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Stabilization of soliton instabilities by higher-order dispersion:
Fourth-order nonlinear Schrodinger-type equations
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Stability of the soliton solutions to the fourth-order nonlinear Schrodinger equations with arbitrary power
nonlinearities in different space dimensions is studied. Necessary and sufficient conditions of the stability with

respect to small perturbations are found. The results obtained represent also necessary conditions of the
stabilization of self-focusing and collapse by high-order dispersion.

PACS number(s): 42.65.Tg, 42.65.Jx, 52.35.Mw

The problem of soliton stability, considered in this paper,
is closely related to the collapse (blowup) of nonlinear
waves, one of the basic phenomena in nonlinear physics. The
instabilities, leading to the collapse, depend on the number of
space dimensions and strength of nonlinearity [1,2]. The
progress in their study is greatly stimulated by considering
comparatively simple models, convenient for analytical and
numerical investigations. In this way many important prop-
erties of instabilities, leading to the collapse, have been dis-
covered. Up to now, the main attention in the studies of the
collapse stabilization has been paid to the nonlinearity satu-
ration (e.g. , [3]). On the other hand, effects of higher-order
dispersion may also play a significant role [4]. Here, we re-
port the results of a study of the stabilization of soliton in-
stabilities, with respect to small perturbations, in the model
based on the fourth-order nonlinear Schrodinger (NLS) equa-
tion

y 2ia,W+ —,'d% + —b, 'W+ f(i%!')%=0, f(u) =u~ (1)

where

with y@0 and p=1 have been considered in connection
with the nonlinear fiber optics [6,7] and the theory of optical
solitons in gyrotropic media [8].A straightforward analytical
approach [6] leads to results similar to those obtained earlier
qualitatively and numerically for the wave beams [4,5]: at

y~ 0 there are radiating solitons while at y( 0 there can
exist stationary solitons with monotonic or oscillatory as-
ymptotics (their existence has been confirmed numerically
[9]).Along with that, at D= 1, p)1, and y)0 there are no
stable solitons similar to the case y~0, p~4 in high disper-
sive Korteweg —de Vries type equations [10].

Here, we study the soliton stability at y~0 and any
D, p~1 satisfying the relation (2 —D)p+2)0 [it
seems that for other D and p the soliton solutions to Eq. (1)
do not exist]. Based on two conjectures which are supported
by numerical results, we derive necessary and sufficient con-
ditions of the soliton stability with respect to small perturba-
tions.

Equation (1) can be obtained from the action principle.
From the symmetries of the Lagrangian, there follow con-
served quantities [4]. Here we shall use two of them: the
number of quanta and energy

p~1, 5= V =—V' V, n=1, . . . ,D, D =1,2,3,

(summation over repeated indices is assumed; D is the num-
ber of space dimensions).

At y = 0, Eq. (1) has been considered in a large variety of
papers (see, e.g., Refs. [1,2] and references therein). One of
the main results achieved is that the solitary wave solutions
of Eq. (1) with y=0 (which are localized pulses or wave
beams) are unstable at p~2 (D=1) and p~1 (D~2).
These instabilities may result in a blowup at finite t (self-
focusing or collapse) [1,2].

At @@0,and D = 2, p = 1 Eq. (1) has been considered in
Refs. [4,5] in a study of the self-focusing in high dispersive
systems. It has been shown by qualitative reasoning [4] and
numerical investigations [5] that the fourth-order derivative
term plays a very important role, depending on sgny. At
y)0, it leads to radiation and consequent defocusing of a
wave beam; at y~0, it makes possible the formation of
stable stationary wave beams. One dimensional equations (1)

Electronic address: karpman@vms. huji. ac.il

N= d XI'qr
I

where F'(u) =f(u). The corresponding fluxes are given in
Ref. [4].

The soliton solutions of Eq. (1) have the form
qr, (x, t) = txi, (x)exp(iAt). Substituting this in (1) we come to
the soliton equation

yA'4, + AC, +2[f(4,') —A]4, =0. (3)

It can be obtained from the constrained variational problem

6(H+AN) =0, (4)

i.e., the soliton is a stationary point (in functional space) of
the Hamiltonian H at constant X with A playing the role of
Lagrange multiplier.

Introducing the notations
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f
J,= d x(V4,), J2= —,

' d x(b, 4,), B,v=Lw, B,w= —Mv, (4, , v) =(C, ,w) =0,
(15)

we have

I = d xn S

1
H, =Hi+, )= —,

' Ji —yJ2 — I i i .p+ 1

(5)
where we introduced the Hermitian operators

L= ——,'[yA'+2 +2f(C,') —2A],

M =L —2f'(4, )4, .

