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We study theoretically and numerically the steady state diffusion controlled reaction A+B—+Q, where
currents J of A and B particles are applied at opposite boundaries. For a reaction rate X., and equal diffusion
constants D, we find that when XJ

—ii2D —s 2(&1 the reaction front is well described by mean-field theory.
However, for XJ ' D '

&& 1, the front acquires a Gaussian profile —a result of noise induced wandering of
the reaction front center. We make a theoretical prediction for this profile which is in good agreement with
simulation. Finally, we investigate the intrinsic (nonwandering) front width and find results consistent with
scaling and field theoretic predictions.

PACS number(s): 02.50.—r, 05.40.+j, 82.20.—w

Ba/Bt=DV a —kab,

rib/rlt=DV b —Lab. (2)

These equations predict a reaction front width which scales
as wM„(hJ/D ),whe—re J are the (equal) imposed cur-

Recently there has been considerable interest in the prop-
erties of diffusion limited chemical reactions [1,2]. Processes
such as A+B~P, where diffusing chemicals react irrevers-
ibly, are believed to have many applications in physical,
chemical, and biological systems. Particular attention has
been paid to cases where a reaction front is formed between
regions dominated by A or 8 particles. Such a situation can
arise in the case where the two species are initially entirely
segregated [3—10], or alternatively, and more simply, in a
steady state situation, where A and B particles are injected at
equal rates at opposite boundaries [9,11—13]. In this paper
we study the latter model, in the case of equal diffusion
constants D for the two species. The simplest description of
these systems is provided by the inhomogeneous mean-field
rate equations for the particle densities a and b, where it is
assumed that the reaction rate R = Xa b:

rents of A and B particles at the boundaries. However, it is
well known that below a critical spatial dimension d, =2
[9,12,13] microscopic density fluctuations become relevant,
and as a result the mean-field approach breaks down. For
d= 1 Cornell and Droz [12] have suggested that the fluctua-
tions modify the scaling of the width to w-(J/D) / . Nu-
merical simulations [10,12] have broadly confirmed these
conclusions. However, there has been recent controversy in
the time dependent version of the model, with initially sepa-
rated reactants, over the existence of multiscaling in the spa-
tial moments of the one-dimensional reaction front [8,10].
More recent simulations by Cornell [10]have also indicated
that the one-dimensional profile is accurately described by a
Gaussian. Hitherto this result has not been understood.

Theoretical approaches to understanding the crucial role
played by fluctuations have centered on mappings of the rni-

croscopic dynamics of the reaction-diffusion system onto a
quantum field theory [9,13,14]. This has allowed the effects
of fluctuations to be systematically included by summing
sets of Feynman diagrams. Renormalization group (RG)
techniques have then been employed to form a perturbation
expansion in a=2 —d. These calculations have confirmed
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FIG. 1. In our model, A and B particles are located on a one-
dimensional lattice. Three processes occur: particles can hop one
lattice site to the left or right with rate h= 1; each pair of A and

B particles at the same site can react with a rate k, after which they
are moved to their respective reservoirs; and A (B) particles enter
the lattice on the left (right) sides with an insertion rate i

the modified scaling in d= 1, as well as pointing to the ex-
istence of power law tails, both in the densities and in the
reaction front:

R=AD(J/D) ~
lxl

' ~ exp[ —B(J/D) lxl
3 ' ]

+ gD2J-'lxl -7+2'+. . .

Here A,B,C are universal dimension dependent constants.
One consequence of the power law tails is that sufficiently
high order spatial moments of an evolving time dependent
reaction front (with initially segregated reactants) should ex-
hibit multiscaling. These results were derived on the basis of
a finite reaction rate, which under the RG was found to fIow
to a universal O(e) fixed point. However, previous simula-
tions of one-dimensional reaction-diffusion systems have
employed an infinite reaction rate, which enforces complete
segregation between the two species. Furthermore, only
single occupancy of a given lattice site has previously been
permitted. In this paper, we relax these restrictions by simu-

lating a system with both multiple site occupancy and an

adjustable, finite, reaction rate X. This model is closer to that
used in the analytic RG calculations.

Our model consists of a one-dimensional lattice with L
sites, on which particles of types A and B are located. (See
Fig. 1.) In addition to this the model features reservoirs con-
taining either A or B particles. The total number of particles
of each species was set equal: N„=Nrem =N/2. Three distinct
processes take place.

(1) A and B particles located on the lattice hop to neigh-
boring sites in each direction with a hopping rate h, which
we set equal to 1 (corresponding to D = 1 in the continuum
theory).

(2) Each A particle can react with each B particle on the
same lattice site, with a reaction rate ) . After each reaction
both particles are removed from the lattice and placed in
their respective reservoirs.

(3) Each A (B) particle in the reservoir is inserted onto
the leftmost (rightmost) site in the lattice with an insertion
rate i . Clearly J=N„„i, where N„, is the number of par-
ticles in the reservoir. The purpose of these reservoirs is to
break up correlations between particle annihilation inside the
reaction front and particle reinsertion at the boundaries—

the larger the reservoirs the smaller the correlations. The
same effect can be achieved by increasing the system size,
but this is computationally far less efficient, as in that case
particles have to hop large distances before they can reach
the reaction zone.

