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Tricritical universality in a two-dimensional spin fluid
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Monte Carlo simulations are used to investigate the tricritical point properties of a two-
dimensional (2D) spin fluid. Measurements of the scaling operator distributions are employed in
conjunction with a finite-size scaling analysis to locate the tricritical point and determine the direc-
tions of the relevant scaling fields and their associated tricritical exponents. The scaling operator
distributions and exponents are shown to match quantitatively those of the 2D Blume-Capel model,
confirming that both models belong to the same universality class. Mean-field calculations of the
tricritical point location are also compared with the simulation measurements.

PACS number(s): 64.70.Fx, 64.60.Fr, 05.70.3k, 64.60.Kw

I. INYH. ODUCTION

For tricritical phenomena, the highest dimension in
which nonclassical behavior can be observed is d = 2

[1]. Consequently, two-dimensional (2D) tricritical phe-
nomena have been the subject of a large number of pre-
vious investigations, employing a wide variety of tech-
niques, including series expansions [2], mean-field the-
ory 3], renormalization group (RG) [4—8], transfer rna-
trix [9—12], Monte Carlo simulations 13,14], and Monte
Carlo RG methods [15—17]. To date, however, this inter-
est has focused almost exclusively on lattice-based spin
models such as the Blume-Capel. model or the spin-—
next-nearest-neighbor Ising model. In this paper, we re-
port a detailed simulation study of 2D tricritical behavior
in an off-lattice spin fluid model.

The model we consider is a simplified representation for
a liquid of two-state molecules and has been the subject
of a number of previous studies in both its classical and
quantum regimes [18]. In the present work, however,
we shall consider only the classical limit, for which the
configurational energy is given by

grows progressively. Precisely at the tricritical point, the
fluctuations in both the particle density and magnetiza-
tion are simultaneously divergent. Lowering the temper-
ature still further results in a phase separation between
a low density paramagnetic gas and a high density fer-
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with s, = +1 and where U(r,s) is chosen to be a hard
disk potential with diameter o. The distance-dependent
spin coupling parameter J(r,s) is assigned a square well
form:
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J(r) = J, o. ( r ( 1.5o.,
J(r) = 0, elsewhere. (1.2)

ical

The phase diagram of this model is expected to corre-
spond to the situation depicted schematically in Fig. 1.
For high temperatures there exists a line of Ising critical
points (the so-called "critical line" ) separating a ferro-
magnetic Quid phase from a paramagnetic Quid phase.
The particle density varies continuously across this line.
As one follows the critical line to lower temperatures,
however, the size of the particle density Quctuations

Temperature T

FIG. 1. (a) Schematic phase diagram of the spin fluid in
the T pplane. (b) Schemat-ic phase diagram in the p;T plane
showing the directions of the relevant scaling Geld g and A.
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romagnetic liquid. For subtricritical temperatures, the
phase transition between these two phases is Brst order.

Owing to the interplay between the density and mag-
netization Quctuations, the tricritical properties of the
spin Quid system are expected to differ qualitatively from
those on the critical line. General universality argu-
ments [19] predict that for a given spatial dimensional-
ity, Huids with short-ranged interactions should exhibit
the same tricritical properties as lattice-based spin sys-
tems. However, since fluids possess a continuous transla-
tional symmetry that lattice models do not, this proposal
needs be checked. Additionally, experience with "ordi-
nary" (Ising) critical behavior in simple fluids, such as the
Lennard-Jones fluid [20,21], shows that the reduced sym-
metry of fluids can profoundly influence certain nonuni-
versal aspects of the critical properties. Principal among
these are the directions of the relevant scaling fields asso-
ciated with the fixed point, and the distribution functions
of observables, such as the particle density and energy.
It is thus of interest to assess the extent of these "field-
mixing" effects in the tricritical Quid and to compare it
with the situation at the liquid-vapor critical point of
simple fluids.

