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Pattern formation in parametric surface waves is studied in the limit of weak viscous dissipation. A set
of quasipotential equations~QPEs! is introduced that admits a closed representation in terms of surface
variables alone. A multiscale expansion of the QPEs reveals the importance of triad resonant interactions, and
the saturating effect of the driving force leading to a gradient amplitude equation. Minimization of the asso-
ciated Lyapunov function yields standing wave patterns of square symmetry for capillary waves, and hexago-
nal patterns and a sequence of quasipatterns for mixed capillary-gravity waves. Numerical integration of the
QPEs reveals a quasipattern of eightfold symmetry in the range of parameters predicted by the multiscale
expansion.@S1063-651X~96!50105-4#

PACS number~s!: 47.35.1i, 47.54.1r, 47.20.Ky

When a fluid layer with a free upper surface is subjected
to vertical oscillation, Faraday waves are observed@1,2#. In a
large enough container and for low viscosity fluids, standing
wave patterns of square symmetry are observed near thresh-
old @3#. Based on amplitude equations that we derive below,
the experimental observation of square patterns in the
capillary-dominated regime is explained. We also predict
that hexagonal and a sequence of quasipatterns can be stabi-
lized for the case of a sinusoidal driving force as a result of
triad resonant interactions for mixed capillary-gravity waves
@4#. This theoretical derivation starts from a realistic model
of the fluid and shows that a quasicrystalline pattern is a
stable steady state, and corroborates the conjecture of Newell
and Pomeau@5# on the existence of the so-called ‘‘turbulent
crystals.’’

Pattern-forming instabilities occur in a variety of ex-
tended nonlinear systems. The emergence of spatial patterns
close to onset of the instability can often be described by
amplitude equations@2,6#. However, for near-Hamiltonian
~or weakly dissipative! systems, there is no general agree-
ment on how dissipation should be incorporated into the am-
plitude equation formulation. Previous work on Faraday
waves was based on amplitude equations for a purely Hamil-
tonian system, to which linear and nonlinear damping terms
were added by introducing a dissipation function@7,8#. In
this approach, linear dissipative effects in the original system
contribute only to linear damping terms in the associated
amplitude equations, while nonlinear damping terms result
entirely from nonlinear dissipative effects. Such an approach
has contributed to the general belief that for near-
Hamiltonian systems, nonlinear saturation of the linear in-
stability does not occur if only linear dissipative effects are
considered, and weak nonlinear dissipative or other higher
order effects are needed for nonlinear saturation@2,9#. In this
paper, we show that in the case of weakly damped paramet-
ric surface waves linear dissipative effects do contribute to
the nonlinear damping terms in the amplitude equation, and
that they alone can saturate the parametric instability.
In addition, the experimental observation of square patterns

in capillary-dominated regime is naturally explained with-
out having to invoke poorly understood nonlinear dissipa-
tive effects, or higher order terms in the amplitude equa-
tion.

The basic difference with previous studies@7,8# is that
although the bulk flow does remain potential, it is modified
by a rotational viscous boundary layer near the free sur-
face that has to be explicitly incorporated into the analysis
@10–12#. When the thickness of the viscous boundary layer
is small compared to the typical wavelength of the pattern,
the weak effects due to viscosity can be taken into account
by introducing effective boundary conditions for the other-
wise potential bulk flow. This is the basic idea of the quasi-
potential approximation introduced below. We first expand
the equations governing the motion of an incompressible vis-
cous fluid and the appropriate boundary conditions at the free
surface in the small thickness of the free surface boundary
layer, d. The resulting equations are further simplified by
recasting them in a nonlocal form that involves the flow
variables on the free surface only; thus eliminating the need
to explicitly solve for the flow in the bulk@12#. Let z be the
normal direction to the surface at rest and
g(t)52g02gz0sinVt the driving force whereg0 is the con-
stant acceleration of gravity, andV andgz0 are the angular
frequency and the amplitude of the driving force, respec-
tively. We choose 1/v0[2/V as the unit of time and 1/k0 as
the unit of length, withk0 defined byv0

