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We present mathematical results which dramatically enhance the computational efficiency of the phase-field

method for modeling the solidification of a pure material. These results make it possible to resolve a smaller

capillary length to interface thickness ratio and thus render smaller undercooling and three-dimensional com-

putations accessible. Furthermore, they allow one to choose computational parameters to produce a Gibbs-

Thomson condition with an arbitrary kinetic coefficient. The method is tested for dendritic growth in two

dimensions with zero kinetic coefficient. Simulations yield dendrites with tip velocities and tip shapes which

agree within a few percent with numerical Green's function solutions of the steady-state growth problem.

PACS number(s): 05.70.Ln, 64.70.Dv, 81.30.Fb, 81.10.Aj

There has been a continuing search for new computational
methods to solve the formidably difficult class of mathemati-
cal problems which govern the formation of interfacial pat-
terns in solidification and other fields [1].Perhaps the most
classic example is the solidification of a pure material from
its melt which gives rise to dendrite patterns [2].This prob-
lem is described by the well-known equations

B,u=DV u,

v„=D(8„u] —B„u]+),

u, = dp(6)K P(g)v~, (3)

where u= (T—TM)/(L/c„) is the dimensionless temperature
field, TM the melting temperature, L the latent heat of melt-

ing, and c„ the specific heat at constant pressure. Equation
(3) is a velocity-dependent form of the Gibbs-Thomson con-
dition which incorporates the nonequilibrium kinetics of the
interface. Also, v„, u;, c7„u]-, tc, dp(8), and P(8), denote,
respectively, the normal interface velocity, the value of u on
the interface, the normal derivative of u on the liquid (+)
and solid ( —) sides of the interface, the interface curvature,
the anisotropic capillary length, and the anisotropic interface
kinetic coefficient. Far from the interface, u= —5, where

(TM T)/(L/c—„) den—otes the dimensionless undercool-
ing and T the initial temperature of the undercooled liquid.

Several methods have been explored which attempt to
solve directly the full time-dependent free-boundary problem
(TDFBP) defined by Eqs. (1)—(3). These include the follow-
ing: a time-dependent boundary integral formulation [3],
variational algorithms with [4] and without [5] interface ki-
netics, and a front tracking method with multiple rotated lat-
tices to minimize grid anisotropy [6].All these methods have
produced dendritic patterns in two dimensions which quali-
tatively look alike. However, so far, conclusive quantitative
tests of the operating state of the dendrite tip have only been
reported to our knowledge in Ref. [6], where it was found
that reasonably accurate tip velocities could be obtained with
four rotated lattices. In general, producing reliable results has
remained extremely difficult because of the combined prob-

lems of tracking a sharp boundary and resolving small
anisotropies. Moreover, with perhaps one exception [4],
methods that track a sharp boundary are not easily extendible
to three dimensions.

The phase-field approach [7—9] is an alternative method
to solve the TDFBP which is rooted in continuum models of
phase transitions [10].Its main ingredient consists in distin-
guishing between phases with a nonconserved order param-
eter, or phase field P, which is constant within each phase.
This field varies smoothly across a spatially diffuse interfa-
cial region of finite thickness W. Its dynamics is then

coupled to that of u in such a way that the equations for the
two fields reduce to Eqs. (1)—(3) in the so-called sharp-
interface limit of the model, KW((1, where the interface is
curved on a scale much larger than O'. The phase-field treat-
ment of the solid-liquid boundary has the well-recognized
advantage that it circumvents the problems of front-tracking
inherent to other methods. For this reason, it is relatively
straightforward to implement computationally [11—13].
Moreover, it has the important advantage that it can be easily
extended to three dimensions. There are, however, two limi-
tations of the phase-field approach which, at present, se-
verely restrict its range of application.

(i) Interface kinetics. The first limitation is that the
method can only be used to solve the TDFBP with interface
kinetics present in the Gibbs-Thomson condition. Hence, it
cannot be used to simulate the important physical limit
where the kinetic undercooling Pv„ is negligibly small com-
pared to the curvature undercooling do K. For pure materials,
the method is actually most efficient in the opposite limit
where Pv„ is larger than dpK.

