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Hexagonal convection cells under conditions of vertical symmetry
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The stability of hexagonal convection cells is analyzed in the case of a Boussinesq fluid heated from below
with symmetric rigid horizontal boundaries. For P~1.2 a region of stable hexagon convection appears for
o.~ o., and R~2R, where P, o. , 8 are the Prandtl number, the wave number, and the Rayleigh number. The
theoretical results are in agreement with recent experimental observations by Assenheimer and Steinberg
[Phys. Rev. Lett. 76, 756 (1996)].

PACS number(s): 47.20.Ky, 47.27.—i

I. INTRODUCTION

Hexagonal cells are a well known manifestation of con-
vection Aows in fluid layers heated from below. They are
often called Benard cells after the scientist who first con-
ducted extensive experiments on thermal convection [1].
Later experimental studies [2,3] have demonstrated that hex-
agonal convection cells compete with roll-like convection. In
agreement with the theoretical predictions (see, for example,
[4]) it was shown that the range of stable hexagonal cells
tends to zero as the asymmetry of material properties about
the midplane of the Quid layer vanishes. The original experi-
ments of Benard were carried out under strongly asymmetric
conditions in that the temperature dependence of the surface
tension provided the main driving force for the convection
Row [5,6]. The preference for hexagons owing to asymme-
tries becomes clear when it is remembered that there are two
types of hexagonal cells differing by the direction of motion
in the center. Rising motion in the center of the cells is typi-
cally found in liquids which are characterized by decreasing
viscosity with increasing temperature in contrast to gases for
which viscosity tends to increase with temperature. Convec-
tion in gases does indeed exhibit descending Aow in the cell
center [7] since that direction of motion is preferred for
which the region of highest rate of strain, namely the center,
corresponds to the lowest viscosity of the convection cell.
Accordingly only one of two types of hexagonal cells is
expected to be realized in any experiment.

In view of the well understood competition between rolls
and hexagons near the onset of convection, the recent obser-
vations by Assenheimer and Steinberg [8] of both types of
hexagonal cells at the same time in a convection layer with
only minimal asymmetric properties are highly surprising. It
is important to note that the Rayleigh number R was not
close to the critical value R, for onset of convection, which
indicates that a theoretical description of the phenomenon
cannot be derived from a weakly nonlinear analysis. In this

paper we describe computations which indicate that hexago-
nal convection cells of both types become stable at Rayleigh
numbers of about two times the critical value if the Prandtl
number P exceeds a value of the order unity.

In the following we briefly outline the mathematical prob-
lem and the numerical method used for its solution. The
main task is the analysis of the stability of steady hexagon

solutions with respect to infinitesimal disturbances. There are
not yet sufficient experimental data available for detailed
comparisons with the theory. But the observations reported
so far are in agreement with the theoretical predictions.

II. MATHENIATICAL FORMULATION
QF THE PROBLEM

P —u+u. Vu = —V7r+XOR+V u,
I, Bt

(la)

V u —0 (1b)

8—0+u VO=X. u+V 0,
Bf

(1c)

where k is the unit vector in the vertical direction, m is the
deviation of the pressure from its static value, and where the
Rayleigh number R and the Prandtl number P are defined by

7 (T2 T,)gh-8= PP=-
K

Here g, y, and p denote the acceleration of gravity, the
thermal expansivity, and kinematic viscosity, respectively. It
is convenient to eliminate Eq. (1b) through the introduction
of the general representation for solenoidal vector fields

u=Vx(Vxhq)+Vxkt/.

Steady three-dimensional solutions of Eqs. (1) can be ob-
tained through the Galerkin ansatz

We consider a horizontal fIuid layer of depth h with the
temperatures T& and T2 prescribed at the upper and lower
rigid boundaries. Using h as length scale, h /tc as time scale
where K is the thermal diffusivity of the Quid, and T2 —T& as
temperature scale we can write the equations of motion for

the velocity vector u and the heat equation for the deviation
0 of the temperature field from the static solution of the
problem in the nondimensional form

1063-651X/96/53 (3)/2037(4)/$10. 00 53 R2037 1996 The American Physical Society



R2038 R. M. CLEVER AND F. H. BUSSE 53

l, m, n
(coslax(aI'„cosmby+ a&'„sinmby)