25g0k01Gk0
3/r, the

linear dispersion relation for surface waves, whereG is the
surface tension andr the density of the fluid. Then the di-
mensionless, nonlocal and quasipotential equations read
@12#,
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wherex5(x,y), “5(]x ,]y), h is the surface displacement
away from planarity,F is the value of velocity potential at
the free surface ~the surface velocity potential!,
g52nk0

2/v0 is a linear damping coefficient (g;d2!1),
G05g0k0 /v0

2 , G05Gk0
3/(rv0

2), and f5gz0k0 /(4v0
2) is the

driving amplitude, andD̂ is a Fourier-integral operator,
which is defined for an arbitrary functionu(x) by
D̂u(x)5*2`

` ukuû(k)exp(ik•x)dk with û(k) the Fourier
transform of u(x). Notice thatG01G051 by definition.
Only those viscous terms that are linear in the surface vari-
ables are retained in Eqs.~1! and ~2!. Nonlinear viscous
terms, which were referred to as nonlinear dissipative effects
in the introduction, have been neglected. Both the asymptotic
analysis that follows and the numerical results presented
later are based on Eqs.~1! and ~2!.

Linear analysis indicates that forg!1 the planar sur-
face becomes unstable atf c5g, and the critical wave num-
ber is k051. We seek nonlinear standing wave solu-
tions near threshold@«[( f2g)/g!1# and expand Eqs.
~1! and ~2! in «1/2 with multiple time scales,
h(x,t,T)5«1/2h1(x,t,T)1«h21«3/2h31••• and F(x,t,T)
5«1/2F1(x,t,T)1«F21«3/2F31•••, where T5«t. At
O(«1/2), we consider a set ofN standing wave modes with
critical wave vectors6 k̂ j ; then the linear solution reads

h15S cost1 f

4
sin3t D (

j51

N

@Aj~T!exp~ i k̂ j•x!1c.c.#, ~3!

F15S 2sint1 fcost1
3 f

4
cos3t D

3(
j51

N

@Aj~T!exp~ i k̂ j•x!1c.c.#, ~4!

where the complex amplitudesAj are assumed to vary in the
slow time scaleT. Notice that the linear solution contains
not only the subharmonic responses but also the terms that
are proportional to the driving forcef . These latter terms
arise becausef is finite for the expansion in«. Terms that
are of higher order inf have been neglected. In what fol-
lows, we shall replacef in the linear solution byg since
f5g(11«).
At O(«), there is no solvability condition; however, there

are resonant interactions that have to be taken into account.
A particular solution forh2 can be written as

h25 (
j ,l51

N

„Hjl ~ t !$AjAlexp@ i ~ k̂ j1 k̂ l !•x#1c.c.%

1Hj ,2 l~ t !$AjAl* exp@ i ~ k̂ j2 k̂ l !•x#1c.c.%…, ~5!

where theHjl (t) are unknown functions that satisfy

] ttH jl12gA2~11cjl !] tH jl

1@G012G0~11cjl !#A2~11cjl !Hjl

5F jl
~1!cos2t1F jl

~2!sin2t1•••, ~6!

whereci j[cosuij5k̂ j• k̂ l , andF jl
(1) andF jl

(2) are proportional
to the amplitudesAjAl . Equation~6! is the equation of an
additively forced harmonic oscillator with friction. When the
‘‘natural’’ frequency of the ‘‘oscillator’’ equals the driving
frequency, resonance occurs. This condition reads
@G012G0(11cjl )#A2(11cjl )54. Due to the nonzero
damping coefficient, this resonance results in a finite value
for Hjl that is inversely proportional to the damping coeffi-
cient. Since the right-hand side of Eq.~6! is proportional to
AjAl , there are three waves involved in this resonance,
namely, standing wave modesAj andAl , and modeB with
wave vectork̂ j1 k̂ l . Therefore, Eq.~6! describes a three-
wave resonant interaction. Note that the wave number for

