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Dynamical criterion for two-dimensional freezing
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The dynamical criterion for freezing of three-dimensional colloidal fluids recently proposed by Lowen,
Palberg, and Simon [Phys. Rev. Lett. 70, 1557 (1993)] states that the ratio of the long-time to short-time

self-diffusion coefficients has the universal value 0.1 along the fluid freezing line. Based on Brownian dynam-

ics computer simulations of two-dimensional fluids interacting via different inverse-power pair potentials, it is
shown that this criterion also holds for two-dimensional freezing. It is thus the only freezing criterion that holds

simultaneously in three and two dimensions.

PACS number(s): 82.70.Dd, 61.20.Ja

Since the famous works of Kosterlitz and Thouless [1],
Halperin and Nelson [2], and Young [3] (KTHNY), it is
known that freezing in two spatial dimensions (2D) may be
fundamentally different from the usual bulk freezing in three
dimensions. In particular, 2D freezing may be a two-stage
process of continuous phase transitions with an intermediate
hexatic phase possessing algebraically decaying orientational
order which contrasts to the three-dimensional case where
freezing is known to be a first-order transition. Despite enor-
mous effects during the last decade there is no true unam-
biguous proof of the existence of the hexatic phase, either in
experiments on liquid layers absorbed onto a solid substrate
or in computer simulations of two-dimensional liquids; see,
e.g., Strandburg, for a review [4].The reason is that in most
experiments the liquid layers are not truly two dimensional
and that in computer simulations effects stemming from a
finite system size as well as insufficient equilibration exclude
any clear conclusion about the stability of a hexatic phase.
Although the exact nature of the freezing transition is still
controversial in computer simulation, the Quid freezing line
can be located with high precision for a given model of the
interaction.

Recently, colloidal suspensions [5] confined between two
parallel plates [6] have gained an increasing interest since
they represent excellent two-dimensional model liquids on a
mesoscopic length scale [7]. Another big advantage is that
the interaction parameter can be controlled experimentally
and that direct images can be taken and even whole sets of
two-dimensional particle trajectories can be followed by
videoimaging [8,9] methods and the freezing transition can
be observed directly in real space. Although there are some
hints on the existence of the hexatic phase in such colloidal
suspensions [10],the statistical error resulting from the finite
number of images is still too large to demonstrate clearly the
algebraic decay of the orientational correlation function.

The present paper is concerned with a dynamical phenom-
enological rule of two-dimensional freezing. Such empirical
criteria have played a major role in three dimensions. One of
them is the celebrated Lindemann melting rule [11]which
predicts that the ratio of the root-mean-square displacement
and the average interparticle distance at the melting line of
the solid has a value of roughly 0.15. A second criterion,
formulated in 1969 by Hansen and Verlet [12], states that the
amplitude of the first maximum of the liquid structure factor

5(k) has a constant value of =2.85 along the freezing line.
Recently a dynamical criterion for freezing of colloidal Auids

undergoing Brownian dynamics was put forward by Lowen,
Palberg, and Simon (LPS) [13].It states that the ratio of the
long-time and short-time self-diffusion coefficient is 0.1
along the freezing line. These three simple criteria were also
tested to hold for different interparticle interactions and are,
in this sense, universal. Thus they are very helpful in locating
approximately the freezing and melting lines for a given sys-
tem without doing any free energy calculation.

If one tries to look for such empirical melting and freez-
ing laws in the case of two-dimensional melting and freezing
much less is known. The root-mean-square displacement of a
two-dimensional solid does not exist because of long-
wavelength phonon fiuctuations [14].Hence there is no Lin-
demann criterion in two dimensions. Furthermore, near two-
dimensional freezing, the amplitude of the first maximum of
the liquid structure factor is 5.5 [15] rather than 2.85 which
excludes again the validity of the Hansen-Verlet rule in the
two-dimensional case. Another criterion for two-dimensional
melting follows from KTHNY theory: The dimensionless
combination K= 4 p, (p, +k)/(2P+ k) of the two scaled elas-

tic Lame constants k= Lao/k~T and p, = p,ao/k&T in the tri-2 2

angular crystal is predicted to adopt the universal value
16m on the melting line of the solid. Here, X. and p, are the
bare Lame constants of the solid, ao is the triangular lattice
spacing, T the temperature, and kz Boltzmann's constant.
This criterion, which been checked by computer simulation
[15,16], is based upon static quantities. Unfortunately it is
designed only for two-dimensional melting and does not pos-
sess any three-dimensional counterpart.

In this paper I show that the dynamical LPS criterion is
valid for two-dimensional freezing. It is thus the only crite-
rion known to date that describes both two- and three-
dimensional freezing. In fact, this was already partially an-
ticipated by recent measurements of Grier and Murray [17]
in colloidal suspensions confined between two smooth walls
in nonequilibrium. They indeed found consistency of their
freezing data with the LPS criterion. Using Brownian dy-
namics simulations, the ratio DI /Do of the long-time to
short-time self-diffusion coefficient is computed for different
soft-sphere fluids at freezing. Here the short-time diffusion
constant is defined via

1063-651X/96/53(1)/29(4)/$06. 00 53 R29 1996 The American Physical Society



R30 HARTMUT LOWEN 53

1
Dp ———lim b,—(t),4t

where

(2)

is the mean-square displacement, ( ) denoting a canonical
average. D p defines the natural time scale r= o /Dp of the
Brownian fluid. For times much larger than r, the long-time
self-diffusion coefficient DL is defined as

1
DL = lim A(t). —

4t

In the simulations it is found that DL/Dp is about 0.086
~0.014 at freezing only slightly depending on the softness
of the interaction.

