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Square patterns and quasipatterns in weakly damped Faraday waves
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Pattern formation in parametric surface waves is studied in the limit of weak viscous dissipation. A set
of quasipotential equation€QPES$ is introduced that admits a closed representation in terms of surface
variables alone. A multiscale expansion of the QPEs reveals the importance of triad resonant interactions, and
the saturating effect of the driving force leading to a gradient amplitude equation. Minimization of the asso-
ciated Lyapunov function yields standing wave patterns of square symmetry for capillary waves, and hexago-
nal patterns and a sequence of quasipatterns for mixed capillary-gravity waves. Numerical integration of the
QPEs reveals a quasipattern of eightfold symmetry in the range of parameters predicted by the multiscale
expansion[S1063-651X96)50105-4

PACS numbg(s): 47.35:+i, 47.54+r, 47.20.Ky

When a fluid layer with a free upper surface is subjectedn capillary-dominated regime is naturally explained with-
to vertical oscillation, Faraday waves are obseed]. Ina  out having to invoke poorly understood nonlinear dissipa-
large enough container and for low viscosity fluids, standingive effects, or higher order terms in the amplitude equa-
wave patterns of square symmetry are observed near threstisn.
old [3]. Based on amplitude equations that we derive below, The basic difference with previous studigg8] is that
the experimental observation of square patterns in thalthough the bulk flow does remain potential, it is modified
capillary-dominated regime is explained. We also predictoy a rotational viscous boundary layer near the free sur-
that hexagonal and a sequence of quasipatterns can be stafice that has to be explicitly incorporated into the analysis
lized for the case of a sinusoidal driving force as a result 0f10—12. When the thickness of the viscous boundary layer
triad resonant interactions for mixed capillary-gravity wavesijs small compared to the typical wavelength of the pattern,
[4]. This theoretical derivation starts from a realistic modeline weak effects due to viscosity can be taken into account
of the fluid and shows that a quasicrystalline pattern is &, introducing effective boundary conditions for the other-
stable steady state, and qorroborates the conjecture of Newgfico potential bulk flow. This is the basic idea of the quasi-
and Porrlealﬂ5] on the existence of the so-called “turbulent potential approximation introduced below. We first expand
crystals. L - . . the equations governing the motion of an incompressible vis-

Pattern-forming instabilities occur in a variety of ex- cous fluid and the appropriate boundary conditions at the free

tended nonlinear systems. The emergence of spatial pattergarface in the small thickness of the free surface boundar
close to onset of the instability can often be described b y

amplitude equation$2,6]. However, for near-Hamiltonian ayef, 5 The resulting equations are furt.her simplified by
(or weakly dissipative systems, there is no general agree-rec_astmg them in a nonlocal form that |_nv_olv§s the flow
ment on how dissipation should be incorporated into the amYariables on the free surface only; thus eliminating the need
plitude equation formulation. Previous work on Faraday!® explicitly solve for the flow in the bulk12]. Let z be the
waves was based on amplitude equations for a purely Hamipormal  direction to the surface at rest and
tonian system, to which linear and nonlinear damping term#&(t) = —do— g20sinlt the driving force where is the con-
were added by introducing a dissipation functighg]. In  stant acceleration of gravity, arfd andg,o are the angular
this approach, linear dissipative effects in the original systenfrequency and the amplitude of the driving force, respec-
contribute only to linear damping terms in the associatedively. We choose 1,=2/Q) as the unit of time and k4 as
amplitude equations, while nonlinear damping terms resulthe unit of length, withk, defined byw3=goko+Tk3/p, the
entirely from nonlinear dissipative effects. Such an approaclinear dispersion relation for surface waves, whErés the
has contributed to the general belief that for near-syrface tension ang the density of the fluid. Then the di-

Ham_i!tonian systems, n(_)nlinear_ satura}tio_n of the linear in'rnensionless, nonlocal and quasipotential equations read
stability does not occur if only linear dissipative effects are[y9)

considered, and weak nonlinear dissipative or other higher
order effects are needed for nonlinear saturdtihf). In this
paper, we show that in the case of weakly damped paramet-