An accurate determination of the universal forms of the
tricritical scaling operator distribution is also of consider-
able value. Such distributions are unique to a universality
class, and hence, knowledge of their forms would be of
considerable practical utility to future simulation stud-
ies of 2D tricriticality, serving as they do to simplify the
computational task of locating the tricritical parameters.
Moreover, as we shall see, the forms of the scaling opera-
tor distribution functions can impart important physical
insight into the nature of the tricritical Huctuations.

Our paper is broadly organized as follows. In Sec. II we
describe the finite-size scaling methods and other com-
putational techniques that are employed in the study.
We then proceed in Sec. III to detail the application of
these techniques to Monte Carlo simulations of both the
2D spin Huid model described above and the 2D Blume-
Capel model. The simulations yield accurate estimates
of the location of the tricritical point for both models, as
well as the universal forms of the tricritical scaling opera-
tor distributions and the directions of the relevant scaling
fields. In the case of the spin fluid model, the estimates
for the tricritical point parameters are compared with
the results of a mean-field calculation. Finally Sec. IV
details our conclusions.

particle density Huctuations that are a central feature of
Huid critical behavior.

I et us assume our system to be contained in a volume
L", with d = 2 in the simulations to be described later.
The grand partition function is given by

x exp &
—P C((r, s)) + p%+ H) s, &, (2.1)

where % is the particle number, P = (k~T) is the
inverse temperature, p is the chemical potential, and H
is the uniform applied magnetic field.

The observables of chief concern to the present study
are the (reduced) particle density

p = L "%o.", (2.2)

the configurational energy density (which we express in
units of J)

u = L J '4((r, s)), (2.3)

and the magnetization.

m=L, ") s, . (2.4)

h, '=H —H„
A = (p —p, ) + r(T —T, ),
g =T —T, +s(p —p, ),

(2.5a)

(2.5b)

(2.5c)

The coarse-grained behavior of the system in the vicin-
ity of the tricritical point is controlled by three relevant
scaling fields [1,25,26], which we denote g, A, and h, '. In
general these scaling fields are each expected to comprise
linear combinations of the three thermodynamic Belds
T, p, , and H [27,12]. For the spin fluid model considered
in this paper, however, the configurational energy is in-

variant with respect to sign reversal of the spin degrees
of freedom. This special symmetry implies that the tri-
critical point lies in the symmetry plane H = 0, and that
the scaling Beld h, ' coincides with the magnetic Beld H,
being orthogonal to the p-T plane containing the other
two scaling fields, g and A. Thus we can write

II. BACKGROUND

The techniques we employ in this work have been pre-
viously developed in the context of simulation studies of
Ising critical phenomena in a variety of Quid models, in-
cluding a decorated lattice gas model [22,23], a lattice
model for polymer mixtures [24], and both the two- and
three-dimensional Lennard-Jones fluids [20,21]. In com-
mon with the strategy pursued in these previous works,
we have chosen to work within the grand canonical en-
semble, the use of which affords effective treatment of the

where the subscript t signifies tricritical values and the
parameters 8 and r are system-specific "field mixing" pa-
rameters that control the directions of the scaling fields
in the p-T plane. The scaling Belds g and A are depicted
schematically in Fig. 1(b). One sees that g is tangent to
the coexistence curve at the tricritical point [25], so that
the field mixing parameter r may be identified simply as
the limiting tricritical gradient of the coexistence curve.
The scaling Beld A, on the other hand, is permitted to
take a general direction in the p;T plane, which does not
necessarily have to coincide with any special direction of
the phase diagram [27].

Conjugate to each of the scaling fields are scaling op-
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erators, de6.ned by the requirements

(M) —= L 0 ln ZL, /Oh',

('D)—:L 8 ln ZL, /OA,

(F)—:L 0 ln ZL, /Og,

(2.6a)

(2.6b)

(2.6c)

from which it follows [utilizing Eqs. (2.1) and (2.5a)—
(2.5c)], that

1
[p —su],

1
[u —rp].