The soft-sphere pair interaction is described by an
inverse-power pair potential with exponent n

/ l, n

V(r) = ei— (4)

where e sets the energy scale and the soft-sphere diameter
o. is the natural length scale. Due to scaling properties of the
inverse-power potential, all structural and thermodynamic
quantities only depend on the scaled density

) 2/n

(5)

where p=N/A is the particle concentration, i.e., the number
of particles per unit area. Considering the limit n~oo, also
the interaction of hard disks with pure excluded area is in-
cluded. In this case the area packing fraction or the scaled
particle density p= po. is the only relevant variable.

The two-dimensional freezing transition was studied for
different exponents n. Particularly, for n=oo, 12,6,3 high-
precision results for p are available in the literature which we
briefly summarize below.

(1) n=~. Extensive computer simulations have revealed
that hard disks exhibit a first-order freezing transition with a
coexisting fluid density of p—=p/=0. 887 [18—20]. Recently
it was found that the freezing scenario is not in accordance
with KTHNY theory [20].

(2) n=l2. This potential was investigated in great detail
by Broughton et al. [15] as a simple model fiuid to investi-
gate the 2D fluid-solid transition. They cut the interparticle
potential off at a distance r = 2.5o.. The coexisting fluid den-
sity is p/=0. 986. Recently, Anderson et al. [21] found ac-
cordance with the KTHNY scenario of melting.

(3) n=6. Solid-Quid phase transitions for this inverse-
power potential, also cutoff at the distance r=2.5o., were
studied by Allen et al. [16].They found p&

——1.513 with in-
dications for the validity of KTHNY theory.

(4) n=3. Finally the very soft 1/r potential is used to
model the dipolar interaction between two colloidal spheres
at the air-water interface [22,23]. Kalia and Vashishta [23]
found a fluid-solid transition at' p&=5.0~0.2. However, in
their simulations they use a small system size with %=256
particles. Recent simulations with a higher number of par-
ticles (N= 961) [24] indicate a freezing transition at

p&=5.29. At present it is unclear whether the KTHNY sce-
nario is followed in this case.

Henceforth I assume Brownian dynamics of the colloidal
particles embedded in the solvent. Relying on a complete
time-scale separation between the colloidal and the solvent
particles and neglecting any hydrodynamic interactions, the
usual way to model the dynamics is to introduce stochastic
forces in the equations of motion for the two-dimensional

time-dependent trajectories ir(t)) of the colloidal particles
[25—27]. A finite difference algorithm describing these dy-
namics is [28]

(6)

where ht is a finite time step and (Ar;)~ is a random dis-
placement due to solvent collisions which is sampled from a
Gaussian distribution with zero mean and variance 4Doht.
Furthermore, F;(t) is the total interparticle force on particle i
derived from the soft-sphere potential V(r). One easily sees
that the motion is diffusive on "short" time scales (which of
course have to be much larger than the microscopic solvent
motion) with the short-time diffusion constant D p defined via
(1)

From low-density expansions [25] the long-time diffusion
coefficient DL is known to exist and to be positive in a
Brownian fluid. It is quite natural to measure DL in terms of
its short-time counterpart Do. For an inverse power-law in-
teraction (4), the ratio DL/Dp only depends on p. In the
dilute or high-temperature limit (p~0), Dt /D p

= 1. For in-

creasing p, Dt /Dp decreases due to the repulsive direct in-
terparticle interactions. If a first-order freezing transition oc-
curs, DL /Dp jumps from a finite value at the fiuid freezing
line to a very small value in the crystalline phase. If the
transition is continuous, KTNHY theory predicts that

Dt /D p drops continuously [29] to zero via the hexatic and
the solid phase.

Brownian dynamics simulations have been performed at
freezing for different exponents n (n=~, 12,6,3). N=961
particles were confined in a periodically repeated square
whose area A is governed by the particle concentration
p=N/A. The stochastic Langevin equations of motion were

integrated for the particle positions fr;(t), i = 1, . . . ,N) with
a finite time step b, t according to (6). The simulation tech-
nique is well known from Refs. [26,27]. Provided the system
has been equilibrated long enough, there are three possible
sources of error in calculating Dl /Dp.

(i) The time step At/r has to be very small.
(ii) One needs to extrapolate the mean-square-

displacement data to infinite time.
(iii) The usual statistical error which is large for long-time

correlations has to be taken into account properly.
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TABLE I. Ratios of long-time and short-time self-diffusion coef-
ficients, DI /Do at freezing for an inverse-power potential

V(r) = e(o/r)". with different exponents n: n = ix (hard disks) and

n = 12,6,3 (soft disks). The number in parentheses gives the error of
the last digit. Also given are the dimensionless Quid density

p&= ( e/ks T) "p&o.and the dimensionless derivative

q = (1/D p) dDL /d p at iluid-solid coexistence.