+ sinlax(aI'„cosmby+ at' „sinmby)) f„(z), (4a)

0= g (coslax(bt'„cosmby+ bI'„sinmby)
l, m, n

+ sinlax(b&'„cosmby + bI' „sinmby))sinn vr(z+ 2),

are satisfied. After the z components of the curl and of curl
curl of Eq. (1a) and Eq. (1c) have been projected onto the set
of expansion functions introduced in expressions (4), a sys-
tem of nonlinear algebraic equations for the unknown

a)mn, b'Imn, c'I'mn is obtained. This system can be solved nu-

merically through a Newton-Raphson iteration method after
the infinite system has been truncated. We shall neglect all
coefficients and corresponding equations for which the con-
dition

l+m+n~N,

(sin/ax(c&'„sinmby+ c,"„cosmby)
l, m, n

+ coslax(c&'„sinmby+ c~' „sinmby))sinn'(z+ —,'),
(4c)

where we have introduced a Cartesian system of coordinates
with the z coordinate in the vertical direction and where

f„(z) denotes the Chandrasekhar functions [9] which have
the property f„=df„/dz=0 at z= ~ —,'. In this way represen-
tation (4) ensures that the conditions at the rigid boundaries

is satisfied. The truncation parameter NT is chosen in such a

way that global properties, such as the heat transport, are not
changed by more than about 1% when NT is replaced by
NT —2.

III. STEADY HEXAGON SOLUTIONS

Solutions of the form (4) describing hexagonal convection
can be obtained when a= +3b is chosen. All coefficients
with 1+m = odd vanish for the hexagon solution. Moreover,
by replacing the center of the hexagonal cell at x=y =0 and
using its symmetry we find that the solution can be repre-
sented by coefficients with the properties

at~ „=bIJ „=c&j„=0 for l+m= odd (a) and also for 1+m=even, unless i =j=c (b ).

An example of solutions of this kind is shown in Fig. 1.
The wave number of hexagon solutions is traditionally de-
scribed by a=2b since the coefficients ayi] a2p] become
the dominant ones as the critical value of the Rayleigh num-

ber, R, =1708 with n, =3.116, is approached. In Fig. 2 the
heat transport by hexagonal convection is plotted in compari-
son with the heat transport by two-dimensional rolls. The
Nusselt number Nu is defined as the total heat transport di-
vided by the heat transport in the absence of convection. As
is evident from the figure, Nu depends more strongly on the
basic wave number of convection than on the Prandtl num-

ber, at least in the regime P~1. In contrast to the situation at
Rayleigh numbers right above the critical value where the
heat transport by convection rolls exceeds that of hexagonal
convection [10], the latter type of convection becomes more
efficient than the former in transporting heat as the Rayleigh
number is increased. This effect may be caused in part by the
higher harmonics in the horizontal dependence which are
stronger for the hexagon solution than for two-dimensional
convection.

IV. STABILITY ANALYSIS OF STEADY HEXAGONS

The stability of steady hexagon solutions characterized by
the parameters R, P, and o, can be investigated through the
imposition of arbitrary infinitesimal disturbances cp, 8, P. For
these the same representation (4) holds as for the spatially
periodic steady solutions except that the factor
exp(idx+iey+ crt't multiplies each expression. In the fol-

lowing we shall restrict the analysis to disturbances with
d = e = 0 which do not change the horizontal periodicity in-

terval of the steady solution, 0~x~ 4 7r/+3n,
O~y~4vr/a. As is evident from Fig. 1, this interval corre-
sponds to the area of two hexagonal cells and the restriction
of the periodicity interval is thus not a severe one. In the case
d = e = 0 the stability analysis is much simplified since the
disturbances separate into eight classes each of which corre-
sponds to vanishing coefficients aI' „except for a single su-

perscript combination i,j and each is characterized by the
validity of the symmetry (7a), denoted in the following by
E, or by the opposite symmetry, denoted by O. The eight
classes are thus described by

CCE, CSE, SCE, SSE, CCO, CSO, SCO, SSO.
(8)

According to this classification the steady hexagon solution
belongs to the class CCE. Disturbances that tend to shift the
hexagon solution in the x or y direction belong to the classes
SCE or CSE, respectively. The linear equations for the un-

known coefficients aImn, blmn, cImn for a given hexagon so-
lution give rise to an eigenvalue problem with the growth
rate o. as eigenvalue. Whenever there exists an eigenvalue
o among the eight classes (8) with positive real part the
hexagon solution is regarded as unstable; otherwise it is re-
garded as stable, at least with respect to the disturbances
which fit the periodicity interval.
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FIG. 3. The region of stable hexagons in the R-u plane for
P=2 5is bou.nded by the onset of SCO disturbances (0) from
above and CCO disturbances (0) from below. At low Rayleigh
numbers the stability region is bounded from below by the onset of
SSF. disturbances (+) and CCF. disturbances (X).