(2.7a)

(2.7b)

(2.7c)

Drawing on our experience with ordinary critical phe-
nomena in simple Huids [20] we make the following finite-
size scaling ansatz [28] for the limiting (large L) near-
tricritical distribution of pL, (p, u, m):

1
pL(p, u, m) = — pL, (a, L" "'M, a, 'I" "'D a L" "'f, aiL"'h, ', a2L"2A, asL"'y)

1 —8P
(2.8)

where PL is a universal scaling function the a are nonunlversal metric factors and the y are the standard tricritical
eigenvalue exponents [29]. Precisely at the tricritical point, the tricritical scaling fields vanish identically and the last
three arguments of Eq. (2.8) can be simply dropped, yielding

1
pL, (p, u, m) = pL(a, 'L" "'M, a2'I "'17,as L" "'E),

1 —8P
(2.9)

where p& is a universal and scale invariant function char-
acterizing the tricritical fixed point.

In what follows we shall explicitly test the proposed
universality of Eq. (2.9) for the case of the spin fiuid
model, by obtaining the form of pL and comparing it
with that for the tricritical 2D Blume-Capel model.

III. B.ESUITS

A. Computational aspects

The Monte Carlo simulations of the spin fluid model
were performed using a Metropolis algorithm within the
grand canonical ensemble. Particle insertions and dele-
tions were carried out using the prescription of Adams
[30,31]. When attempting particle insertions the spin of
the candidate particle was randomly assigned the value
+1 or —1 with equal probability. Spin flip attempts were
performed at the same frequency as insertion-deletion at-
tempts.

In order to facilitate eFicient computation of interpar-
ticle interactions, the periodic simulation space of volume

was partitioned into l square cells each of side 1.50.,
corresponding to the interaction range of the interparticle
potential [cf. Eq. (1.1)]. This strategy ensures that inter-
actions emanating from particles in a given cell extend at
most to particles in the eight neighboring cells. We chose
to study three system sizes corresponding to l = 12, 16,
and 20, containing, at coexistence, average particle num-
bers of (2V) = 120, 210, and 330, respectively. For the
l = 12, 16, and 20 system sizes, equilibration periods of
10 Monte Carlo transfer attempts per cell (MCS) were
utilized, while for the l = 16 and l = 20 system sizes
up to 2 x 10 MCS were employed. Sampling frequen-
cies ranged from 25 MCS for the l = 12 system to 100
MCS for the l = 20 system. Production runs amounted

to 1x10 MCS for the l = 12 and up to 5x 10 MCS
for the l = 20 system size. At coexistence the average
acceptance rate for particle transfers was approximately
16%, while for spin flip attempts the acceptance rate was
approximately 5%.

During the production runs, the joint probability dis-
tribution pL, (p, u, m) was obtained in the form of a his-
togram. In order to increase computational e%ciency,
the histogram extrapolation technique [32] was employed.
Use of this technique permits histograms obtained at one
set of model parameters to be reweighted to yield esti-
mates appropriate to another set of model parameters.
The method is particularly effective close to a critical
point where, owing to the large fl.uctuations, a single
simulation permits extrapolation over the entire critical
region.

As an aid to locating the tricritical point, the cumulant
intersection method was employed [33]. The f'ourth order
cumulant ratio VL, is a quantity that characterizes the
form of a distribution [34]. It is defined in terms of the
fourth and second moments of a given distribution,

(m')
3(m2) 2

The tricritical scale invariance of the distributions
pr, (D), pL, (M), and pL, (E) [as expressed by Eq. (2.9)] im-
plies that at the tricritical point (and modulo correc-
tions to scaling), the cumulant values for all system sizes
should be equal. The tricritical parameters can thus be
found by measuring UL, for a number of temperatures
and system sizes along the 6.rst order line, according to
the prescription given below. Precisely at the tricritical
temperature the curves of UL, corresponding to the vari-
ous system sizes are expected to intersect one another at
a single common point.
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B. The 2D Blume-Capel model