(ii) Capillary length and lattice size Existing analy. ses
[8,9,11—15] of the sharp-interface limit of the phase-field
model assume that u does not vary across the interface thick-
ness. This implies that the magnitude of the variation of u on
the scale W, ! Bu;!—Wv„/D, should be small compared to
Pv„; or that P)) W/D Furthermore, P .and dp scale, respec-
tively, as 7l/(). W) and W/k, where r is the time scale of the

@ field kinetics and X, is the strength of the coupling constant
between u and @. The constraint P)) W/D therefore implies
that
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do&& W /Dv',

r(8) ~,4 = [4 —»(1—4")](1—4') (5)

+g [W(0~) VP] —8 [W(0)W'(0')o Q]

+ a, [W(8) W'(8) a.P],

which, as we shall see below, can also be obtained by a more
rigorous analysis. In practice, since the dendrite tip radius
scales as do/g(A), where g(b, ) increases sharply with b, ,
this constraint requires phase-field simulations on large lat-
tices. This conclusion is consistent with the results of the
recent numerical study of Wang and Sekerka [13]. These
authors showed that reliable phase-field simulations of den-
dritic growth —which are independent of computational pa-
rameters and satisfy self-consistently the Gibbs-Thomson
condition —are only feasible in a range of large 6 (0.8 —1.2)
where the tip radius is sufficiently small. Furthermore, even
in this range, two-dimensional lattices on the order of
1000' 1000 were needed. Extending these computations to
three dimensions seems difficult even on the fastest super-
computer.

In this paper, we demonstrate that it is possible to remove
the above limitations of the phase-field approach, thereby
greatly expanding its range of application. We first show ana-
lytically that the approach can be extended to produce a
Gibbs-Thomson condition with an arbitrarily small or zero

P, and with do subject to a much less stringent constraint
than the one imposed by Eq. (4). We then perform quantita-
tive numerical tests of dendrite growth in two dimensions
which demonstrate the applicability of the results of our
analysis. We present here the essential ingredients of our
analysis and the most relevant numerical tests. A more de-
tailed exposition of both will be given elsewhere [16].

Our demonstration is based on an analysis of the sharp-
interface limit of the phase-field model of the solidification
of a pure material which includes spatial variations of u in
the interface region. We consider the anisotropic model de-
fined in two dimensions by the equations

In the inner region, where x-W, we look for traveling
solutions of Eqs. (5) and (6) in a frame moving with the
interface at its instantaneous velocity V (in the +x direc-
tion):

rV8 P+ W 8, @+[@—)i.u(1 —@ )](1—@ ) =0, (7)

V8 u+DB, u —VB,p($)/2= 0, (8)

where we have let r(0) = r and W(0) = W for brevity of
notation. For V=O, we obtain trivially the stationary solu-
tions Po(x) = —tanh(x/+2W) and uo(x)=0. We now look
perturbatively for solutions of the form P(x) = @o(x)
+8'P(x) and u(x) = 8'u(x) for small V. The three terms on
the left-hand side of Eq. (8) are of order VBu/ W,
DB'u/W, and V/W, respectively. In the limit where 8'u((1
and WV/D&~ 1, the first term is negligibly small compared to
the second and third term. We therefore easily find that the
solution of Eq. (8) is given by

VD
Bu(x) = u+D 'Ax+ dx'p(go(x')),

2 g o

where u and A are two constants of integration determined

by matching 8'u(x) to the outer solutions of u, denoted by
u+ (u ) in the solid (liquid) phase. In the outer region
~xi &) W, u- simply obey the one-dimensional diffusion
equation B,u- = DB u since 8,@=0.—Thus, in the matching
region W(& ix (& D/V, u take the form u —(x) = u;
+B,u]-x where u; and 8 u] — are, respectively, the interfa-
cial undercooling and the normal gradients of u on each side
of the interface, in the sharp-interface limit. Letting
Bu(x) =u-(x) for W(&~x(&D/V, yields the conditions:
A= V/2+DR, u], A= —V/2+DR u], and u;=u
+VD F/2 with F= fo[p(@o(x))+1]dx. Eliminating A
between the first two conditions yields
V=D(8 u] —8 u]+), which is the usual mass conservation
condition Eq. (2). We now need an extra condition on u to
determine u; . The latter is obtained by substituting
@=Po+8$ and u= Bu in Eq. (7) which becomes

[W'g,'+1 —3@O2]8/= [X Bu(1 —@',)' —rVB, Q,]. (10)
8,u=DV' u+8, p(Q) /2, (6)

where 0'=arctan(8~$/8 P) is the angle that the directions
normal to the contours of constant @ make with the x axis.
The solid and liquid phases correspond, respectively, to

