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The classical nonlinear optical response is expressed in a form that closely resembles the fluctuation-

dissipation theorem. The nth-order response is shown to depend on interferences among n closely lying

trajectories. The relevant dynamical information on the vicinity of a given trajectory can be recast using the

stability matrix related to the Lyapunov exponents. No such interference exists in the linear response, and the

nonlinear response is consequently a much more sensitive probe for classical chaos. Sequences of multiple

femtosecond pulses can be designed to directly probe the stability matrix.

PACS number(s): 05.45.+b, 42.65.Sf, 42.65.An, 42.65.Re

Nonlinear optical measurements are usually interpreted by
expanding the polarization P in powers of the incoming elec-
tric field E. To nth order we have

Pt"~(t) = d+1E( +n) ' ' '+(+1)

XSt"~(t,~„,. . . , ~, ).

'I n

S "&=
Z

Tr(V(t) [V( ), r. . . , [V(~,),[V(~,),&]].. . ]).
( ~)

(2)

Quantum mechanically, the nonlinear response function
S " (t, 7„,. . . , r, ) is given by a. combination of (n+ 1)-order
correlation functions of the dipole operator V,

l
S i(t, rt) =

~ [(V(t)V(rg)) —(V(rg) V(t))]. (3)

The development of classical and semiclassical methods
for computing directly the necessary combinations of corre-
lation functions rather than the individual ones is an interest-
ing open problem. For the linear response this is accom-
plished by the fluctuation-dissipation theorem [2]

functions are combined, the (i/fi)" factor is canceled as
II~0, and one obtains the classical response, independent of
fi. The elimination of I7/ for higher nonlinearities requires a
more delicate interference among all 2" correlation func-
tions.

The linear (n = 1) response is expressed via the two-time
correlation function of the dipole operator

Equation (2) contains 2" terms representing all possible
"left" and "right" actions of the various commutators. Each
term corresponds to a Liouville-space path and can be rep-
resented by a double-sided Feynman diagram [1].The vari-
ous correlation functions interfere and this gives rise to many
interesting effects such as new resonances. The (i/fi)" factor
indicates that individual correlation functions do not have an
obvious classical limit. The entire response function must,
however, have a classical limit. When the various correlation

dS"'(t,~, ) = —P (V(t) V(r, )),d71

where P=(kT)
Unlike the quantum response (3), which contains an inter-

ference of two Liouville-space paths, the classical expression
(4) contains no interference and may be directly computed
using classical trajectories which sample the initial density
matrix [3]. Recent developments in femtosecond spectros-
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S(")(r,~„,. . . , ~, )=(v(r)W(r„) W(r, )). (5)

Here the averaging is carried out with respect to the initial
density function p( )(x), where x=(y, q) denotes the phase-
space coordinates, V(t) is the dipole moment, and W(rk) the
Liouville-space dipole operators that act on an arbitrary
function of x through the Poisson bracket. We use the general
form of the Poisson bracket:

copy [4,5] require the classical evaluation of nonlinear re-
sponse functions. For example, multiple infrared pulse mea-
surements in liquids probe intermolecular and intramolecular
nuclear motions, which are essentially classical. Generalized
optical Kerr techniques conducted using off-resonant optical
pulses t7—11] reveal the multidimensional nuclear spectral
densities. The coupling with the field —VE is replaced in
this case by an effective coupling —o.E, and the response
can be calculated using Eq. (2) by replacing the dipole op-
erator V with the electronic polarizability a, and substituting
E (7) for each E(7.). These techniques are the analogs of
multidimensional NMR spectroscopy where nonlinear re-
sponse functions are commonly used to selectively probe
features and dynamical information that is not accessible by
linear techniques [12]. Coherent control of atomic and mo-
lecular events [13] is another application where classical in-
tuition for nonlinear spectroscopy should be very useful. The
classical simulation of these measurements requires the gen-
eralization of the fluctuation-dissipation theorem to nonlinear
response. This is the primary objective of this paper. We will
show that the classical nonlinear response contains an intrin-
sic interference among closely lying trajectories originating
from the same region in phase space. This provides a direct
probe for the stability matrix and the Lyapunov exponents
[14]. In contrast, the Auctuation-dissipation theorem for the
linear response implies that each phase-space point contrib-
utes only a single trajectory, and no interference exists be-
yond averaging over the initial phase-space distribution. The
present arguments are not limited to optical response, and

apply to an arbitrary external field.
The response function S " (t, 7„,. . . , r, ) is written in the

