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We study the nonlinear contribution to stick-slip motion in a weakly coupled discrete one-dimensional array
of oscillators subject to a periodic potential. We find a dramatic increase in the friction coefficient of the array
coinpared to that of a single uncoupled oscillator, even though the same constant force f is applied to each
oscillator in the array. The sliding friction coefficient is found to diverge as r/~ (K K ) ",where tr, is the
critical value of the coupling constant ~, and shows two dynamical transitions as we increase the external force

f applied to each of the oscillators.

PACS number(s): 05.45.+b, 46.30.Pa, 81.40.Pq, 46.10.+z

Stick-slip motion is a widely observed phenomenon
whose scale ranges from atomic to macroscopic lengths and
is of growing interest in physics and related fields. This type
of motion is one of the important building blocks in under-
standing friction and lubrication of materials [1], and it has
been the subject of intensive studies in recent years [2]. Be-
sides friction, stick-slip motion is studied in connection with
earthquake models and avalanches [3]. Recent experiments
[4], as well as theoretical models [5] and studies of spring-
block systems [6], indicate that stick-slip motion arises
mainly in situations in which the average velocity of the
system is low. The transition from creep motion to stick-slip
[4], and sliding motion [7] is of interest especially in small
systems such as nanostructures, in motion involving bound-
ary lubrication, and other related phenomena. The dynamical
mechanisms leading to stick-slip motion are not yet clear and
studies of these mechanisms are important in understanding
the basic principles of friction at a wide range of length
scales from the atomic [8] to the macroscopic [3].

In this work we present the results of our study of stick-
slip motion in an intentionally simple system —a one-
dimensional (1D) array of nearest-neighbor coupled nonlin-
ear oscillators, all subject to the same external force. Our
motivation is to study friction and the underlying mechanism
leading to stick-slip motion in the strongly nonlinear regime
(where the contribution of nonlinear potential is dominant).

In particular, we find that coupling the elements into an array
leads to a dramatic increase in the friction coefficient. We
have developed [11]a simple formalism to reduce the com-
plexity of the equations and to calculate the velocity and the
friction coefficient of the elements in the array. Surprisingly,
even in the lowest order, for which dynamics of the array can
be described by an effective single-oscillator equation, our
analytical approximation shows very good agreement with
the numerical solution.

Our starting point is the following (widely used) equation
for the motion of N coupled oscillators:

BU BV
mx +yx = — — +f +(.

J J

Here x is the coordinate of the j s oscillator, I is the mass,
y is the linear friction coefficient, f is the external force, and

is a random force. The oscillators are subjected to a peri-
odic potential U(x ) and interact with each other via a pair-
wise potential V(x; —x,). Equation (1) has a very broad
range of interpretations, is widely used, and describes vari-
ous physical systems, depending on the choice of the param-
eters and the potentials. Equation (1) is used to describe the
dynamics of an adsorbate system on a surface [2] (the fric-
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tion coefficient is related to the noise and the temperature via
the fluctuation-dissipation theorem). In a macroscopic varia-
tion, Eq. (1) describes the motion of a set of N coupled
oscillators subject to a periodic potential (the Frenkel-
Kontorova model; this model has been widely studied in
relation to commensurate-incommensurate phase transitions
[9]).An example of Eq. (1) applied to Hamiltonian dynamics
is given in Ref. [10]and is related to energy transfer in long
1D molecular chains adsorbed on a periodic substrate.

In what follows, we consider a simple variation of Eq. (1),
assuming a linear interparticle interaction, a simple periodic
substrate potential, zero misfit length (the periodicity of the
periodic potential is equal to the equilibrium interparticle
spacing), and zero noise. Equation (1) can then be written in
the following dimensionless form:

x(0) = sin 'f =y,

x(0) =0. (5b)

To find 7' we integrate Eq. (4). To a good approximation, as
/c~ K . this time period is given by the expression [11]:

have Ttv=Nr. Therefore writing in general Ttv = mNr (m is

an integer), the minimal velocity is given by vo=27rlmNr
[12].

We approximate the characteristic time ~ for the excita-
tion to be passed between oscillators (a pmperty of the array)
by r=T, where T is the time each oscillator moves sepa-
rately. Therefore ~ and consequently the velocity can be cal-
culated using Eq. (4) together with the matching initial con-
ditions

x + yx +sinx =f+tc(x +t —2x +x i) (2)

(6)
where f is the applied force (the same for all oscillators),
sinx represents the periodic potential, and ~ is the nearest-
neighbor coupling in the array. We consider both periodic
and free-end boundary conditions.