In seeking to confirm the proposed universality linking
the tricritical point of the 2D spin fluid model to those
of 2D lattice models, it is first necessary to determine
the tricritical operator distribution functions for a simple
lattice model. To this end we have also performed a
simulation study of the Blume-Capel model on a periodic
square lattice, the Hamiltonian of which is given by

0.650

0.625

0.600

0.575

0.550

0.525

L=12
L=20

X = —J) s, s, +D) s,'+H5 s, ,

(i j) 2 'e

(3.2) 0.500

0.475

with Si = —1, 0, 1. Here H is a uniform magnetic field
and D is the so-called "crystal field. " As with the 2D spin
fluid model, the symmetry of the configurational energy
under spin sign reversal implies that the tricritical point
lies in the symmetry plane H = 0.

Previous MCRG [15,16] investigations place the tri-
critical point of the 2D Blume-Capel model at k~Ti/ J =
0.609(3),Di ——1.965(15), while a more recent transfer
matrix study [9] gives k~Tq/ J = 0.610(5),Dt ——1.965(5).
Using these estimates as an initial guide, we performed
extensive Monte Carlo simulations of the model using a
vectorized Metropolis algorithm on a Cray-YMP. Four
system sizes of linear extent L = 12, 20, 32, 40 were stud-
ied, and following equilibration, runs ranging from 5 x 10
Monte Carlo sweeps (MCS) for the L=12 system, to
2 x 10 MCS for the L=40 system were performed. The
quantities measured in the course of these runs were

u= —J) ss, ,

(i,j)
Si ~

(3.3a)

(3.3b)

(3.3c)

Here we note that p' = P s,. plays the same role as
the density in the spin fluid model, being discontinuous
across the first order line but continuous on the criti-
cal line. This fact is most clearly evident in the lattice
gas representation of the Blume-Capel model, where the
crystal field D appears as a chemical potential [35].

During the simulations, the joint distribution
pl, (p', u, m) was collected in the form of a histogram. To
determine the locus of the first order line (and hence
locate the tricritical point in which it formally termi-
nates), the coexistence symmetry criterion for the oper-
ator distribution pl, (17) was utilized. This criterion is
the analog for asymmetric first order transitions, of the
order-parameter distribution symmetry condition appli-
cable to symmetric first order transitions such as that of
the subcritical simple Ising model [23]. For a given tem-
perature T, the Brst order transition point can thus be
located by tuning the crystal field D and the value of the
field mixing parameter 8, within the histogram reweight-
ing scheme, until the operator distribution pl, (17) is sym-
metric in 'D —(17).

The first order line and its finite-size analytical exten-
sion [20] was determined in this way for temperatures
in the range k~T/ J = 0.59—0.625, and for each of the

0 450, I, I . 1, I, I, i

0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625
ksT/J

I IG. 2. Measured cumulant ratio UL for the 2D
Blume-Capel model along the Grst order line and its analytic
extension, determined according to the procedure described
in the text.

four system sizes. The corresponding values of the cumu-
lant ratio U& along this coexistence line are presented in
Fig. 2 as a function of the temperature. To within nu-
merical uncertainties the cumulant values for each sys-
tem size intersect at a common temperature, which we
estimate as k~Tq/J = 0.608(1). The corresponding esti-
mate for the tricritical field is Dt ——1.9665(3). Clearly
these values are in excellent agreement with the afore-
mentioned estimates of previous studies. In the follow-
ing subsection we compare the measured forms of the tri-
critical operator distributions pL, (M), pL, (D), and pI, (F)
of the 2D Blume-Capel, with those of the 2D spin Huid
model.