It is easy to check that

(16)

Multiplying Eq. (3) by ~1~, and integrating by parts, we ob-
tain

L4, =0, M%4, =0. (17)

yJ —-'J, +I —AN, =O, N, =N/&P, ). (7)

2pD (4 D)p+ 4—

(2 D)p+2 — ' (2 D)p+2— (8)

2(p+ 1) 2(p+ 1)
(2 D)p+ 2 — ' (2 D)p+ 2— (9)

Substituting (8) and (9) into (6), we obtain

pD —2 2p

(2 D)p+2 —' (2 D)p+2—(10)

At y= 0, we come to the expression obtained in Refs. [12,1].
Now, consider the scaling transformation conserving

Another equation, connecting integrals (5), can be obtained
by means of the scaling transformation x' = nx [11,1] which
gives, together with (7), a system of two linear algebraic
equations for the integrals (5). Solving this system, we have

(w, Lw)
A =

(w, M 'w)

From (18) it follows that the soliton is stable if both opera-
tors, L and M, are positive or negative definite in the sub-
space, orthogonal to 4, .

Let us first investigate the operator L. We know one of its
eigenfunctions, 4, . For y=0, it corresponds to the ground
state because it has no nodes. Then the lowest eigenvalue is
zero and L is positive definite in the subspace, orthogonal to
4, . For y&0, the situation is more complicated. Indeed,
performing the scaling

+ = (2&)"' y x = (2&) (19)

Thus, 4, and V'4, are eigenfunctions of operators L and

M, respectively, with eigenvalues equal to zero. Formally,
this conclusion is the same as for y = 0 [1].

Assuming that v and w depend on time as exp( iAt), —we
have

Then H, is transformed to H(k),

(12)
where now 5=8 /g (and e)0). Thus, at l(l)&1 [6]

we transform Eq. (4) to the form
(11)

eA P, —AP, —(2@,"—1)$,=0, e= —2Ay, (20)

Substituting here (8) and (9), we have

1
4""«p(—~l(l) ~'=2 (1~ I1—4~). (21)

Aw,
H(k)= (pDX 2k i')—

2 Dp+2—
+ ([(4—D)p+4]X'

2 Dp+2—
—[(2—D)p+2]k —2k ~j. (13)

Evidently, H(1)=H, and H'(1) =0.
Let us now consider the soliton stability with respect to

small perturbations. Assume that

+=(+',+ y)exp(t«), l l
pl&&1, (C, , y) =0 (14)

where @=v+iw and (F,G) = fd x F*G. From (14) it fol-
lows that, to the first order, Nt+)t=N, . Substituting (14)
into (1) and neglecting second-order terms, we come to the
equations

This is valid for any number of dimensions D. From (21) it
is seen that the asymptotic behavior of the soliton is mono-
tonic or oscillating at, respectively, a~1/4 or e) 1/4. In the
last case, 4, has nodes at l(l&)1. Nevertheless, numerical
investigations at D=1,2,3 and sufficiently small a (which,
however, can be even larger than 1/4) show that 4, remains
to be the eigenfunction of the ground state for y(0. This
gives us a reason for the following conjecture: there exists
e~&0, such that at 0(e(e, the operator L is positive
definite in the subspace, orthogonal to 4, . Generally, we
cannot exclude that a &) 1 (see also the end of this paper).

If, and where, this conjecture is valid, the necessary and
sufficient condition of the soliton stability is the positive
definiteness of operator M in the subspace, orthogonal to
4, . Let us find when it is possible.

Acting as in Ref. [12], we differentiate Eq. (4) with re-
spect to A. This gives
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1.e.,
I'g(y )

= —M '4, . (22) (@,MP)o0 (32)

From the second of Eqs. (17) it follows that

(&P, , @o)=0 where M@O=O (23)

at (O', , P) =0 and sufficiently small e. From this it follows
that (31) is the necessary and sufficient condition of the soli-
ton stability with respect to small perturbations. Using (19)
and defining

(@0= grad%, ). This is in agreement with (22). Consider now
the extremum of quadratic form (@,M@) with the con-
straints

(33)

(4, 4) =1, (+., 4) =0 (24)
we have N, =At i'l'i'i, (e), i.e.,

Using the Lagrange multipliers p, and C, we come to the
variational problem

I' 2 —Dpp (2—Dp —2p)/2p

~aAJ 2p 88 /

(34)

8[(P,M @)—p (P, P) —C($,4', )]= 0

which leads to the equation

Thus condition (31) is reduced to
(253

(Dp 2)i, & 2—pe Bi, /Be. (35)
(M —p, ) @=CC&, . (26)

From (24) it is seen that p, is an extremum of (@,MP).
Thus, to find the signature of (@,MP) we must solve Eq.
(26) and find minp, . This can be done as in Ref. [12].We
write

At y= 0, the right hand side of (35) vanishes and the stability
condition is p(2/D; in the "critical" case p=2/D and
@=0, the solitons are unstable [1,12].

Numerical experiments for particular cases suggest that
i, (e) is an increasing function (at sufficiently small e). If
this will be confirmed, the solitons are stable at

Mg„=p,„g„, rIi, = g b„P„
n40

(27) p~2/D (y&0). (36)

=Cg
neo Pn P

(28)

Assuming that P satisfies the second of constraints (24), we
obtain the following equation for p, :

r(p)—= g =0,
neo Pn P

(29)

[the term with n =0, corresponding to the eigenvalue equal
to zero, is absent in the last equation due to (23)]. Then

At D = 2,1 this was checked by direct numerical experiments
[5,13].Condition (35) can also be used at p) 2/D, to deter-
mine the values of e (at fixed p and D) for which solitons
are stable. This will be done in a separate paper.

