
PHYSICAL REVIEW E VOLUME 53, NUMBER 1

Topological interactions in model polymer networks
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We numerically analyze mesh entanglements in model polymer networks. We find G —G~I, =0.85p,„,k&T,
where p,„, is the entanglernent density, G the shear modulus which was measured in extensive molecular

dynamics simulations of stretched samples, and G h the phantom model prediction for the equivalent system
without topological constraints. A simple model calculation of the prefactor is in close agreement with the

observed value.

PACS number(s): 61.41.+e, 02.40.Pc, 05.90.+m

Rubberlike materials have unique elastic properties [1].
Qualitatively, they have been understood for 60 years follow-
ing the realization that a fIexible, randomly coiled polymer in
a melt can be viewed as a linear entropic spring [2]. The
statistical mechanics of polymer networks is, however, a
complicated and still unsolved problem. Similarly to spin
glasses [3] they contain quenched disorder, a point first fully
appreciated by Edwards [4,5]. Particularly difficult to handle
are the topological constraints due to the mutual impenetra-
bility of the chains. Their mere specification requires an-
in principle infinite —set of topological invariants for pairs,
triples, etc. of loops [5]. In contrast to computer simulations
[6] experiments can neither test nor provide microscopic in-

put for topological theories of rubber elasticity. Purely ana-
lytic attempts are very complex [7—9] and have not led to a
satisfactory conclusion. Alternative approaches try to ap-
proximate the global topological constraints by local geo-
metrical constraints on strands [10—15]. The tube model
[10—12], in particular, is very successful and provides a uni-
fied view on networks and entangled polymer melts on a
mean-field level. Simulations [16—18] as well as experi-
ments [19,20] back up the microscopic picture of a tube. It is
an open question whether these simpler models can be de-
rived from more fundamental topological considerations
[21].

In this paper we use computer simulations to explore the
original ansatz of Edwards [4,5] to consider only one type of
"entanglement:" linked loops. Most topological theories of
rubber elasticity [7—9,13] are based on this idea. In a previ-
ous paper [22] we have introduced randomly interpenetrating
polymer networks with diamond lattice connectivity as a
convenient starting point for a systematic study of quenched
topological disorder in rubberlike materials. These systems
were investigated under elongational strain allowing us to
determine shear moduli G from the restoring forces. Here we
calculate the degree of linking for all mesh pairs in our sys-
tems. This microscopic information allows us to directly test
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the model of Graessley and Pearson [13] (GP), because it
predicts the topology contribution to the shear modulus on
the basis of a well-defined microscopic picture for the inter-
action between entangled loops. This makes the GP theory
particularly suited for testing the foundations of topological
theories of rubber elasticity in a computer simulation.

The link contribution to the shear modulus. The reference
system for the assessment of the consequences of topology
conservation is the "phantom" network [23,24], where the
chains may pass freely through their neighbors and them-
selves. The model forms the basis of most modern theories
of rubber elasticity [11,12,25—27]. Note that in dense sys-
tems it is topology conservation and not the screened ex-
cluded volume interaction that causes deviations from the
phantom network behavior [28,29]. To motivate a contribu-
tion of links to the modulus we follow an idea of Vologodskii
et al. (VK) [30]. They defined an entropic interaction be-
tween loop centers of mass (c.m. ) due to the conservation of
the topological state of a loop pair. Consider two rings of
length N with a c.m. distance r. There is a certain probability

f~(r} for them to be linked. In the following, we will assume
the existence of a suitably defined characteristic distance of
entangled meshes, the linking radius Rt(N), which can be
used to scale the linking probabilities, i.e.,
fz(r) =f(r/RL(N)). The change in entropy due to a modifi-

cation k of the distance is kit(ln[f(kx)] —In[f(x)]), if they are

linked, and kn{ln[1 —f(kx)] —in[1 —f(x)]), if they are not

linked. Unfortunately, the linking probability f(x) and its
dependence on the size of the loops are not generally known
[30-32].

Applying these ideas to polymer networks GP assumed
[13](i) that the loops are randomly distributed in space with
a density pt, ~, (ii) that the contributions of the different
loop pairs are independent and additive, (iii) that the linking

probability f(x) depends only on the distance ~x~ and not on
the distortion of the loop shapes in the course of the defor-
mation, and (iv) that the positions of the loop c.m. change
affinely with the deformation X. of the sample. The GP result
for the contribution G,„,to the shear modulus can be written
as

G,„,=M[f(x)]p,„,ktt T,
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Nmon

G

[e/a )
Gp

[ /eo']

12
26
44

8000
23744
51264

0.100~ 0.003
0.060~ 0.003
0.041~ 0.002

0.072
0.035
0.020

0.042
0.036
0,032

TABLE I. Strand length N, total number of particles N „, true
shear modulus G, phantom model shear modulus GpI, for the
equivalent system without topological constraints and the estimate

G,n, of the Graessley and Pearson model for the loop entanglement
contribution.