C. The spin Quid model

The procedure for locating the tricritical point of the
2D spin fluid model followed the same pattern as that for
the 2D Blume-Capel model described above, except that
in the present case no prior estimates for the tricritical
point were available. It was thus necessary to search for
the approximate location of the tricritical point by per-
forming a number of short runs in which a temperature
was chosen and the chemical potential tuned. Obser-
vations of the behavior of the density from these short
runs suggested that the tricritical point lay close to the
parameters kIiT/J = 0.58, Pp, = —1.915.

Having obtained an approximate estimate of the loca-
tion of the tricritical point, long runs were carried out
for each of the three system sizes l = 12, 16, 20. As
with the Blume-Capel model, the coexistence symme-
try condition was then applied to the operator distribu-
tion pL, (17) in conjunction with the histogram reweight-
ing scheme, in order to determine the first order line and
its analytic extension in the p-T plane. The locus of
this line is shown in Fig. 3, while the measured values
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procedure described in the text.
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of UL along this coexistence line are shown in Fig. 4 for
the three system sizes I, = 12, 16, 20. Clearly the curves
of Fig. 4 have a single well-defined intersection point,
from which we estimate the tricritical temperature as
being k~Tq/J = 0.581(l). The associated estimate for
the chemical potential is Ppq ———1.916(2). Typical near-
tricritical configurations for the l = 20 system are shown
in Fig. 5.

In Fig. 6 we present the forms of the operator dis-
tributions pL, (M), pl, (D), and pL, (E) corresponding to
the designated values of the tricritical parameters. The
value of the field mixing parameter r implicit in the def-
inition of f was assigned the value r = —2.82, as ob-
tained from the measured gradient of the phase bound-
ary in the p-T plane at the tricritical point. The value of
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0.56

0.55

0.54

0.53 t I

0.574 0.576 0.578 0.580 0.582 0.584 0.586 0.588

ks T/J

FIG. 4. Measured cumulant ratio UL for the 2D spin Quid
model along the 6rst order line and its analytic extension
determined according to the procedure described in the text.

FIG. 5. Typical particle-spin configurations of the l = 20
spin Quid near tricriticality. Spins values of +1 are denoted
by ulled circles, and spin values —1 by unfilled circles.

the field mixing parameter 8 was assigned, as previously
described, so that pl, ('D) satisfied the symmetry condi-
tion. However, the resulting estimates of 8 were found
to exhibit a systematic finite-size dependence. This ef-
fect has also been previously noted (albeit ivith much
reduced magnitude) in a recent study of critical phe-
nomena in the Lennard-Jones fluid, and is traceable to
the finite-size dependence of the average critical energy
[23,20I. For the three system sizes, l = 12, 16, 20, ice
found 8 = —0.031, —0.020, —0.013, respectively. Inter-
estingly, these values are about an order of magnitude
smaller than those measured at the critical point of the
2D and 3D Lennard-Jones fluid. , a finding which we dis-
cuss further in Sec. IV. This smallness implies that the
scaling field A almost coincides with the p axis of the
phase diagram.

Also included in Fig. 6 are the measured tricritical
operator distributions for the 2D Blume-Capel model ~

In accordance with convention, all the operator distribu-
tions have been scaled to unit norm and variance. Clearly
in each instance and for each system size, the operator
distributions collapse extremely well onto one another, as
well as onto those of the tricritical Blume-Capel model.

The measured scaling operator distributions also serve
to furnish estimates of the eigenvalue exponents yq, y2,
and y3, characterizing the three relevant scaling fields.
These exponents are accessible via the respective finite-
size scaling behavior of the tricritical distributions of
pI, (JH), pI, ('D), and pl, (E). Specifically, consideration
of the scaling form (2.9) showers that the typical size of
the fluctuations in a given operator 0 vary with sys-
tem size, such as bO I ~" "'~. A comparison of
the standard deviation of a given operator distributions
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as a function of system size thus aKords estimates of
the appropriate exponents. From the measured vari-
ance of the spin Huid operator distributions, we find
yi ——1.93(1), y2 ——1.80(1), ys ——1.03(7). As far as
yi and y2 are concerned, these estimates are in excellent
agreement with exact conjectures yi ——77/40, y2

