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Estimating invariants of noisy attractors
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We propose a method for estimating the correlation dimension and correlation entropy of a time series. It is
based on a generalization of the correlation integral that is specifically useful when the time series is corrupted
with Gaussian measurement noise. From computational experiments we conclude that reasonable estimates for
the noise level, correlation dimension, and correlation entropy can be found for time series with up to 20%
noise. The method appears to be fairly robust with respect to the noise distrif@®id63-651X%96)51405-4

PACS numbd(s): 05.45+b, 02.50-r

The characterization of nonlinear time series in the preseorrelation integral has also been investigated by Sh&@th
ence of measurement noise is a problem of great currentho used an approximation of the correlation integral to es-
interest. For the ideal case of noise-free deterministic timéimate D for small noise levels. The analytic difficulties
series, the reconstruction theor¢i?Z] has led to a number which prevent the estimation of invariants at higher noise
of powerful characterization methods. Measurement noisdevels appear to be related to the contrast between the
however, is known to put severe limitations on the estimasmooth Gaussian noise distribution on the one hand and the
tion of dynamical invariants from time series with theseabrupt nature of the kernel functidd() in the correlation
methods. integral (1) on the other.

The most commonly used characterization method of In this Rapid Communication we will show that, in the
noise-free time series is that of Grassberger and Procaccéontext of 1ID Gaussian noise, a more natural formalism is
[3]. It allows the determination of both the correlation di- obtained by examining a function from the same family as
mensionD and the correlation entrogy of an attractor after the correlation integral, but which is tailored for Gaussian
constructing the m-dimensional delay  vectors measurement noise. We start by considering the correlation
X0 = (Xn  Xnys g - - - Xn+ (m-1)7) With delay 7 from a time se- integral as a member of a generalized class of kernel inte-
ries {Xn}wzl- The correlation integraC(r) is defined in grals. Then a Gaugsan kerpel membe_r is p_|cked from this
class and its behavior is derived analytically in the presence
of Gaussian measurement noise. We then give some example
applications to noisy deterministic time series for whigh

C.(r :j dXo(X fd* NO(r—|x—v 1 K and the noise level are estimated.
(") pm(X) Ypm(y)O(r=[x=y]) @ The correlation integral defined K§) can be generalized

terms of the distributiorpm(i) of delay vectors as

to

where ©( ) denotes the Heaviside function arld a
norm. The correlation dimensidD and correlation entropy - - - - - -
K are defined asD=lim,_lim,, ...dlogCy(r)/dlogr and Tm(h)= f dXpm(X) J dypm(y)W(|x=yl/h) (2
K=7"im,_ olimy_..({ —log[Cr)]¥m). In practice, the
limits cannot be taken, and a log-log plot of the estimatedvherew() is a kernel function. The correlation integi@)
C.(r) versusr is usually made, in order to look for a range is retained when the kernel function(x) is taken to be
in the lowerr region where the curves are approximately ®(1—x). The parameteh will be referred to as the band-
linear and parallel for consecutive values af For small  width.
values ofr, measurement noise gives rise to an increased Using the Gaussian kernel function
slope in the log-log plot of the correlation integral. For low ,
noise levels, a scaling region can usually still be found, w(x)=e X" 3
whereas this is impossible if the noise level is high.

Basically two approaches can be distinguished concerning version of the correlation integral,
the analysis of time series with measurement noise. The first
is to separate the noise and the underlying time series with a - - S N VT S
noise reduction methodor surveys se@4,5]). The second is Tm(h):f dXPm(X)f dypm(y)e X YI7En9 (4
based on characterizing the modified delay vector distribu-
tion. By calculating the effect of noise on the correlationis obtained which will be referred to as the Gaussian kernel
integral, Schouteet al.[6] obtained a method for estimating correlation integral. Ghez and Vaief#,10] used a Gaussian
the correlation dimension in the case of bounded indeperkernel function for the estimation of dimensions and entro-
dent, identically distributedlID) noise. Schreibef7] has pies of noise-free time series. Gaussian kernel functions are
proposed a method for estimating the noise level of a deteralso used in a statistical test for the reversibility of time
ministic time series contaminated with unbounded IIDseries[11] and for comparing the delay vector distributions
Gaussian measurement noise. The effect of this noise on the two time serieg§12].
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The following properties off ,,(h) will be used below. If  presence of Gaussian measurement noise which itself acts as
we takem fixed and consider a deterministic time series witha Gaussian convolution on the delay vector distribution.