From the above analysis it follows that the fourth deriva-
tive term in Eq. (1) at y(0 plays a stabilizing role. This can
be seen also from (3) because at y(0 the second term in
0 is positive, like the first one, while the third term, promot-
ing the collapse instability, is negative.

Now, let us derive other conditions of the soliton stability.
From (3) we have

i.e., all extremal values p, of the quadratic form (P,MP),
with the constraints (24), are the roots of the function
r(p). We have to investigate the sign of the lowest of them.
It is easy to find from (29) that minp, )0 if M has only one
negative eigenvalue and, in addition, r(0)(0. Then, from

d xf'(4&, )4, (@—@*) . (37)

1~aW,
r(0) = (4, ,M '4, ) = ——

2iBA (30)
Evidently, (@—@*) (0. Then, taking into account (4) and
(32), we come to the following necessary condition of the
soliton stability:

it follows that the quadratic form (P,MP) is positive in the
subspace, orthogonal to 4, , if H, + AN, = min(H+ AN). (38)

(BN, /BA) ~)0. (31)

Numerical calculations in some particular cases show that
operator M has indeed only one negative eigenvalue at least
for small a (for e = 0 this is shown in [1,12]).We adopt this
as the second conjecture. Then, relation (31) is the necessary
and sufficient condition of

On the other hand, if (38) holds, H+AN can be considered
as a Lyapunov functional and therefore (38) is also a suffi-
cient condition of the soliton stability.

From (38) it follows that if the soliton is stable, H(k),
defined in (13), must have a minimum at k = 1. [We recall
that transformation (11) conserves N(qr] .] Then H"(1) must
be positive. Defining
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R(e;p,D))R„(p,D), (42)

(Dp —2)Dp

(D p) 6D—p+ 8(p+ 1) '

where j2 is given by (33), we have

(39)

Dp —6Dp+ 8 p+ 1H"(I)= 2 AN, (R R,„)—. (40)
(2 —D)p+ 2

As far as we consider only integer and positive p,

(Dp) 6Dp+—8(p+ 1)= (Dp 3)2+—8p —1)0.

Also, (2 D)p+—2)0 if

D= 1 2, p&~ and D=3, p=1.

Thus, at (41) and y(0, we come to the following necessary
condition of the soliton stability:

which is a restriction on a. At the additional assumption
(36), condition (42) is fulfilled automatically because
R„(p,D)(0.

There is some evidence that at p~2, D=3 the soliton
solutions to Eq. (1) do not exist. [Note that the denominator
in (40) vanishes at p=2, D=3.] We shall not discuss this
case anymore.

Thus, adopting the two above conjectures, we come to the
necessary and sufficient conditions of the soliton stability
with respect to small perturbations. We have also found that
the fourth-order dispersive term in NLS-type equations (1)
stabilizes instabilities which may finally evolve into col-
lapselike processes as it takes place, e.g., in the case
p=D/2, 7 =0. The soliton stability with respect to finite
perturbations will be considered in a separate work.

This work was partially supported by the Israel Ministry
of Science and the Arts.

[1]E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys.

Rep. 142, 103 (1986); J. J. Rasmussen and K. Rypdal, Phys.
Scr. 33, 481 (1986).

[2] Wave Collapses, Proceedings of the International Workshop on

Wave Collapse Physics, edited by V. E. Zakharov [Physica
(Amsterdam) D 52, 1 (1991)];S. K. Turitsyn, Phys. Rev. E 47,
R13 (1993).

[3] E. W. Laedke, K. H. Spatschek, and L. Stenfio, J. Math. Phys.
24, 2764 (1983); E. W. Laedke and K. H. Spatschek, Phys.
Rev. A 30, 3279 (1984).

[4] V. I. Karpman, Phys. Lett. A 160, 531 (1991).
[5] V. I. Karpman and A. G. Shagalov, Phys. Lett. A 160, 538

(1991).

[6] V. I. Karpman, Phys. Lett. A 193, 355 (1994).
[7] M. Karlsson and A. Hook, Opt. Commun. 104, 303 (1994); N.

N. Akhmediev, A. V. Buryak, M. Karlsson, ibid. 110, 540
(1994).

[8] V. I. Karpman, Phys. Rev. Lett. 74, 2455 (1995).
[9] V. I. Karpman and A. G. Shagalov (unpublished).

[10]V. I. Karpman, Phys. Lett. A 186, 303 (1994).
[11]G. H. Derrick, J. Math. Phys. 5, 1252 (1964).
[12] N. G. Vakhitov and A. A. Kolokolov, Izv. Vuz. Radiofiz. 16,

1020 (1973) [Radiophys. and Quantum Electronics 16, 783
(1975)].

[13]V. I. Karpman et al. (unpublished).