We are looking for a stick-slip motion, consequently we
focus on the family of wave-propagating solutions defined
by

This leads to the following expression for the minimal ve-
locity of the chain:

2n f m —cos f
Vo=

mNy( 7r J

x, (t) =x(t jr) +x(t+—j r) (3)
and, in the leading order the average velocity scales as
(K K ) . The nonlinear friction coefficient defined as

where ~ is a characteristic time scale. This kind of dynamics
occurs when we initially excite just one oscillator [x~(0)
=xo and xz(0) =xo], while all the others are initially at rest,
i.e., x =x =0, j=1,2, . . . ,N —1. The excited oscillator ini-
tiates a wave propagating across the array in a "falling domi-
nos" type of motion towards the other encl of the array which
is then reflected back, moving in the opposite direction to-
wards the initially excited oscillator.

We find that for given values of the external force f and
the linear friction coefficient y, there is a critical value of the
coupling constant Ir, , below which the linear wave [defined
by Eq. (3)] will not propagate acmss the array. Here we will
focus on the behavior of the chain in the close vicinity of this
critical coupling as ~~ ~, . At ~= ~, the motion is localized
[11]:at each moment effectively only one oscillator moves
driven by the force applied from its neighbors. This force can
be to a high degree of accuracy approximated as a constant
by assuming xj+, =y+2m and x i

——y, where y=sin f,—1

the stable fixed point of the single uncoupled oscillator. Thus
an approximate one-oscillator equation can be derived,
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Equation (4) represents the lowest order in a sequence of
n-cluster approximations [11]in which n coupled oscillators
are treated exactly in the presence of a force generated by the
remaining quiescent oscillators assumed to take the values
x '

ghg p + 2 7T and x i fI y representing a linear wave propa-
gating through the array from right to left.

The minimal value of the average velocity vo is given by
vo=2~IT~, where T& is the period of oscillation of each
single oscillator in the array. For free-end boundary condi-
tions, T&=2N7. ; while for periodic boundary conditions we

—0.5
500

time
1000 1500

F16. 1. The time trace of the phase x, s (the top plot) and the
velocity (the bottom plot) of the 13th oscillator of an N=25 oscil-
lator array. The other parameters are f=0.9, y=0.7, Ir=0.02 and
free-end boundary conditions have been imposed. The initial con-
ditions used were x (0)=x (0) =0 for all j = 1,. . . ,N 1, and-
x~(0) = 2 vr; x~(0) = 0.
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FIG. 2. The numerically calculated time averaged velocity
across the oscillators Uo as the function of (zr —Ir,)" for three array
lengths N=25, 35,42 (from the top to the bottom). The circles (N
= 25), squares (N= 35), and triangles (N=42) denote analytically
predicted values of the average velocity. The other parameters are
as in Fig. 1.

FIG. 3. The friction coefficient r/= (flvo —y)/y as a function of
the applied force f The triang. les (the bottom curve) correspond to a
single uncoupled oscillator, while the circles (the top curve) corre-
spond to the chain (N=25) with free-ends boundary conditions.
The lines plotted are to guide the eye. The other parameters are as
in Fig. 1 and ~=0.1.

z7=(f/Uo —y)/y in consequence diverges as r/~ (K K )

and is given by the expression

) 1/2nzNf / 7r
'7= -127r ~ zr cos —fI (K K~) 1 (8)

where the critical value of the coupling ir, (f, y) is a function
of the forcing f and linear friction y and an upper bound is
given by the high linear friction limit

(I f) (—I f)'—
,(,y)= + + (9)2(7r —cos 'f) 4(7r cos 'f)—

where the right hand side of Eq. (9) is valid as f~ 1.
Equation (8) indicates a dramatic increase in friction co-

efficient of an array compared to the friction coefficient of a
single uncoupled oscillator, even though the same constant
force is applied to each oscillator in array. In fact, as
K~ K, the friction coefficient is proportional to the size of
the chain go(- W.

We performed numerical simulations on arrays containing
%=18,25,35,42,50 oscillators. The external force was set to
f=0 9, while the dis. sipation y=0.7. The coupling constant ir

was varied from 0 to 1. Simulations were carried out for both
periodic and free-end boundary conditions. The initial con-
ditions were chosen in the following way: x&=2~ and xz
=0. The other oscillators were set initially x~=x~=0. To
demonstrate this stick-slip motion, we present in Fig. 1 the
phase x&3 of the 13th oscillator (the top plot) and the phase
derivative x,3 of the same oscillator (the bottom plot). The
time series of the phase x» and the velocity x» indicate the
existence of two different kinds of solutions, one which is
virtually quiescent, and the other one showing a fast 2'
juITlp.