correlation dimensio, then the scaling law To see how IID Gaussian measurement noise effects
5 _ Tn(h) it is useful to make a clear distinction between the
Tm(h)~h=for m fixed, h—0, ) noisy delay vector distributiop(i) and its underlying noise-

holds according to the results of Ghez and Vaig@li More €€ distributionp(x). The relation betweep(x) and p(x)

generally, any kernel(x) which decreases monotonically in c&n be described by a convolution with a normalized Gauss-
x for x=0 and for which lim_sh Pw(x/h)=0 pointwise ian distribution with standard deviatian [14]. The distribu-

for x>0 and for anyp=0, implies the scaling law5). tion pj(X) in turn is obtained fromp(x) by a convolution
Them dependence ab) is found by expressing,(h) as  with a normalized Gaussian distribution with standard devia-

Tm(h)=fdrym(r)w(r/h) where 7,,(r)=dC,(r)/dr is the tionh as described bg9). The two consecutive convolutions

distribution of the interpoint distances It was shown by can be summarized by the single convolution

Franket al.[13] that the correlation integral calculated with

the Euclidean norm behaves as ppn(;)z(s\/ﬁ)fmf dm);)e—\i—ﬂz/(zsz), (12)

Cr(N)~e KM/ ymP  for r—0, m—», (6)
wheres= \hZ+ 2. Substituting(11) into (8) and rewriting
which implies 7p,(r)~e™*™m~P" for fixed r. Them de-  this in the form of(4), we obtain
pendence thus is described by the fa@of™m~P’2. We

therefore find h2 |\ m2
Tm(h)= ﬁ)
T, (h)~e K™m=P2h®  for h—0, m—w, (7) h*+o
for Gaussian kernel correlation integrals in the noise-free xj dm(i)f d%(§)e*|§*9\2/(4h2+402>_
case with the Euclidean norm.
Following Frank etal, we could remove the factor 12

m~°2in (7) by defining anm-dependent bandwidth. There
is, however, a practical reason for not using this freedom anéquation (12) describesT,,(h) in terms of the underlying

proceeding with(7). Due to the finiteness of the attractor distributionp(x) in the presence of IID Gaussian noise with
there usually is an upper bandwidth up to which the behavioktandard deviatiow.

(7) is observed, and it is approximately independentrof The behavior of the double integral {@2) is found from
By using dimension scaled bandwidths we would be forceghe definition ofT,,(h) given in(4) together with the noise-
to go to smaller upper bandwidths for increasing free scaling law(7), leading to

With the Euclidean norm, the Gaussian kernel correlation

integral can be written as 2

h?+ o2

m/2

— _ D
e KTmm D/2 /h2+0_2

Tm(h)=¢

To(h)= (2" [ o0 7 ®)
for Vh%+o%2—0, m—w», (13
where
where ¢ is a normalization constant.
- - - > 012012 In practice the standard deviati@n of the noise level is
Pr()=(h/2m) mf dypn(y)e . () fixed pat a nonzero value. We are thus not able to let
Jh?+ o2 go to zero. Nevertheless, we expect relatip8) to
This is best demonstrated by derivi from (8) and(9).  hold good in a range of small values bfif the noise level