P = + 1 and P = —1 which are spatially uniform fixed points
of Eq. (5). p(@)= P is the simplest function which incorpo-
rates latent heat production at the interface, while, for
p(P) =15(@—2P /3+ / /5)/8, Eqs. (5) and (6) reduce to
the entropy formulation [15] used in the computations of
Refs. [12,13].We have found that, for the purpose of using
Eqs. (5) and (6) to solve the TDFBP, both choices are equally
good with the first one being more efficient. For clarity, we
first carry out the analysis of the sharp-interface limit in one
dimension and then generalize our result to a curved inter-
face. A more formal, but completely equivalent, derivation of
this limit which involves the interface Peclet number
WV/D as one of the key small parameters in a matched
asymptotic expansion will be given in Ref [16].

Since g @o is a homogeneous solution of Eq. 10, the right-
hand side of this equation must be orthogonal to this function
for a solution 8'@ to exist. This solvability condition yields
the expression u;= —PV with the kinetic coefficient,

I 7. W K+ JF
XJ W 2Dr I

where I, J, and E are constants resulting from the solvability
integrals. The numerical values of the various constants are

given by I= 2 +2/3 and J= 16/15, independent of the choice
of p(P); K=0.13604 and F= +21n2 for p(@)= P; and
%=0.22359 and F=0.49412 for p(P) = 15(@—2/3/3
+ @5/5)/8. Note that the term Ax in Eq. (9) is odd in x and
its integral product in the solvability condition generated by
Eq. (10) vanishes identically. This miraculous property ex-
plains why u; does not contain gradient corrections
—8 u] — as one might have naively expected. The generali-
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TABLE I. Comparison of steady-state tip velocities calculated by phase-field simulations

(V„~=doV„„/D) and calculated by the Green's function method (V„=doV„ /D) Tc.p„denotes the CPU
time in hours for simulations on a DEC Alpha 3000-700 workstation. TcpU on one processor of the CRAY
C90 is roughly 5 times smaller.

0.55
0.55
0.55
0.45
0.45

do/W

0.277
0.185
0.139
0.185
0.139

0.0168
0.0175
0.0174
0.00557
0.00540

VGF
tip

0.0170
0.0170
0.0170
0.00545
0.00545

Vo Error

1300
900
600
1500
1300

N

200
200
150
300
250

TcpU

12
3

0.5
40
15

zation of the above result to a curved interface in two dimen-
sions is straightforward. It is easy to show that curvature
introduces corrections of order ~D6'u!W which do not affect
the solution of the u field in the inner region as long as
~W(& 1. Furthermore, curvature introduces corrections of or-
der sc which, via the above solvability condition, yield the
standard anisotropic curvature undercooling term in the
Gibbs-Thomson condition derived in Ref. [14]. After a
straightforward calculation [16], we find that, Eqs. (5) and

(6) reduce in the sharp-interface limit to Eqs. (I)—(3) with

do(0) = [W(9)+ W"(0)], (12)

I r(8) W(0) K+ JF
kJ W(0) 2 Dr(H) I (13)

I 2D7.
++JP gj'2 (14)

We report the results of numerical tests of our approach
for the interesting case of zero kinetic coefficient. Results
shown here are for p(@)= @. Equations (5) and (6) were
discretized using standard second order finite difference for-

The term in square brackets on the right-hand-side of Eq.
(13) represents the correction to the interface kinetic coeffi-
cient arising from the variation of u in the interface thick-
ness. It is the main result of this paper which makes it pos-
sible to extend the phase-field approach. In the limit where
X W /D7. (& 1, this term reduces to unity, as in previous analy-
ses of the sharp-interface limit which assume that u is con-
stant [8,9,11—15]. Since Eq. (12) implies that do- W/X, this
limit is equivalent to dp+) W /D~, which is exactly the con-
dition [Eq. (4)] of validity of the sharp-interface limit with
constant u. In contrast, the validity of Eq. (13) is not subject
to this constraint on dp. We note that there are still four
constraints:

~

Ir W&1, W~v, ~/D&1, k~u (1 —
@ ) &1, and

r~ v„~/W(& 1, which originate from the assumptions made in
deriving the sharp-interface limit, and which depend gener-
ally on growth conditions. However, these can be shown to
be generally much less restrictive on do than Eq. (4), espe-
cially for small 6 [16].Furthermore, since (K+JF)/I is a
positive constant, the kinetic coefficient P(8) can be ad-

justed at will by varying the ratio XW(0) /Dr(0). In par-
ticular, with the definitions W( 9) = Wf w( 8) and

r( 0) = rf, ( 0), it can be made to vanish by choosing

f,(0)=fw(0) and

mulae, except V' P which was discretized using a nine-point
formula with nearest and next nearest neighbors which re-
duces the grid anisotropy. The P and u fields were time-
stepped using, respectively, a first order Euler scheme and a
second order implicit Crank-Nicholson scheme. Simulations
of dendritic growth were performed on two-dimensional lat-
tices of varying dimensions N hXN~h. We used a simple
fourfold crystalline anisotropy function, fw( 9) = 1+ecos40
and chose f,(8) and A. such that P(g) =0 as described
above. All simulations were performed for fixed values of
a=0.05, 7.=1, W=1, h=0.4, and At=0.016. The value of
h was selected by performing simulations with decreasing
h in steps of 0.1 until V„p did not change in value by more
than one or two percent. Runs were performed for different
values of do by varying D, and hence X via Eq. (14), and for
two different values of A. Simulations were seeded with a
small quarter disk of solid at one corner of the lattice and a
spatially uniform undercooling u = —A. N was chosen suf-
ficiently large to outlast dynamical transients and for the tip
velocity to reach a steady-state value Vt'p.

In order to benchmark our simulation results, we solved
independently the steady-state growth problem defined by
Eqs. (1)—(3) with B,u= —V„~B,u. This can be done accu-
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FIG. 1. Comparison of steady-state tip shapes calculated by
phase-field simulations (lines) and the Green's function method

(symbols). The two interfaces correspond to the following:
5 = 0.55, do /W= 0.277 (solid line and circles), and 6 = 0.45,
do/W=0. 185 (dashed line and squares). For clarity, only one out of
every four symbols along the interface is shown for the Green's
function results. We have also checked that the addition of noise
produces sidebranching (which is absent here) in agreement with
theoretical expectations [2].
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rately using the standard boundary integral Green's function
approach used in Refs. [17].The input parameters of these
calculations were chosen to correspond exactly to those of
the phase-field computations; namely P( 0) = 0, and
dp( 9)= dp( 1 15Ecos40) with dp—= WIh 'J ' [see Eq.
(12)].A comparison of the dimensionless steady-state tip ve-
locities obtained by phase-field simulations and Green s
function calculations is shown in Table I. A comparison of
interface shapes is shown in Fig. 1. It can be seen that the
quantitative agreement is remarkably good over the whole
range of do and 6 investigated here. This is a clear quanti-
tative verification of microscopic solvability theory with a
full dynamical phase-field simulation. Table I shows that ac-
curate simulations are still possible at a very small do/W
ratio with an enormous gain in computational efficiency.
This gain can be estimated by noting that the CPU time
scales as -N, N p„ /DIJ. t (for the intermediate range of 5
studied here), where p„ /D is the transient time necessary to
reach a steady-state dendrite. Since N and N~ can be in-
creased proportionally to p„p/Ax and pt'p do, this time
scales roughly as (dp/W) . Quantitative three-dimensional
simulations of dendritic growth which take full advantage of
the cubic anisotropy to reduce computations require about
100 times more CPU time. We have already checked that
such simulations are indeed feasible for smaller do/W ratio
and further computations are currently underway.

In summary, we have presented an analysis of the sharp-
interface limit of the phase-field model of a pure material
which includes temperature variations across the interface
thickness. This analysis extends the phase-field method in
two important ways. Firstly, it allows for more efficient com-
putations with a smaller capillary length to interface thick-
ness ratio. This, in turn, renders quantitative three-
dimensional simulations directly accessible, as well as the
exploration of a much wider range of parameters (undercool-
ing, anisotropy etc.) with the same computational resources.
Secondly, it makes it possible to study the physically relevant
limit of small or zero kinetic coefficient, which had previ-
ously been thought to be unreachable by this method. We
have demonstrated the applicability of our results in two di-
mensions by performing direct quantitative tests of dendrite
velocity and shape selection. Simulations yield tip velocities
which are very accurate. This insight into the phase-field
method should find a wide range of applications in solidifi-
cation as well as other related interfacial pattern formation
phenomena which are governed by similar free-boundary
problems.

We thank Herbert Levine for providing the Green's func-
tion steady-state code used to benchmark our computations.
This research was supported by US DOE Grant No DE-
FG02-92ER45471 and benefited from supercomputer time
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