Heisenberg picture as

d~(.,)~(.,)p")( )=-P„,(v(.), v( )p"'( ))d71

d'=P'«V(;)V(, )p"'(.)d 72d 71

—p„{v(,),v(, )) (')( ),d71

yields

S"'(r,7z, 7i) = p'd d (V(r) V(&z) V(&i))
d72d71

d—
pd (v(r){v(,),v(, ))).d71

(8)

8 8

M;1(~z, ~i)—=
»k(~, )

», (~z)

where the summation over the repeated indices is implied.
The matrix M, which relates small deviations 6xj to 6xk at
different times, is known as the stability matrix [14].We can
finally rewrite (8) as

To evaluate the Poisson bracket that appears in (8), we
need to calculate derivatives of V(ri) with respect to xj at
time 7.2, that is, we need to relate the x derivatives at differ-
ent times. The derivatives propagate by the formula

Bv(x) Bf(x)P f(x)—= iv(x), f(x))=g o),
„

jk ~xj ~xk
(6)

4
X

where cojk may assume the values 0, 1, and —1. The
fluctuation-dissipation theorem is obtained by noting that the
initial canonical density matrix, p( )(x) =Z exp( —pH), de-
pends on x only through the Hamiltonian, and 2

dV
y"p(o) = P(v Hjp(o) — P p(o)

dt
(e)

'Tl X2 ~3

We now turn to the second-order response

Noting that

(, z, ,) —(V(t) F (~z) F"(~i)). (7) FIG. 1. Interference of nearby trajectories in S( ). Paths (a)—(f)
correspond to the six terms in (11), respectively. Crosses at times

7j j= 1,2,3, stand for derivatives with respect to
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d
S ' (t, r, , r, ) = p'd d (V(t) V(r, )V(r, ))d r2d r1

d—p (~;,M, l (r2» r, )V(t) V,'( r2) VI ( r, ))»dr1

where V,
'. —= Bv/Bx, . The first term, related to the three-point

dipole correlation function, is a direct generalization of the
fIuctuation-dissipation theorem. It can be evaluated by fol-
lowing a single trajectory for each initial phase-space point.
The second term is much more interesting, and can be inter-
preted as follows: for each initial phase-space point we need
to launch two trajectories with very close initial conditions.
(For 5~"l we need n trajectories; see Fig. 1.) The nonlinear
response is obtained by adding the contributions of these
trajectories and letting them interfere.

The third-order response is similarly given by

d3
5 (t» r3» r2» rq) —P (V(t) V(r3) V(r2) V(rt))

3 r2"ri
d'

+ p'd d (V(t)(V(r, ),V(r, )V(r, )))d r2dr1

d'
+p

d d (V( )V( 3)( ( 2), ( t)))r3d r1

—P „(V(t)(v(r,),{V(7,),V(r, )))).dri

Using the stability matrix we finally have

d3 d
S (t, r3, r2, r&) ——P (V(t) V(r3) V(r2) V(rq))+P (co»&MJk(r2»r3) V(t) V; (r3)Vk(r2) V(rq))

r3 r2 r1 d r2d r1

d
+ p (co,,M,k(r, , 3) V(t) V,'(r3) V(r2) V~(7, ))d r2dr1

d'
+ P (cu;JMJI, (r&» r2) V(t) V(r3) V, (r2) VI, (r&))d r3d r1

P ( co»» I co»j™(»»» ( r2, r3 )MJk( iy» r2) V( t ) V»» ( r3 ) V(»»» ( 7 2) Vk ( rt ))dr1

P d ($»»[$» jM/»»»( r$» r3)Mj t'( r$» r2) V(t) V»»( r3) V» ( r2) Vk»»»( ry )) .
dr1

Here V"
, =8 V/Bx;Bx . The quantum response function

contains a 2"-fold interference of the various correlation
functions. The classical interference is of a very different
nature: first, S&"~ contains n~ terms. In addition, each term
may depend on a bundle of up to n nearby trajectories (de-
pending on the number of stability matrices M). This addi-
tional interference, coming from nearby trajectories, is illus-
trated in Fig. 1 for the third-order response I paths (a) through
(f) correspond respectively to the six terms in (11)].Path (a)
contains no additional interference; this is the fIuctuation-
dissipation contribution. Paths (b)—(d) contain an interfer-
ence from one pair of trajectories each, which is expressed
by the stability matrix. The terms (e) and (f) involve three
trajectories; the interference comes from two pairs of trajec-
tories for each time interval, which leads to a product of two
stability matrices in each term. The same arguments apply
immediately to higher-order response functions. In general,
the nth-order response is expressed via the set of the stability
matrices M(r;, r, ) for each pair of the subscripts