We carry out the simulations with rare-event dynamics
(RED). In this approach no fixed time increment is present.
First, in a specific configuration, a list is made of all the
distinct events that might change the state of the system:
4L —2 events for A and B particle hops, L events for recom-
bination of a pair, and 2 events for insertion of a particle of
either type; altogether SL events. For each event e;, a rate

r; is calculated. Each step in the RED simulation now con-
sists of incrementing the time scale with At= I/2 (r, ), and
then allowing selection (and execution) of an event. The
probability that event e; is chosen is equal to
S;=r;/&, (r, )

For an efficient implementation, a binary tree of events is
constructed, where each branch contains one event and has a
weight equal to the rate of that event. The weight of a parent
node is equal to the sum of the weights of its children. As the
root node contains the sum of all rates, the time increment
At is easily obtained. For the selection of a particular event

e; with rate r;, we start in the root node, descend to one of
its children with a probability proportional to its weight, and
iterate. The selected event is then executed and the tree is
updated.

The initial configuration for each simulation consisted of
linear density profiles for the A and B particles, which de-
creased from the left and the right hand edges to the system
center. In all our simulations, we chose L such that no A
particle ever penetrated the B-rich region to within 10 sites
of the lattice boundary, and vice versa. Correlation and ther-
malization times varied with J, N, X, and L, and the tails of
the reaction front required more thermalization than the
middle section. The necessary thermalization time never ex-
ceeded 10 events. To be safe, we thermalized our system in
all runs over 10 events.

We consider first the regime XJ D &&1, where )hp
mean-field reaction front width wMF-(kJ/D ) is much
larger than the predicted fluctuation modified width
—(J/D) . In this case we expect that the behavior of the
system should be close to mean field. Solving Eqs. (1) and

(2) for a and b, we find that the mean-field reaction front
RM„='Aab has the form RM„=J(kJ/D )' S([kJ/D ]"x),
where asymptotically [for (kJ/D ) ~

lxl &) 1] we have

S-(t~J/D']'"lxl)""xp4 ——', ([l J/D']'"lxl)"']. (4)

Hence the mean-field solution predicts that measured data
for the reaction front should collapse if R/[J(kJ/D )'~ ] is
plotted as a function of (XJ/D )' x, as shown in Fig. 2. In
this case the number of particles N (which varied from be-
tween 1300 to 12 000) was tuned to obtain the desired J.

The collapsed data are in good agreement with the mean-
field prediction, although there is a slight tendency for our
simulation data to lie to the right of RMF, for the largest
values of (AJ/D )"3x. In this region, where the number of
minority particles is small, we expect that noise from the
reaction front will again become important, leading to a wid-
ening of the profile. Note that these simulation results were
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for —(L/2) ~x~(L/2). These corrections are the most gen-
eral possible which both couple to the noise (i.e., the har-
monics have a nonzero amplitude at x= 0), and which are
appropriate for the nonconservative nature of the noise. Fur-
thermore, the densities on the boundaries are kept constant
by these additional terms. We can now insert the above ex-
pression into the noisy diffusion equation and Fourier expand
the reaction front noise (which is concentrated near x = 0). In
the large time limit we find

10

10
4

(xs/D')'~' x

2$2J «(2n+1) 7r D
X (t) 7(t )exP L2Jo

where now

(t' t) dt', —

FIG. 2. Collapsed data in the regime XJ D (&1. Solid line:
mean-field prediction. Squares: simulation results for runs over
10 events and i = 1000, with D = 1, k = 0.001,0.01,0.1, and
J= 0.1,0.2, 0.5, 1.0.

( r/(t) ) = 0, m(r/(t) r/(t')) = 8(t t'). — (9)

Clearly P(x=O, t)=Xy„(t) is a Gaussian random variable
with

8$/Bt=DV P+ r/.

Here r/ is the reaction front noise, satisfying (r/) = 0 and

( r/(x, t) r/(x', t ')) = 26'(t t ') 6(x —x')R, —

(5)

where the reaction rate at the wandering front, with width

wg, has the form R =(J/wg)S(x/wg). It is important to re-
alize that, while P is on average equal to (a) —(b), its fluc-
tuations are not the same as those in the density difference.
This arises from the nontrivial commutation properties of the
operators within the field theory. More details on this point
(within the context of an A+A~IZI reaction) can be found
in [14].This fact accounts for the nonconservative nature of
the noise in Eq. (5). We may now decompose rP into its
mean-field part together with higher order Fourier harmon-
ics:

P= —(J/D)x+ g y„(t)cos
n=o

i (2n+1) ~x~

found not to depend on the inclusion of reservoirs in our
model, implying that the existence of correlations between
particle annihilation and reinjection was unimportant in this
case.