——9/5
[36—38]. The situation regarding the eigenvalue exponent
y3, on the other hand, is not so satisfactory, there being
a sizable discrepancy with the exact value of ys = 4/5.
This discrepancy stems, we believe, from two sources.
First, since the operator distribution pr, (t) is highly sen-
sitive with respect to the designation of the value of the
Beld mixing parameter r implicit in the definition of 8,
small uncertainties in the estimate of r can lead to signi6-
cantly larger errors in the measured variance of pl, (f). A
similar eKect was also previously observed at the liquid-
vapor critical point of the Lennard-Jones fluid [21]. Sec-
ond, and as we discuss in Sec. IV, the near Gaussian
character of pl, (E) signifies the absence of strong fluctu-
ations in the E', in which case it is questionable whether
a finite-size scaling analysis can be reliable when applied
to pl, (t) at all.

In view of this problem we have adopted a rather dif-
ferent approach for measuring yq based on the scaling
properties of Ul, a quantity that does show strong Huc-

tuations and that is also insensitive to the designation of
the field mixing parameter r. It can be shown [33] that
the maximum slope of the cumulant ratio "&& near T
varies with system size like L"'. Using the histogram ex-
trapolation technique, we have obtained the temperature
dependence of this slope for the spin Huid model. The
results yield the estimate ys ——0.83(5), which agrees to
within error with the exact conjecture.

Turning now to the observables vn, p, and u, we plot
in Fig. 7 the measured distributions of these quantities
at the assigned tricritical parameters. Here we note that
as is the case with ordinary critical phenomena in the
Lennard-Jones fluid [21], the energy distribution pl, (u)
difFers qualitatively in form from the operator distribu-
tion pl, (E) This find. ing, the origin of which is explained
in detail in Ref. [23], reflects the coupling of the tricritical
energy Huctuations to the density, the latter of which are
stronger and thus dominate for large L. The inHuence
of this coupling is also discernible as a small asymme-
try in the tricritical density distribution. For the average
tricritical density we find pt ——0.374(1), while for the
average tricritical energy density we find ui ——0.778(2).
The average magnetization is of course strictly zero on
symmetry grounds.

Finally in this subsection, Table I summarizes the mea-
sured values of the fourth order cumulant ratios U& for
each of the three scaling operator distributions at the
assigned values of the tricritical parameters.

FIG. 6. Scaling operator distributions for the 2D spin Quid
at the designated tricritical parameters for each of the three
system sizes l = 12, 16, 20. (a) pr (M), (b), pr, (17), (c) pi, (E).
Also shown for comparison are the corresponding distribu-
tions measured for the tricritical L = 40 2D Blume-Capel
model. All distributions are expressed in terms of the scaling
variable a, L" "'(Q —0,) and .are scaled to unit norm and
variance. Statistical errors do not exceed the symbol sizes.

TABLE I. Fourth order cumulant ratio for the tricritical
fixed point operator distributions.

0.348(3)
0.574(2)
0.003(3)
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3.0 Mean- field calculati ons

2.0

1.0

In this section we describe a simple mean-Beld calcula-
tion of the tricritical parameters of the 2D spin Huid.
Let p(p, p, ; 6) denote the pressure in the system for a
given chemical potential p, and volume V in the thermo-
dynamic limit, where the equilibrium density p is given
by the ratio of the average number of particles (K) and
the volume V, p = Iimv~ ((%)/V). Then

p(p, p; 6) = minp [ f (p'—; 6) + pp'],

where f (p'; lt) is the free energy per volume,

(3 4)

0.0
-0.8

6. 0

-0.2 0.2
Magnetization rn

0.8 f (p'; li) = lim ln tr(exp[ —PH (h, )])v-+~ PV

In the mean-field approximation we assume an in-
teraction between a spin 8i and an effective field