= V2h+ D —V.
ric surface waves linear dissipative effects do contribute to XD =y Vot 7O =V (hV D)

the nonlinear damping terms in the amplitude equation, and +1V2(h29®)— S(hod)
that they alone can saturate the parametric instability. L
In addition, the experimental observation of square patterns + A hA(hTd)+ 3 h2V2d], (N
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3, D (x,t)=yV2d —(G,—I'yV2)h—4fhsin2t duHji+2yv2(1+cj)dH))
+1(TD)2— (ZD)[hV2D + A(hTd)] +[Go+20o(1+¢;)1V2(1+¢;)H;
r, =F{Vcosa+F{sin2t+---, (6)
- %(V¢)2—7V~[Vh(Vh)2], (2

wherec;;=cos;=k; -k, andF " andF{) are proportional
wherex=(x,y), V=(d,,d,), h is the surface displacement to the amplitudesA;A,. Equation(6) is the equation of an
away from planarity® is tyhe value of velocity potential at additively forced harmonic oscillator with friction. When the
the free surface (the surface velocity potentigl “natural” frequency of the “oscillator” equals the driving
7=2vkg/w0 is a linear damping coefficienty~ 5><1) frequency, resonance occurs. This condition reads
Go=0oko/ w2, T'o=Tk3/(pw?), andf=g,0ky/(40?) is the L[Got2l'o(1+C;)]v2(1+c;)=4. Due to the nonzero
driving amplitude and%’ is a Fourier-integral operator damping coefficient, this resonance results in a finite value
which is defined for an arbitrary functioru(x) by * for Hy, that is inversely proportional to the damping coeffi-
;Zu(x)=f°° K|tk exp(k-x)dk with {(k) the Fourier cient. Since the right-hand side of E@) is proportional to

) a L AjA;, there are three waves involved in this resonance,
transform of u(x). Notice thatGy+T'g=1 by definition. namely, standing wave moddg andA, , and modeB with

Only those viscous terms that are linear in the surface vari- :
ables are retained in Eq$l) and (2). Nonlinear viscous wave vectork; k. Therefore, Eq(6) describes a three

. . o wave resonant interaction. Note that the wave number for
terms, which were referred to as nonlinear dissipative effects

in the introduction, have been neglected. Both the asymptotic
analysis that follows and the numerical results presented
later are based on Eqggl) and(2).

Linear analysis indicates that fop<1 the planar sur-
face becomes unstable fai= vy, and the critical wave num-
ber is ky=1. We seek nonlinear standing wave solu-
tions near thresholde=(f— y)/y<1] and expand Egs.
(1) and (2) in &Y? with multiple time scales,
h(x,t, )=, (x,t,T)+eh,+e%¥hs+- .- and &(x,t,T)
=2, (x,t,T)+e®,+&%Dy+ ..., where T=et. At
O(e"?), we consider a set dfl standing wave modes with
critical wave vectorstK; ; then the linear solution reads

N
h;= cos*nL;fsinSt)El [Aj(T)exp(ile.x)Jrc.c.], (3
i<

3f
(I)l:( —sint+fcos+zcosa)

N
le [A(T)exp(ik;-x)+c.c], (4) 15}
=

gleq) 1t

To=1/3

where the complex amplitudeé§ are assumed to vary in the
slow time scaleT. Notice that the linear solution contains
not only the subharmonic responses but also the terms that 01
are proportional to the driving forcé. These latter terms
arise becausé is finite for the expansion ir. Terms that

0.5

are of higher order if have been neglected. In what fol- 2 ' (&)
lows, we shall replacd in the linear solution byy since 1.5t To=1/3
f=vy(1+¢g). v=01
At O(¢), there is no solvability condition; however, there gle) 1}
are resonant interactions that have to be taken into account. 050
A particular solution foth, can be written as
0