In the limit P J D )&1 the mean-field solution pre-
dicts that the reaction front will become increasingly narrow.
However, the simulations disagree with this assertion —the
reaction front keeps a finite width even if X is made very
large. Our analysis, described below, distinguishes two com-
ponents of this width: one is intrinsic, and the other is caused
by the ability of the center of the front to wander. The intrin-
sic width is calculable using the RG approach already out-
lined, whereas the front wandering can be understood by
considering the fluctuations in the field i/ =a —b, whose
zero may be taken as defining the center of the front. Includ-
ing the effects of reaction front noise (which is relevant in
one dimension), the field theory [13] leads to the following
equation for P:

(~(0,t)') -(~(0,t»'= X &~.(t)~.«)) (10)

—(J/7rD)ln(cL/wg), (11)

in the large time limit, with c a constant, and where the

upper limit is provided by the finite width wg of the wander-
ing reaction front. Assuming that the fluctuations of P are
small in comparison with the system size, then the gradient
of P at x=0 remains approximately equal to —(J/D).
Hence to leading order we expect the position of the zero of
the i/ field to be a Gaussian random variable with width

wg, given by the recursive relation:

In(cL/wg) "
1T(J/D)

(12)

From our simulation data (in the limit XJ "D 'i &) I) we
have plotted Rwz/J as a function of x/wg, where in (12) we
used c=0.5 (see Fig. 3). The collapsed data are well de-
scribed by a normalized Gaussian, with width 1, in good
agreement with our theory. This indicates that the higher
order non-Gaussian corrections to the distribution of the zero
of the i/'I field are indeed small. Note that the logarithmic
factor in (12) is essential for a good fit to the data.

We can clearly see from Fig. 3 that the wandering Gauss-
ian dominates over the intrinsic profile to form the over-
whelming component of the front. Notice also that we find a
basic (J/D) i scaling, in agreement with earlier predic-
tions [9,12,13]. Previously, however, only the intrinsic part
of the front was being analyzed, whereas we have been
studying the wandering piece. The scaling agreement is sim-

ply a consequence of dimensional analysis —any quantity
with the dimensions of length, which is independent of X,
must scale as (J/D) ~ . We may also generalize our calcu-
lation to the time dependent case, where a reaction front is
formed quasistatically between initially entirely segregated
reactants. In this situation we find wg-t (lnt) i, where
n = 1/4. The presence of the logarithm may explain the slow
convergence found in measurements of the exponent n [10].
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FIG. 3. Collapsed data in the regime kJ D &) 1. Solid line:
normalized Gaussian; Data points: simulation results over 10
events with D=1, k=1000, i =1000, J=0.1,0.2,0.5, 1.0, and
X= 100 (0), 1000 (+).

If we wish to study the intrinsic component of the front in
the non-mean-field limit ()i.J 't D 't &)1), we must now'

find a way of suppressing the dominance of the wandering
Gaussian part. One way in which this can be achieved is to
measure the reaction rate R„as a function of ~x

—x~I, the
distance between successive reaction events at x~ an.d x. This
enables the intrinsic profile to be studied, as the front center
has little time to move on such short time scales. These re-
action events are effectively uncorrelated, so that the relative
reaction rate R, is given by

R„(x)= R(x)P(xp) 8(x xp x)dxdxp—, —(13)

where P(x )dx„=R(x~)dx~/fR(x~)dx is the probability
that the previous reaction occurred between x~ and
x +dx . In our simulations of R„we kept the insertion rate
i small, and hence many particles were present in the reser-
voirs. We were therefore able to effectively simulate a much
bigger system, with a large number of particles. This ensured
that correlations between annihilation and reinsertion, which
would otherwise have modified the intrinsic profile, were
kept to a minimum. Our simulation data are shown in Fig. 4,
which shows a convincing data collapse of R„(J/D) 't /J
plotted against ~x x„~(J/D)'t . As —we are now studying the

FIG. 4. Collapsed data for the relative reaction rate in the re-

gime XJ ' D )& 1. Simulations were for 10' events, with
D = 1, X=200,1100,10 100.

intrinsic profile, this result finally confirms the scaling y&re-
dictions of [9,12,13].For large values of Ix —x~~(J/D)" we
also find a tail which is consistent with the RG improved
tree level prediction ln(R) — B(J/D) —

~

x
~

[implying
ln(R, )-—B(J/D) t

~x~]. Our data provide no clear indication
of the power law tails predicted in [13].However, such tails
would be very hard to see in measurements of the relative
reaction rate R„, as the power law exponent would be large
[7—2e+O(e )]. Simulations have also been performed in
the mean-field regime. In this case R„/[J(kJ/D ) t ] was
found to collapse when plotted against small values of
(XJ/D ) ~x

—x„~I. However, for larger values, the collapse
no longer worked well, probably due to the increased impor-
tance of fluctuations in the asymptotic regime.

In summary, our ability to adjust the reaction rate has
enabled us to find two regimes for the A+B~tZl front in one
dimension. For kJ D (&1 mean-field predictions work
well, whereas for kJ D &)1 the front js domjnated by
a Gaussian profile, a result of fluctuation induced wandering.
Our theoretical prediction for this shape agrees well with
simulations. Finally, we have succeeded in studying the in-
trinsic profile, where the shape and scaling properties match
previous RG calculations.
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