(I~) 1 intra
NIoop Nli nk NlinI, NI;nI Rg

12 640 11120
26 896 28508
44 1152 54701

124
1478
4511

32
146
254

4.57~ 0.03 4.22~ 0.03
6.74~ 0.04 6.50~ 0.03
8.79~ 0.06 8.69~ 0.04

TABLE II. Linking statistics for meshes in randomly interpen-
etrating polymer networks with diamond lattice connectivity. Listed
are the number of loops N&„p, the total number of linked pairs of
loo s NI;„&, the number of links with a GLN larger than one

Ni;„I, , the number of links between meshes on identical diamond
networks N&";„'I",", the radius of gyration of the meshes Rg and the

linking radius Rz .

p,„,=27rp&„R& x f(x)dx,
Jo

(2)

x f' (x)
1 Jo f(x)[I —f(x)]

~[f(x)]=
15

x2f(x) dx
Jo

(3)

Assuming further that (v) up to a prefactor ao of order 1 the
effect of topology conservation can be identified with 6,„,
and (vi) that this contribution is independent of and additive
to the modulus G~h of the phantom network without topo-
logical constraints the total shear modulus 6 is given by

G = Gzh+ ao~[f(x) ]p ~4T (4)

Note that Eqs. (1)—(4) implicitly assume that simple link
topologies dominate and that it is not necessary to distin-
guish between different types of entanglement.

The simulation model For ou.r simulations [22] we used
the same coarse-grained model as in earlier investigations of
polymer melts and networks [16,18]. The network strands
were modeled as freely jointed bead spring chains of uniform
length N. There were two types of interactions, an excluded
volume interaction, Uz J, between all monomers and a bond
potential, UFzzz, between chemical nearest neighbors. With

e, o., and r as the Lennard-Jones units of energy, length, and
time we worked at a temperature k&T=1e and at a density
p=0.85o. . The average bond length was 7=0.97cr and

topology was conserved. The relevant length and time scales
for chains in a melt are the mean-square end-to-end distance
(R )(N)=1.7l N, the melt entanglement length N, =35
monomers, and the Rouse time ~z „„=1.5N r [16].We car-
ried out molecular dynamics simulations, where the system
was weakly coupled to a heat bath. Simulation times were of
the order of 10' „„,while the stress relaxation in strained
samples was completed after about 2~+, „.The short relax-
ation times are due to the defect-free structure of our net-
works.

The strands were cross-linked by four-functional mono-
mers into networks with the connectivity of a diamond lattice
and placed in a commensurable, cubic simulation box with
periodic boundary conditions. The bond length of the dia-
mond lattice (identical to the mean elongation of the strands)
was set to (R (N+1)) ~ of the melt chains. The diamond
networks were prepared and relaxed as phantom networks
with the correct melt persistence length [18].To reach melt

density we superimpose n-%' diamond networks in the
simulation volume which interpenetrate each other randomly.

By introducing the excluded volume interaction between all
monomers the topology is quenched and as in realistic sys-
tems there are of the order of X cross-links in the volume
of one chain. The density of elastically active strands is
given by p„„,„d= p/(N+ 1/2). We have investigated systems
with strand lengths N= 12,26,44 (Table I) corresponding to
n = 5,7,9 independent, but mutually interpenetrating diamond
networks. The total number of particles ranged from 8000
and to 51264 monomers. A phantom network with these
characteristics has a modulus of G„h= p„„,„dkt3T [22]. The
true shear moduli, which we obtained from the restoring
forces in simulations of strained samples, are significantly
higher (Table I) but nevertheless of purely entropic origin
For more details we refer to Ref. [22].