After substituting(9) into (8) we obtain o is not too large. Note that the Gaussian kernel correlation
integral for small values oth and m fixed behaves as
Tn(h)=(hm) ™™ To(h)~h™ which is a manifestation of the
m-dimensionality of the set of noisy delay vectors. Taking
xf dif df/f dzpm(Y) pm(2) the limit c—0 on the other hand, gives back the scaling
relation (7) of the noise-free case.
x e~ LIx=y[2+|x=22)/(2h?) (10) Before we describe the application of our method to time

series, we want to make a remark about our normalization
Expanding the expression between square brackets in the eg2nventions. All time series are rescaled to have a standard
ponent as™ ,2[x;— X(y; +2)]2+ 1/2(yi— z;)?, the integral deviation of 1 an(_d the q_uoted noise levels der_lote the noise
- ) levels after rescaling. This allows for a convenient compari-
overx is easily performed and results (). son of the bandwidth parameterand the noise levels for
The distributionppy(x) given in (9) allows an interpreta- the different time series to be considered. The cased
tion as a convolution of the delay vector distributip(&) corresponds with a clean noise-free time series whereas a
with a normalized Gaussian distribution with a standard denoise level ofe=1 implies a time series consisting of pure
viation equal toh. This property may be exploited in the 1ID samples.
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FIG. 1. The estimaté’m(h) as a function of the bandwidth on . 04¢
a log-log scale for a Heon time series without noig@) and with a K 03 N
(normalized noise level of 0.08b). The different lines correspond ’ ’ A A
to the casesn=1 (upper ling up to m=10 (lower line). The bars 0.2
denote the estimated standard error. 0 2 4 6 8 10

m

The Gaussian kernel correlation integrdig(h) can be . . R .
consistently estimated by replacing the integrals over the de- FIG. 2. Estimated values, D andK as a function ofn for a
|ay vector d|Str|but|Ons “'(4) Wlth an average over delay Henon time series with a noise levelof 0.05. The bars denote the
vectors which are assumed to be independently distribute@stimated 95% confidence interval (2 standard eyrors

according tOpm()Z). The estimatéArm(h) becomes

) 1 V[Tm(h>]=Niwﬁ(m—m,»(h)’-’] (16)
T =52 2 %i(h) (14 P
Pt where the bars denote averaging over the paifg (
whereN,, is the number ofi(j) pairs used and The estimates of the model parameters at a noise level of
0=0.05 as a function of are shown in Fig. 2. Reasonable
z,//ij(h)=e’|’zi*;i‘2’(4h2). (15  Vvalues ofo, D, andK (the estimates of,, D, andK respec-

tively) are obtained at moderately small valuesro{m=3

In Fig. 1(a), the estimaté(h) is drawn as a function of ©F M=4). _ _ _
the bandwidthh on a log-log scale for a noise-free time '€ results for different noise levels ranging up to
series generated with the hien model, of lengthN = 4000. 0=0.20 are summarlzgd in Table I. All values were esti-
The curves are obtained by choosing at random 1000 refefiated atm=4. The estimates o are close to their true
ence indices and using all values of for which j #i. The values and for noise levels up to 0.10, the value®addnd
bandwidth parameters were chosen equidistant on a logariti are close to the values found in the literatu2~(1.22,
mic scale with 2 values per binade. This choice has the adsee[3] andK~0.29, sed13]). The estimated values of the
vantage that it is sufficient to perform the numerically time-standard error, however, seem to be on the small side. This is
consuming evaluation of the exponential functionwip(h) possibly due to cross-correlations between the estimates of
only for the largest value of the bandwidth parameter. Théhe Gaussian kernel correlation functions for different values
value ofw;;(h) at the smaller bandwidths can then be foundof h andm. _ _ _
efficiently using the relatiomvij(h/\/?)=wi2j(h). We applied the method to a noise-free tlme series