FIG. 1. The coefficientg(cjl ) as a function ofcjl for purely capillary
waves (G051) with the linear damping coefficientg50.02 ~a!, and
g50.1 ~b!. The same coefficient for gravity-capillary waves ofG051/3
with g50.02 ~c! andg50.1 ~d!.
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modeB is away from the critical wave numberk051; thus
modeB is a linearly stable mode. The relevance of triad
resonant interactions to pattern selection can be understood
intuitively. Since the resonant growth of linearly damped
modeB is at the expense of the reduction of the amplitudes
Aj andAl , the growth of modesAj andAl are less favored
than any other modeAm that does not participate in a triad
resonant interaction. In other words, the system tries to avoid
critical modes that participate in triad resonant interactions.
As shown below, triad resonant interactions strongly influ-
ence pattern selection through coefficients of cubic nonlinear
terms in the amplitude equations in a way that is consistent
with the above argument. Finally, forG0,1/3, triad reso-
nance is not possible. ForG051/3, wave vectors of the three
resonating waves are in the same direction (u j l

(r )50). As
G0 is further increased,u j l

(r ) also increases. For purely capil-
lary waves (G051), u j l

(r ) reaches the maximum value of
u j l
(r )'74.9° orcjl521/321.
At O(«3/2), we obtain the standing wave amplitude equa-

tions ~SWAEs! from a nontrivial solvability condition,

]Aj

]T
5gAj2Fgg~1!uAj u21g (

l51~ lÞ j !

N

g~cjl !uAl u2GAj , ~7!

where j51,2, . . . ,N, andg(1) andg(cjl ) are given in Ref.
@12#. There are two kinds of contributions tog(1) and
g(cjl ). One is from the linear viscous terms in Eqs.~1! and

~2!. The other is due to the parametric driving force and
proportional to the driving amplitudef . These two kinds of
contributions appear together in Eq.~7! since we have set
f5g at the linear order. The latter contribution is directly
related to the terms proportional tof in the linear solution
@Eqs. ~3! and ~4!#, and it provides anamplitude-limiting ef-
fect. The nonlinear interactions between the primary subhar-
monic modes and terms related to the driving force in the
linear solution produce terms that are out of phase byp/2
with the primary subharmonic mode, and thus can contribute
to saturate the wave amplitude. An important point is that
this amplitude-limiting effect results from the forcing term,
but not from a dissipative term. As a result, this effect is also
important even for Hamiltonian systems.

It can be shown thatg(1).0 @12#, which indicates the
bifurcation to the standing wave state is supercritical. We
rescale the amplitudes asAg(1)Aj and the coefficients as
g(cjl )/g(1). In what follows, we shall only refer to the
scaled amplitudes and the scaled coefficients; but use the
same notation for them as for the unscaled ones. Note that
the scaled coefficientg(cjl→61)52. Figures 1~a! and 1~b!
shows the scaled functiong(cjl ) for two different values of
the damping coefficientg and G051. The maxima in
g(cjl ) aroundcjl50.26 (u j l574.9°) correspond to the triad
resonance for purely capillary waves. The functiong(cjl ) for
capillary-gravity waves ofG051/3 is shown in Figs. 1~c!
and 1~d!. Since the triad resonant interaction occurs among
waves with their wave vectors in the same direction when
G051/3, the resonant peaks~or maxima! are atcjl561.
Instead of large peaks atcjl561, we see thatg(cjl ) has a
wide flat region aroundcjl50 and reaches very small posi-
tive values for smallg due to scaling. In all cases, the effect
of triad resonance is weaker for larger values ofg as ex-
pected.

The issue of pattern selection can be discussed by noting
that Eq. ~7! is of gradient form (1/g)]TAj52]F /]Aj* .

FIG. 2. The values of the Lyapunov functionF N (N51,2,3,4,5,6,7,8)
as a function ofg for purely capillary waves (G051) in ~a!, and for
capillary-gravity waves ofG051/3 in ~b!. Part of~b! with smallg is shown
in ~c!.

