question to see the consequence afient is valid as long as the whole coefficighis not much
the competition between solitons and chaos. Equd6phas larger than unity. A value of the order of 2 or 3 is sufficient
been solved numerically by means of a gear backward difto produce regular pulses. On the one hand, while our regime
ference, where the derivatives are evaluated in Fourier spacis. asymptotic, it may be legitimate even fer-0.1—or even
Equation (6) possesses the following linear spectryme  larger—thuse Y>~3. On the other hand, from rough esti-
seek perturbations of the form~e***W%: wW=k?—k*  mates we find that the prefactor ef Y2 may be as small as
+ipBk3. The cutoff wave numbefdetermined byRew=0) 0.1 by using realistic values that enter its expression, and that
is given byg.= 1. This means that if the extent of the systemthereforeg may easily be rendered as small@gs 1 [21] in
L is smaller than #z/g.=\. then no instability takes place. a given experiment. We shall give further details in an ex-
In practice the system extent is very large{>\.) and one tended paper. A precise confrontation with experimental re-
has to solve Eq(6) for L large. Several simulations have sults would be decisive in order to guide further develop-
been performed with. ranging from 1@, to 40\.. Figures ments. We are now studying the evolution of the mean pulse
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width and the mean pulse-pulse distance as a function aghould arise irrespective of the details of the underlying
temperature, and we hope to report along these lines in thehysics. Among other open questions girehow the step
near future. meandering affects bunch dynami¢s) what is the role of

In summary we have shown from the Burton-Cabrera-luctuations, and to what extent ordered pulégthey are to
Frank model which incorporates electromigration, that closeyrisg can suffer from statistical fluctuations?
to the step-bunching instability threshold the bunch dynam- Note added in proofAfter this work was submitted we
ic_s obe_y an equation which is_ a mixture of the Kuramoto-received a paper by M. Sato and M. Uwd22], who dealt
Sivashinsky (or Burge) equation and the Korteweg—de yith the problem of step bunching induced by the Schoebel
Vries one. The increase of the dispersive term leads 10 g rjer Their equation is identical to ours. At the same time

transmodn frc|>m d'_?_?]rder tol ordir with more anij_t Torebprho-v_ Hakim (private communicationpointed out to us that Eq.
e e, e e S s o e
9 é:'ontexts[23,24}|.

While we have restricted our attention to the case wher
electromigration is the driving source for step bunching, we We are grateful to the Centre Greneblois de Calcul Vec-

believe that the equation we have derived here is generic artdriel for providing us with computing facilities.
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