Analysis of link topologies We use .the Gauss linking
number (GLN)

1 " t' (dr, X dr2) (r, —r2)
4

to distinguish between entangled (I4 0) and nonentangled
pairs of loops or meshes. Similarly to Eqs. (1)—(4) the use of
the GLN is only justified for simple link topologies
[5,30,33]. Note that in contrast to algebraic invariants the
GLN can be integrated into the standard polymer formalism
[7,33]

Iwata [8] pointed out that it is sufficient to consider only
the meshes of a network, since for any larger loop the Gauss
integral can be written as a sum over GLNs for mesh pairs.
The diamond lattice cannot be partitioned into a set of its
meshes which consist of six strands and cross-links. We
therefore consider all NI, ~=X„„,„d different meshes, but
set pI„~=6N&, ~/V and p,„,=,',N„„&/V [29]. The—direct
evaluation of the GLN [Eq. (5)] for a pair of loops is an order
[6(N+ 1)] operation and quite time-consuming. Instead we
first apply a simple smoothing operation to the rings [34].

The result of evaluating Eq. (5) for all pairs of elementary
meshes is listed in Table II. At most 10% of the links in our
systems have a GLN of 2 or more, i.e., the simple link to-
pologies, for which the derivation of Eqs. (1)—(4) and the use
of the GLN is justified, do in fact dominate. For the subse-
quent determination of the linking probabilities we neglect
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FIG. 1. Strand length dependence of the ratio of the topology
contribution G —G z to the shear modulus and the entanglement
density p,„,.
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= 0.85k~T,

independent of chain length and although each loop has
overlap with of the order of n=5, 7,9)3 other loops. This
observation suggests that —at least in the present case—
pair interactions dominate over higher order terms. Step two
is a consistency test based on the GP estimate Eq. (3) of the
prefactor.

Figure 2 shows the linking probabilities for different
chain lengths calculated from pair correlation functions for
the c.m. of (linked) loops. The data are well described by the
functional form

(7)

with m=0. 6. This ansatz follows from a similar form pro-

posed by VK [30], if we define (47'/3)R& =
2Jd rf&(r) The.

linking radii RL can be determined from the data in Table II
[35].Using Eq. (7) we can calculate the absolute, parameter
free prediction of the GP ansatz [Eqs. (1) and (3)]

Gen~ = M[f(x) ]kg T= 1.3k' T,
Pent

(8)

which is in excellent agreement with Eq. (6). Thus, we not
only observe the predicted proportionality of p, n, and

pairs of distant neighbor meshes on identical diamond net-
works, which account for less than 0.5% of the total number
of links. We therefore do not have to worry about correla-
tions in the loop positions or about the effective reduction of
the loop density due to the fact that the GLN is not defined
for pairs of loops with common points.

Entanglement density and shear modulus Step o. ne in our
analysis is to confirm the proportionality of the loop en-
tanglement density p,n, and the total topology contribution
G —

G~h to the modulus Eq. (4). Figure 1 illustrates our key
result:

FIG. 2. Scaling of the linking probability f(r) for meshes in

randomly interpenetrating polymer networks with diamond lattice
connectivity with the linking radius RL . N=44 ( ), N=26 (+),
(N= 12) (0 ). The solid line shows the approximate form Eq. (7).
The inset demonstrates that the data do not scale as well with the
mesh radius of gyration Rg .

G —G~z, but the GP theory also provides an estimate of the
prefactor that agrees with the measured value up to a numeri-

cal constant ao=(G —G~h)/G«, =2/3 of order 1.
As a last point we address the strand length dependence of

p,„,. We note that p,„, exceeds the value (n —1)pt„~ for
regular interpenetration by a factor between 1.4 (N = 12)
and 2.0 (N = 44). Consequently, for the chain lengths con-
sidered RL grows marginally faster than the mesh radius of
gyration Rg (Table II, see also the inset in Fig. 2). A similar
finite-size effect was observed by VK [30] and is also detect-
able in the data of Iwata [32].Note that the simple entangle-
ment definition we used in this paper has to break down for
large N: G«, —p«, —pI, I — vanishes and cannot
explain an asymptotic shear modulus of the order of the melt
plateau modulus. Future work has to address more compli-
cated two loop interactions as well as multiloop entangle-
ments.

Summary and conclusion. The present work is a quanti-
tative implementation of a topological theory of rubber elas-
ticity. Considering the crudeness of the model its success is
remarkable and should motivate further work along these
lines. We have performed an analysis of loop entanglements
in model polymer networks which were investigated by mo-
lecular dynamics simulations [22]. We found that in these
systems the difference between the actual modulus G and the
phantom network modulus G~z is proportional to the density

p,n, of entangled mesh pairs. The result confirms ideas of
Edwards [4,5], Vologodskii et al. [30], and Graessley and
Pearson [13]which allow one to estimate the proportionality
factor up to a constant of order 1.
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