" I 05 0 05 1
h2:j|2:l (H” (t){A]A|EX[{I (|2] + |2|) . X] + C.C.}

_ A Y. FIG. 1. The coefficieng(c;) as a function ofc;, for purely capillary
HH (OAAT exdli(kj—k) - x]+ccd), (9 waves [,=1) with the linear damping coefficienty=0.02 (a), and
] ) y=0.1 (b). The same coefficient for gravity-capillary waves Io§=1/3
where theH (t) are unknown functions that satisfy with y=0.02(c) and y=0.1 (d).
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modeB is away from the critical wave numbép=1; thus (2). The other is due to the parametric driving force and
mode B is a linearly stable mode. The relevance of triad proportional to the driving amplitudé. These two kinds of
resonant interactions to pattern selection can be understomntributions appear together in E) since we have set
intuitively. Since the resonant growth of linearly dampedf=y at the linear order. The latter contribution is directly
modeB is at the expense of the reduction of the amplitudegelated to the terms proportional foin the linear solution
A; andA,, the growth of mode#\; and A, are less favored [Egs.(3) and(4)], and it provides aramplitude-limiting ef-
than any other mod@,, that does not participate in a triad fect The nonlinear interactions between the primary subhar-
resonant interaction. In other words, the system tries to avoithonic modes and terms related to the driving force in the
critical modes that participate in triad resonant interactionslinear solution produce terms that are out of phasemtf¥
As shown below, triad resonant interactions strongly influ-with the primary subharmonic mode, and thus can contribute
ence pattern selection through coefficients of cubic nonlineato saturate the wave amplitude. An important point is that
terms in the amplitude equations in a way that is consisterthis amplitude-limiting effect results from the forcing term,
with the above argument. Finally, fdf,<<1/3, triad reso- but not from a dissipative term. As a result, this effect is also
nance is not possible. Fbi,= 1/3, wave vectors of the three important even for Hamiltonian systems.
resonating waves are in the same directiaj’0). As It can be shown thag(1)>0 [12], which indicates the
I, is further increased)!’ also increases. For purely capil- bifurcation to the standing wave state is supercritical. We
lary waves [o=1), 01({5 reaches the maximum value of rescale the amplitudes agy(1)A; and the coefficients as
0N~74.9° orc, =213-1 g(cji)/g(1). In what follows, we shall only refer to the

I I ' scaled amplitudes and the scaled coefficients; but use the
same notation for them as for the unscaled ones. Note that
the scaled coefficierd(c;— = 1)=2. Figures 1a) and 1b)
shows the scaled functiog(c; ) for two different values of
the damping coefficienty and I'p=1. The maxima in
g(cj) aroundc;; =0.26 (#; =74.9°) correspond to the triad
resonance for purely capillary waves. The functife; ) for
wherej=1,2,... N, andg(1) andg(c;) are given in Ref. capillary-gravity waves of',=1/3 is shown in Figs. ()
[12]. There are two kinds of contributions t9(1) and and Xd). Since the triad resonant interaction occurs among
g(cj). One is from the linear viscous terms in E¢s) and ~ waves with their wave vectors in the same direction when

I',=1/3, the resonant peak®r maxima are atc;=*1.

At O(£%?), we obtain the standing wave amplitude equa-
tions (SWAESs from a nontrivial solvability condition,

N

WDIAPTY 2 gCeplAl®|AL @)