(q/K) P, i s, = qm, where q is the effective coordina-
tion number and the %-particle Hamiltonian is written

4. 0

o L—12
~--~ L=16
~~ L=20 H~~ = Q V(r;, ) —) [qm(h. ) + 6] s;

and the mean-field free energy fM~ is

2. 0
0( I

1 gg
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i
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liQ
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Il

QIC)
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f~p (p'; h) = lim ln tr(exp[ —PHM~(h)]), (3.7)v+~ PV

gpm p
2 P

——ln 2 cosh [P(qm + 6)]

(3.8)

3.0

2. 0

L=12
--o

~--~ L=20

f,I (p') is the free energy of a classical system with Hamil-
tonian H I = P(,&

.
)
U(r, ~) and the second term on the

right-hand side of Eq. (3.8) reaches its minimum at

m(h) = tanh(P[qm(h) + 6]).

Since the coordination number q in the Buid is not Bxed
we approximate the effective field on one particle by

qm = mp' d r J(r)g(r),

1.0

0.0-2. 0 -1.5 -1.0 -0.5

Energy density u
0.0

where the fluid correlation function g(r) is taken from
the Percus-Yevick solution for hard discs, which can be
found numerically.

Two phase coexistence between a gas phase at density

p~ and a liquid phase at density p~ is given by equal
pressure in the two phases,

FIG. 7. Measured tricritical point forms of (a) the magne-
tization distribution pr, (m. ) (the data points have been sup-
pressed for clarity); (b) the density distribution pL, (p); (c) the
energy density distribution pr, (u).

This condition determines the mean-Beld chemical po-
tential pM~ for phase coexistence via Eq. (3.4). Imple-
menting this criterion numerically, we find. T, = 1.006M I"'

/3pP+ = —1.319. Clearly this estimate for T& seri-
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ously overestimates the measured tricritical temperature
(Tt ——0.581) showing that mean-field calculations of this
type cannot be relied upon to provide accurate tricritical
data, at least for 2D systems.

IV. CONCLU SIONS

In summary we have demonstrated that the tricriti-
cal ordering operator distributions of the 2D spin fluid
can be mapped into excellent correspondence with those
of the 2D Blume-Capel model. The existence of such a
mapping represents perhaps the most stringent test of
universality. There can thus be little doubt that despite
their very diferent microscopic character, the two sys-
tems do indeed share a common Gxed point.

With regard to the scaling operator distribution them-
selves, we note that the form of pl (F) is (to within the
precision of our measurements) essentially Gaussian, as
evidenced by the very small value of the cumulant ratio
Ul = 0.003(3). This Gaussian behavior implies that the
tricritical fluctuations in t are extremely weak and is thus
a consequence of the central limit theorem. This weak-
ness is further manifest in the very small measured val-
ues of the Geld mixing parameter 8, as well as in the near
absence of asymmetry in the tricritical density distribu-
tions, a situation that contrasts markedly with that of the
2D and 3D Lennard- Jones fluids, where much stronger
Geld mixing eKects are observed in the density distribu-
tion [21].

Finally, the tricritical form of pl (M) merits special
comment. We note that the three-peaked form of this
distribution divers radically from the universal magne-
tization distribution of the critical Ising model, which is
strongly double pea-ked in two dimensions [33,39]. The ex-
istence of a three-peaked structure for tricritical phenom-
ena reflects the additional coupling that arises between
the magnetization and the density fluctuations. SpeciG-
cally, the central peak corresponds to fluctuation to small
density, which are concomitant with an overall reduc-
tion in the magnitude of the magnetization (cf. Fig. 5).
Were one, however, to depart from the tricritical point
along the critical line, these density fluctuations would
gradually die out and a crossover to a magnetization dis-
tribution having the double-peaked Ising form would be
expected. In future work we intend to investigate the
nature of this crossover in detail.
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