The scaling relatiori7) for low-dimensional deterministic (N=10000, sample time 0.5r=0.00 generated with the
time series implies parallel linear curves for small values ofR0ssler model(see Ref[16]). The estimated parameters at
h and large values ofn. In Fig. 1(a) this behavior can be mM=9 for 7=3 were ¢=0.00070.0002, D=1.97+0.01
observed for a large range bfvalues form=2. Figure 1b) andK=0.066+0.009. Application of the method to a noisy
shows a log-log plot off,(h) versush for the same Heon . R
time series with 11D Gaussian noise with a standard deviation TABLE I. Estimated values’, D andK, = the estimated stan-
of ¢=0.05. It can be observed in Fig(l that the noise dard errors for Heon time series contaminated with different noise
gives rise to an increased slope for small bandwidth value!§Vvelso. All values are estimated an=4.
h R N

For different values of the noise level, a Marquardt non-“ 7 D K
linear fit procedurg15] for the parametersp, K, D, and g gg 0.000040.00009  1.1960.002  0.296 0.003
g was performed in the range where<0.25, and g 0.0102:0.00006  1.20%0.002  0.2930.002
Tim(h)>2/N,,. For eachm, the valuesT(h) andTp1(h) 002 0.0195:0.0002  1.208:0.004  0.2940.003
were fitted Simultaneously to the rrlodel functi()IB). The 0.05 0.0487 0.0003 1.246-0.007 0.286-0.003
standard deviations of the estimatég(h) were taken as g 19 0.0996 0.0008 1.260.02 0.3090.003
weights in the fit procedure. Assuming independence of thg 5 0.206-0.003 1.16-0.05 0.278 0.003

distances, the variande of T,,(h) is estimated as
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Rossler time seriesN=10 000, sample time 0.55=0.05) ants using a Marquardt type estimation method. The first
gave the estimates=0.0507 0.0003,D=1.94+0.03 and results obtained with maps and continuous time dynamical
K=0.061=0.001. An upper limit for the value db is the systems are in good agreement with the noise-free values.
information dimension which was estimated by Grassbergefhe standard errors of the parameters appear to be somewhat
et al. [16] as 2.0&-0.01. Using the method of Schouten underestimated, possibly due to the neglected cross-
et al.[17], we have found a correlation entropy of 0.07 for correlations among the estimates of the Gaussian kernel cor-
the Rasler time series. These examples show that ourelation integrals at different values bfandm. The method
method can also be applied to time series obtained fromvorks well up to noise levels of about 0.20. Although a
continuous time dynamical systems. trial with uniformly distributed noise suggests that the
The sensitivity of our method with respect to the typemethod is fairly robust against the type of measurement
of measurement noise, was tested on andfe time npojse, we expect an improvement with the use of linear com-
series with independent uniformly distributed noise with apinations of several coordinates like in embeddings based on
standard deviations of 0.05. The estimated parameters gingylar value decompositions. Also the IID requirement

are 0=0.0454-0.0003, D=1.220-0.007 andK=0.294  mnay pe relaxed when a delayof the order of the autocor-
*+0.003. Although the estimated noise level is about 10% t0Qg|ation time of the noise is used.

small, the estimates dd andK are still very reasonable. |, practice an appropriate choice of the upper bandwidth
This suggests that the method can be of use for different < 1o pe made. Alsa priori it is not known whether an

noise distributions. experimental time series consists of a low-dimensional com-

GalLngi]; E;ﬁlgl ;22:252:??;2”’raivfh)hsv\ﬁc;]nfgog?ﬁg dtheponent corrupted with measurement noise. In order to pre-
9 vent spurious estimates, the quality of the fit below the upper

for the characterization of delay vector distributions in the.bandwidth chosen should be investigated. Furthermore, the

&r\?:lince t(r)::-:- (?)ael;]zsvlir; ?feﬁ]sé”ggjgsti:r?'skzr n';‘l)rczrr?;l;t?oor:g?abi|ity of the estimated parameters upon changing the em-
I bedding parameters andm should be assessed.

integral is derived analytically in terms of the noise lewel
and the invariant® andK. This allows the estimation of the The author wishes to thank Professor F. Takens and Dr.
noise level of a time series simultaneously with these invariJ. DeGoede for stimulating discussions.
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