Aj A
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0.1 : . : Instead of large peaks af=*1, we see thay(c;) has a
N=1 (a) To=1 wide flat region around;; =0 and reaches very small posi-
0.3F N5 ] tive values for smally due to scaling. In all cases, the effect
Fy i of triad resonance is weaker for larger valuesyohs ex-
o5 V=6 Nt N=3~ pected.
N=1 The issue of pattern selection can be discussed by noting
_0.7——,’W% that Eq. (7) is of gradient form (19)drA;=—d.71A} .
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FIG. 2. The values of the Lyapunov functiony (N=1,2,3,4,5,6,7,8)
as a function ofy for purely capillary waves I[{[,=1) in (a), and for
capillary-gravity waves of (= 1/3 in (b). Part of(b) with small y is shown FIG. 3. Configuration oh(x,t) att=32 000 is shown in gray scale for
in (c). y=0.02,T",=1/3, ande=0.1.
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Apart from the trivial solution ofA;=0 for j=1,...N, No=2m/ky=2m, and a total number of 256 Fourier modes
Eqg. (7) has a family of stationary solutions differing in is used for each axis. We use a time st&p=0.04—0.1.
the total number of standing wavééfor which A;#0. By  Extensive numerical studies have been performed for differ-
considering the case in which the magnitudes of all stanent values of the three dimensionless paramdtgtsy, and
ding waves are the same, E() has the following solu- g in the QPEs.
tions: |Aj|=|Al=[1+=\L,,;)9(c;)] M2 The Lyapunov In the case of purely capillary wave§' {=1), Egs.(1)
function for these solutions are.7=—(N/2)|A>  and(2) are integrated fory=0.02,0.05,0.1,0.2, and small
=—(NI2)/[1+ZL,4;,9(ci)]. For N=1 (parallel roll  values ofs=0.02,0.05,0.1, from a random initial condition
solution, .7;=—3. For N=2, we have either square (Gaussianly distributed with zero mean and a variance of
(c12=0) or rhombic  €;,#0) patterns  with 1074 for field h(x,t=0), and zero values fo(x,t=0).
F=—11+9g(cy))]. If we consider only regular patterns, Asymptotically regular patterns of standing waves with
i.e. pattern structures for which the angle between any tw@quare symmetry are obtained for all the above parameters;
adjacent wave vectolls; andk; . ; is the same and amounts thys verifying the results of the asymptotic analysis pre-
to 7/N, we have either hexagonal or triangular patterns folsented earlier, and again in agreement with experimental ob-
N=3. Regular patterns fdi=4 are two-dimensional quasi- servation. For capillary-gravity waves B=1/3, the QPEs
crystalline patterngor quasipattern$13]). A quasipattern gre integrated for three different values f0.02, 0.05,
has long-range orientational order but no spatial periodicitygng 0.1 ate=0.05, with the same initial conditions. For
thus analogous to a quasicrystal in solid state physics. SUCD=O.1, the long time configuration &f(x,t) is of approxi-
patterns have been already observed in experiments of Fargate square symmetry. For=0.05, the long time configu-
day waves in systems driven tiyo carefully chosen fre- ration ofh(x,t) is of approximate hexagonal symmetry. For
quency compone_n[§.3], but not in the single frequency case y=0.02, and to avoid finite size effect@xpected to be
analyzed here. Figure 2 shows the Lyapunov functiqpas  gyronger for smaller damping coefficiepf12,13), we have
a function of y for N=1,2,3,4,5,6,7,8, anlip=1/3 and 1.  performed numerical studies for a system of size
For I'o=1, patterns of square symmetriN€2) have the g4\ x 64\, with 512 Fourier modes for each axis and a time
lowest values of7 for all values ofy<0.2, in agreement gienAt=0.1. The initial condition for is a set of Gauss-
with experiments. However, patterns of different symmetriesapy gistributed random numbers with zero mean and a vari-
are favored in different ranges offor I'y=1/3. This canbe  gnce of 106, and® is set to zero initially. The configura-
understood qualitatively by noting that the self-interactionsjg, of h(x,t) att=32 000 is shown in Fig. 3. The structure
of the critical modes are less favored than interactions among,ctor of this configuration has been computed and has eight
them. Consequently, pattern structures with lakgare fa-  neaks, which correspond to eightfold symmetry of the stand-
vored. _ , ing wave pattern. This can also be seen by viewing Fig. 3 at
We next present results from numerical solutions of the, gjancing angle. Thus, the basic prediction of the SWAES is
quasipotential equationQPES [Egs. (1) and(2)] to check  confirmed. Finally, we remark that the possible confirmation
the stability of the quasipatterns described above. An angss staple pattern structures of even lower symmetry that are

lytic _stability qalculation is far too i.nvoIve.d. We use a predicted by the SWAES for smaller values of the damping
Fourier-Galerkin spectral methdd4] with periodic bound- coefficienty would require systems of larger size.
ary conditions in a square domain. Time discretization is of

second order. We use the trapezoidal scheme for the linear This work was supported by the Microgravity Science and
terms and the second order Adams-Bashforth scheme fdkpplication Division of NASA under Contract No. NAG3-
nonlinear terms. The nonlinear terms are calculated by 4284. This work was also supported in part by the Super-
pseudospectral method by using fast Fourier transformsomputer Computations Research Institute, which is partially
Most of the numerical studies are done for a system size dunded by the U.S. Department of Energy, Contract No. DE-
64w X 64, or 32X 32\, with the critical wavelength FCO05-85ER25000.
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