~ ~

E)J 1) ~ ~ ~ gnat

The stability matrix carries the necessary information re-
lated to the vicinity of the trajectory and provides a very
efficient numerical procedure for computing the response

(
a'H

otq

BH
Bp Bq

Bq OIp

BH (12)

The generalization to arbitrary number of degrees of free-
dom in terms of the Hessian matrix is straightforward. We
can then use the relation M(r;, r;)=M (r, , r, )M(r;, r&)
to obtain the matrix for arbitrary pairs of times along the
trajectory.

Unlike the classical linear response which contains no in-
terference (just simple averaging over the initial density ma-
trix), the nonlinear response shows an interesting classical
interference. The stability matrix plays an important role in
the field of classical chaos I14j. The sign of its eigenvalues
(related to the Lyapunov exponents) controls the chaotic na-

function. Note that the response function depends on
M(r;, r, ) for all values of r; and 7;. . By running a single
trajectory we can first calculate the M matrix as a function of
time with reference to the initial time r1 . For a single degree
of freedom x=(q,p) it may be obtained from
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ture of the system. Numerous studies have been performed in
order to identify the signatures of chaos in linear spectra.
Level statistics has been one of the key quantities investi-
gated. Equation (9) shows that the nonlinear response is a
much more natural measure of chaos since it provides a di-
rect probe for the stability matrix. The possible divergence of
the linear response at long times has been pointed out by van
Kampen as a fundamental limitation of response theory. The
argument made is that the effect of a weak external field on
a nonlinear dynamical system at long times may not be
treated perturbatively [15].Despite this formally correct ar-

gurnent, linear response functions are usually well behaved.
The reason is that while individual trajectories with a fixed
initial condition may be sensitive, the corresponding diver-
gence of the response at long times is canceled once averag-
ing over the initial density matrix is carried out. Therefore,
phase-space averaging eliminates the difficulties pointed out
by van Kampen, and guarantees that the response will re-
main finite at all times. This point was illustrated in a recent
numerical study of the nonlinear response of a quartic oscil-
lator with the potential kr [16].Prior to thermal averaging,
the third-order nonlinear response function for this system is
unbounded and grows linearly in time. Upon averaging, this
behavior changes dramatically and the response function
properly decays at long times.

We shall now consider possible models where these ef-
fects could be observed. For the linearly driven harmonic
oscillator all nonlinear response functions vanish identically
due to interference among Liouville-space paths. The sim-
plest model that shows a finite nonlinear response is a non-
linearly driven harmonic oscillator where the dipole moment
is a nonlinear function of the coordinate. This model can be
studied analytically both quantum mechanically and classi-
cally [5,6]. In this case the response oscillates with time and

remains finite even before any thermal averaging. This is a
peculiar feature of the harmonic oscillator, for which the
evolution and stability matrices are given by the same func-
tions. Thus the two terms as in (9) are not fundamentally
different in this case. The linear divergence of the response at
long times found in [16] should be typical for integrable
systems. For a nonintegrable (chaotic) system, the growth of
the nonlinear response functions should be exponential [14].

By a proper choice of a multiple femtosecond pulse se-
quence t4, 13,17,19] it should become possible to design non-
linear measurements that select a particular time interval and
probe a specific element of the stability matrix. For anhar-
monic systems the elements of the stability matrix depend on
the starting point of the trajectory in phase space and can
provide a direct measure for chaotic behavior. Furthermore,
optical measurements using carefully shaped pulses with
controlled phases have the capacity to prepare nuclear wave
packets confined to a specified region in phase space, thus
eliminating the thermal averaging [17,18]. Dramatic signa-
tures in the nonlinear response may then be anticipated in
systems such as I2 or Na2 [19]. Nonlinear spectroscopy
could thus provide a direct test for the coherent control of
nuclear dynamics [13,19].Finally, we note that signatures of
nonlinear response can also be found in electronically reso-
nant techniques such as electronic photon echoes and dichro-
ism measurements [1,17].The arguments made in this paper
apply to such measurements as well. However, the analysis
of these systems is complicated by the interplay of electronic
and nuclear coherence. For simplicity and clarity we re-
stricted our analysis to electronically off-resonant measure-
ments.
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