X

FIG. 1. Lines of constant vertical velocity with solid (dashed)
littes for positive (negative) values in the planes z= —0.4 (a),
z=0 (b), z=0.4 (c), and isotherms in the plane z=0 (d) for hex-
agonal convection with R=5000, P=4.0, n=2.0. The dotted
curves indicate zero.

Figures 3—5 show the regions in the R-n plane of stable
hexagonal convection for I' = 2.5, 7, and 16. Stable hexagons
always have wave numbers much lower than the critical
value u, . The extent of the stability region towards low
wave numbers n could not be determined usually because
either steady hexagon solutions with very low wave numbers
did not converge or the numerical scheme produced solutions
with higher wave numbers. For all Prandtl numbers less than
about 10 the region of stable hexagons corresponds to a strip
in the 8-u plane the average wave number of which de-
creases with increasing Rayleigh number. No stable hexa-
gons were found for R less than 3000. Growing disturbances
of the CCE or SSE class restrict the stability region at the
lowermost end. But the bulk of the stability region is
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FIG. 2. Nusselt number as a function of R for two-dimensional
convection (thin lines) and for hexagonal convection (thick lines) in
the cases P=2 5, n=1.5 (.solid lines), P=4.0, n=1.5 (dashed
lines), P = 7.0, n = 2.0 (dotted lines), and P = 16, n = 2.5 (dash-
dotted lines).
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FIG. 4. Same as Fig. 3, but for P=7.
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FIG. 6. Growth rates o. of SCO disturbances (thin lines) and

CCO disturbances (thick lines) as a function of the Rayleigh num-

ber A' in the case of steady hexagon solutions with a=1.9 for
P = 1.5 (solid lines), 2.5 (dashed lines), and 4.0 (dash-dotted lines).

FIG. 5. Same as Fig. 3, but for P = 16. In addition to the previ-

ously mentioned instabilities the region of stable hexagons is also
bounded by the onset of CCO disturbances (~) from above, and

by the onset of SCO disturbances (4), and SSO disturbances

(~ ) from below.

bounded by growing CCO disturbances towards low 8 and

by growing SCO disturbances towards high R. Only in the

case P = 16 more complex stability boundaries are obtained.
All instabilities involved in the stability boundaries are char-

acterized by a vanishing imaginary part of the growth rate
o. thus indicating monotonic rather than oscillating instabili-

ties. To ensure that the uncertainty of the stability boundaries
is less than about 2% of the Rayleigh number, the truncation

parameter NT has been increased to 20 in some cases. The
same truncation was employed for the steady solution and its
disturbances.

To demonstrate the disappearance of stable hexagons for
low Prandtl numbers, maximum growth rates are shown in

Fig. 6 as a function of the Rayleigh number for different
Prandtl numbers. Especially the growth rate of SCO distur-

bances, which grows rapidly with decreasing P, is respon-
sible for the disappearance of the region of stable hexagons.

An extrapolation based on the results presented in Fig. 6
suggests that no stable hexagons will exist for P(1.2.

V. DISCUSSION

The region of stable hexagons which is identical for both
types of hexagon solutions suggests that depending on initial
conditions other forms of convection besides convection
rolls can be realized in a layer of a Boussinesq fluid heated
from below at elevated Rayleigh numbers. This result agrees
with the experimental observations of Assenheimer and
Steinberg [8].These authors found coexisting up- and down-
hexagons for Prandtl numbers in excess of 2. They also ob-
served that the wavelength is significantly larger than that of
rolls in the same experiment. These two features agree well
with the theoretical results. Further quantitative agreement is
expected once more detailed measurements become avail-
able. Of particular interest will be the transition from hexa-
gons to other forms of convection through the evolution of
the various instabilities. This will be the subject of future
research.
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