The stick-slip dynamics of the chain can be understood
based on the description of the dynamics of the uncoupled
oscillator. If f;„(f(1(f,„ is the minimal value of the
force to obtain nonzero average velocity solution), two dis-
tinct solutions are possible, depending on initial conditions.
The first is the fixed point, defined by sinx= f. This solution
corresponds to the static solution, v„=0 when all the par-
ticles in the chain are inside their potential wells. The second
solution is the limit cycle, corresponding to a running solu-
tion v„)0 with the particles hopping over the potential
maxima. The rightmost oscillator will initiate the motion of
its neighbors in a chainlike dynamics of the following kind:
each oscillator will make a fast 2~ Aip corresponding to a
jump between neighboring potential wells and will then stay
quiescent during the long time interval.

In Fig. 2 we have plotted the average velocity of the os-
cillators as a function of the coupling constant (K K )" for
three different lengths of arrays %=25,35,42, with the same
single-oscillator parameters f=0.9 and y=0.7. The initial
conditions are the same as in Fig. 1. The solid lines show
numerically calculated values, while the points are the ana-
lytical predictions based on Eq. (7) for free-end boundary
conditions. The values of K are varied between 0.02~K(0.5,
and K, was found from the numerical simulations. In fact,
we found that in a very narrow range of K there exists an
in-phase solution of the array (not shown in Fig. 2), resulting
in high average velocity of a chain (equal to the average
velocity of uncoupled oscillator). This resonance is also pre-
dicted by the equation for a single oscillator IEq. (4)]. The
in-phase solution then disappears leading to stick-slip motion
of the oscillators. Our theoretical expression Eq. (7) is valid
as K~K, but the numerical agreement extends into the high
coupling constant K regime. This agreement can be under-
stood on the basis of an analysis valid far from critical cou-
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pling [11]which predicts a tr" dependence for the velocity.
Finally, we observe that at coupling v=1, the "running" so-
lution, initiated by the motion of rightmost oscillator, ceases
to exist and the average velocity is zero.

Figure 3 shows the average nonlinear friction coefficient
zi= (fluo 7)/—7 of the array (normalized to 7) as a function
of applied force f for ted=0. 1. Each point on the curve was
calculated using the same set of initial conditions for each
value of the external force f (see Fig. 1).The curve shows the
presence of two dynamical transitions at f„and f,2 and its
resulting effect on the average value of the sliding friction. If
the external force is low, f;„(f(f„,the dynamics of an
array shows stick-slip motion. As we increase the force, the
array undergoes a dynamical transition at f, t to a new kind
of dynamics valid for forcing in the range f„~f~f,2,
where the oscillators form two separate clusters consisting of
alternate oscillators; the oscillators in each cluster being al-
most in-phase, but out of phase with the oscillators forming
the other cluster. Finally, for even larger external forcesf)f,2, the dynamics is "in-phase, " and all the oscillators
move together. We numerically calculated the transition
points f, t and f,2 for larger arrays, up to N= 150 oscillators,
and found that the transition points do not vary with N. We
note that the transitions observed in our model express the
passage to different dynamical attractors and are not ordering
phase transitions (such as commensurate solid—
incommensurate Quid, Quid —commensurate solid, Auid-
incommensurate solid, etc.) [2].

We have also compared our results on the dynamics of the
coupled chain to the dynamics of an uncoupled nonlinear

oscillator. The bottom line shows the friction coefficient for a
single uncoupled oscillator as a function of the applied force,
while the top curve applies to the entire chain. The notable
difference in dynamics of the coupled array and the un-

coupled oscillator is that in a very broad range of forcing
f;„(f(f„the friction coefficient for the array is consid-
erably higher than for a single oscillator, consequently, the
coupling acts as a source of additional friction.

In summary, we have studied the periodic stick-slip dy-
namics in a discrete chain of coupled nonlinear oscillators.
The mechanism of stick-slip motion in our example is related
to the periodic transition from a "stick" dynamics (charac-
terized by the stable fixed point of the single uncoupled os-
cillator in which each particle forming the chain is stuck in
its potential well) to "slip" motion of the oscillator (the limit
cycle) in the chain corresponding to motion over the periodic
potential. The nonlinear dynamics leads to a fundamentally
different friction law, in particular when the driving force is
barely larger than the minimal force needed to start motion.
The friction coefficient grows with the number of elements N
in the array and scales as (K K ) ", and the average ve-
locity calculated from Eq. (7) exhibits the (K K )' depen-
dence. These predictions are in excellent agreement with the
numerically calculated values.
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