0.887
0.986
1.513
5.29

D, ]D,

0.072(4)
0.099(3)
0.087(3)
0.086(3)

—1.3(2)
—1.1(1)
—0.6(1)
—0.07(3)

The error due to a finite time step is most notable for hard
disks [30]where an explicit extrapolation to a time step zero
is required. For n=~, this extrapolation was controlled us-

ing a small time step of At=0.00002' and an ultrashort
time step of At=0.0000005~ while for n=12,6,3 a time
step of At=0.000 027. was sufficiently small.

Fitting the mean-square displacement data by a suitable
analytical form, the extrapolation to infinite times can be
performed. Two different expressions have been proposed.
The first is from the author [26]:

At
A(r) =4rDL+ t+tp' (7)

and the other stems from the analytic solution for a semidi-
lute suspension [25] and was suggested by Cichocki and
Felderhof [31]

h(t) =4tDL+A ln(r/tp). (8)

In both formulas, DI, A, and tp are fitting parameters. Test-
ing these formulas against the simulational data, it turned out
that both expressions can be used to extract DL properly. If
the fitted data are in a small time window, Eq. (7) is superior
to Eq. (8) since the long-time tail ixln(t/tp) has only a small
amplitude. Another way of reducing the effort of the extrapo-
lation to infinite time is to compute the differential quantity
4db, (t)/dt which turns much more rapidly to DI than

(1/4t) b (t). Consistency between these different ways to per-
form the long-time limit was found.

Finally the statistical error was controlled by a large simu-
lation time typically being 50'. and by redoing the calcula-
tions with a different starting configuration and checking that
the results do not change.

Results for the ratio DL /Dp at freezing are given in Table
I for different exponents n. Indeed the data reveal that

DI /D p adopts values close to 0.1. Hence the LPS criterion is
fulfilled also in two dimensions. The actual values for
DI /Dp depend a bit on n, i.e., on the softness of the inter-
action. In fact, the data scatter more in two than in three
dimensions. Based on our data one can state that
Dr /D p

= 0.086~ 0.01 for two-dimensional freezing while

the value 0.0984-0.003 was found in three dimensions [13].
Particularly for hard disks, DL/Dp deviates most (about
26%) from the three-dimensional value. Still it is reasonable
to speak about the validity of the LPS criterion and this 2D
freezing rule may be used to get a simple estimate of the
freezing line for different interactions. In contrast the varia-
tion of DI /D p with p as embodied in the derivative

q=(1/Dp)dDI /dp is nonuniversal at freezing (see again
Table I).

In conclusion, Brownian dynamics computer simulations
on the two-dimensional soft-sphere model reveal that

Dr /Dp is close to its three-dimensional universal value 0.1
at freezing. This constitutes a freezing rule which is valid
both in three and two dimensions. This is quite remarkable
since there is evidence that the two-dimensional freezing
process differs from that in three dimensions. The "univer-
sal" value of 0.086~ 0.01 for DL /D p seems to be unaffected
by the detailed nature of the freezing process, i.e., it does not
matter whether freezing occurs continuously via a hexatic
phase or is a conventional first-order transition.

I finish with a couple of remarks: First it would be inter-
esting to perform a theoretical mode-coupling analysis to
check whether the universal value of 0.1 near freezing comes
out of a theory. The attempts that have been performed to
check this in three dimensions [32,33] can in principle be
carried out to two dimensions. A mode-coupling-like theory
for a two-dimensional Brownian Quid of moderate density
was already presented recently by Aranda-Espinoza et al.
[34].

Second, one should study more realistic pair potentials for
charged colloidal suspensions between highly charged plates
such as, e.g., the Debye-Hiickel (or Yukawa) interactions
[26,35,36] where also the image charges can be taken into
account [37].

Thirdly, following the pioneering work of Grier and Mur-
ray [17], one should perform more detailed and more quan-
titative dynamical measurements for two-dimensional colloi-
dal suspensions in order to check the universality of the
diffusion coefficient ratio for different interactions.

Next I would like to comment on the fact that hydrody-
namic interactions are neglected. This is certainly well justi-
fied for dilute but highly interacting charged suspensions
with a low excess salt concentration. For a high amount of
excess salt or for sterically stabilized neutral suspensions,
hydrodynamic interactions mediated by the velocity field of
the solvent are important. But there is reason to believe that
they do not alter much the ratio of the short-time and long-
time diffusion coefficient; see the discussion in Ref. [13].

Finally I remark that two-dimensional molecular liquids
exhibit Newtonian dynamics rather than Brownian. In this
case there is no generalization of a dynamical freezing rule
since the long-time self-diffusion coefficient does not exist
for two-dimensional molecular dynamics [38].

I thank M. Schmidt and W. Zwerger for helpful com-
ments.
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