FIG. 3. Configuration ofh(x,t) at t532 000 is shown in gray scale for
g50.02,G051/3, and«50.1.
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Apart from the trivial solution ofAj50 for j51,...,N,
Eq. ~7! has a family of stationary solutions differing in
the total number of standing wavesN for which AjÞ0. By
considering the case in which the magnitudes of all stan-
ding waves are the same, Eq.~7! has the following solu-
tions: uAj u5uAu5@11( l51(lÞ j )

N g(cjl )#
21/2. The Lyapunov

function for these solutions areF 52(N/2)uAu2

52(N/2)/@11( l51(lÞ j )
N g(cjl )#. For N51 ~parallel roll

solution!, F 152 1
2. For N52, we have either square

(c1250) or rhombic (c12Þ0) patterns with
F 2521/@11g(c12)#. If we consider only regular patterns,
i.e. pattern structures for which the angle between any two
adjacent wave vectorsk j andk j11 is the same and amounts
to p/N, we have either hexagonal or triangular patterns for
N53. Regular patterns forN>4 are two-dimensional quasi-
crystalline patterns~or quasipatterns@13#!. A quasipattern
has long-range orientational order but no spatial periodicity,
thus analogous to a quasicrystal in solid state physics. Such
patterns have been already observed in experiments of Fara-
day waves in systems driven bytwo carefully chosen fre-
quency components@13#, but not in the single frequency case
analyzed here. Figure 2 shows the Lyapunov functionF N as
a function ofg for N51,2,3,4,5,6,7,8, andG051/3 and 1.
For G051, patterns of square symmetry (N52) have the
lowest values ofF N for all values ofg,0.2, in agreement
with experiments. However, patterns of different symmetries
are favored in different ranges ofg for G051/3. This can be
understood qualitatively by noting that the self-interactions
of the critical modes are less favored than interactions among
them. Consequently, pattern structures with largeN are fa-
vored.

We next present results from numerical solutions of the
quasipotential equations~QPEs! @Eqs. ~1! and ~2!# to check
the stability of the quasipatterns described above. An ana-
lytic stability calculation is far too involved. We use a
Fourier-Galerkin spectral method@14# with periodic bound-
ary conditions in a square domain. Time discretization is of
second order. We use the trapezoidal scheme for the linear
terms and the second order Adams-Bashforth scheme for
nonlinear terms. The nonlinear terms are calculated by a
pseudospectral method by using fast Fourier transforms.
Most of the numerical studies are done for a system size of
64p364p, or 32l0332l0 with the critical wavelength

l052p/k052p, and a total number of 256 Fourier modes
is used for each axis. We use a time stepDt50.0420.1.
Extensive numerical studies have been performed for differ-
ent values of the three dimensionless parametersG0 , g, and
« in the QPEs.

In the case of purely capillary waves (G051), Eqs.~1!
and ~2! are integrated forg50.02,0.05,0.1,0.2, and small
values of«50.02,0.05,0.1, from a random initial condition
~Gaussianly distributed with zero mean and a variance of
1024) for field h(x,t50), and zero values forF(x,t50).
Asymptotically regular patterns of standing waves with
square symmetry are obtained for all the above parameters;
thus verifying the results of the asymptotic analysis pre-
sented earlier, and again in agreement with experimental ob-
servation. For capillary-gravity waves atG051/3, the QPEs
are integrated for three different values ofg50.02, 0.05,
and 0.1 at«50.05, with the same initial conditions. For
g50.1, the long time configuration ofh(x,t) is of approxi-
mate square symmetry. Forg50.05, the long time configu-
ration ofh(x,t) is of approximate hexagonal symmetry. For
g50.02, and to avoid finite size effects~expected to be
stronger for smaller damping coefficientg @12,13#!, we have
performed numerical studies for a system of size
64l0364l0 with 512 Fourier modes for each axis and a time
stepDt50.1. The initial condition forh is a set of Gauss-
ianly distributed random numbers with zero mean and a vari-
ance of 1026, andF is set to zero initially. The configura-
tion of h(x,t) at t532 000 is shown in Fig. 3. The structure
factor of this configuration has been computed and has eight
peaks, which correspond to eightfold symmetry of the stand-
ing wave pattern. This can also be seen by viewing Fig. 3 at
a glancing angle. Thus, the basic prediction of the SWAEs is
confirmed. Finally, we remark that the possible confirmation
of stable pattern structures of even lower symmetry that are
predicted by the SWAEs for smaller values of the damping
coefficientg would require systems of larger size.
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