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Origin of depolarized light scattering in supercooled liquids:
Orientational fluctuation versus induced scattering mechanisms
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Depolarized light scattering spectra of liquid salol that have been analyzed in recent studies of the
liquid-glass transition are reexamined in order to determine the relative importance of orientational
Quctuations and interaction-induced scattering. First, the spectra of CC14, CHCls, CH2Clq, and
CS2 for which all the relevant parameters are known are compared to theoretical predictions in
order to verify the experimental procedure. The same procedure is then applied to the molecular
glass former salol for which we find that orientational Quctuations dominate at all frequencies up
to at least 4000 GHz. We suggest that the previously reported agreement between depolarized
light scattering spectra and predictions of the mode coupling theory for salol and other molecular
glass forming materials results from coupling between rotational and translational motions of the
molecules.
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I. INTKGDUCTION

Depolarized light scat tering spectroscopy of super-
cooled liquids has been employed by several groups
in recent years as part of a concerted e8'ort to eluci-
date the dynamical mechanism underlying the liquid-
glass transition [1—8]. These spectra have been in-
terpreted for some materials as arising primarily from
an interaction-induced scattering mechanism [dipole-
induced-dipole (DID) mechanism], which allowed the ob-
served spectra to be related directly to the dynamics of
density Huctuations [9,10] and thus compared to predic-
tions of the mode coupling theory (MCT) of the liquid-
glass transition [11,10]. These light scattering spectra
have been found to exhibit many of the detailed charac-
teristics predicted by MCT and. , together with inelastic
neutron scattering data, have provided strong support for
the relevance of the MCT to real glass forming materials.

Despite the success of this approach, several central
questions related to these experiments have not yet been
resolved. In this paper, we explore the relative contribu-
tions to these spectra of two light scattering mechanisms:
interaction-induced scattering and orientational Huctua-
tions.

Low-&equency depolarized light scattering from liq-
uids has three principal origins: shear modes (which are
the transverse acoustic modes at low temperatures), ori-
entational fluctuations, and interaction-induced scatter-
ing. Shear mode scattering can be eliminated by using
the backscattering geometry [12], orientational Auctua-
tions are only relevant for anisotropic molecules, while
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interaction-induced scattering always occurs. In liquids
containing anisotropic molecules or ions, orientational
and. interaction-induced scattering both occur even in de-
polarized backscattering and cannot be separated by any
purely experimental procedure.

Since many of the glass forming materials investigated
in recent light scattering studies contain anisotropic
molecules or ions, it is important to determine the ex-
tent to which each of the two scattering mechanisms
contributes to the observed spectra. [This problem was
noted in Ref. [1],where spectra of the glass forming mixed
salt calcium potassium nitrate (CKN) were compared
with spectra of mixed KCl-ZnCl2, which presumably pro-
duces no orientational contribution, and were found to be
qualitatively similar. ] While the relative importance of
the two scattering mechanisms has been investigated pre-
viously for several simple liquids [13,14], no quantitative
comparison of the two contributions has yet been car-
ried out for glass forming materials, a comparison that
is particularly critical for highly anisotropic molecular
glass formers such as salol. Incidentally, we note that
in two previous studies of light scattering from liquid
CS2, one [15] attributed the depolarized scattering en-

tirely to orientational fluctuations, while the other [16]
attributed it to interaction induced (DID) scattering. It
has also been proposed that depolarized. light scattering
spectra of anisotropic molecular Quids may have a "nar-
row" component associated with orientational dynam-
ics and. a "broad" component d.ue to interaction-induced
scattering [17].

In Sec. II we review the theoretical predictions for
the two scattering mechanisms and previous experimen-
tal and computer simulation data. In Sec. III we first test
our experimental technique for deciding which scattering
mechanism is dominant by studying three closely related
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II. LIGHT SCATTERING MECHANISMS

A. Orientational fluctuations

Consider a volume V filled with identical molecules
at number density N, each with isotropic atomic polariz-
ability o., illuminated by a monochromatic incident plane

wave (intensity II, electric field EI= Elnl) angular fre-
quency ul, and wave vector kr). Scattered light of in-

tensity Ip, electric field Es——Epnp, produced by the
atomic dipoles is detected at a (large) distance r from
the scattering volume. For scattering in the plane per-

pendicular to EI, assuming that the molecular positions
are uncorrelated (NA « 1), the scattered intensity Is
ls

Is=NVIIk n /r (2.1)

with &s parallel to EI (Rayleigh scattering).
For comparison with experiment, Is is usually scaled

by IIV/r to produce a geometry-independent cross sec-
tion per unit volume (or Rayleigh ratio) R with dimen-
sions cIll

Igr2
IIV (2.2)

For the case in Eq. (2.1) of isotropic uncorrelated
molecules and scattering at 90 from the incident beam,
the Rayleigh ratios for scattered light polarized perpen-
dicular (V) or parallel (H) to the scattering plane (kI, ks)
are

Rvv = N&'o.

RVH ——0 .
(2.3)
(2.4)

For anisotropic molecules, the polarizability is a tensor
property. The average scattered intensity (Is) and spec-
trum Is(w) are determined by the scattered field corre-
lation function [19]

N

~" )" ) () ~is(~)~

materials, CC14, CHC13 and CH2C12, as well as CS2, four
systems for which a comparison with theory can be made
because all the physical constants are known. Our re-
sults on CS2 and CC14 allow us to make contact with
earlier experiments on CS2 [15,16] and with an earlier
molecular dynamics comparison of the spectra of these
two substances by McTague et at. [18]. We then present
data on the molecular glass forming material salol and on
solutions of salol in CC14. In Sec. IV we discuss the dy-
namics underlying the observed light scattering spectra
of molecular glass formers such as salol and the relation
of the spectra to the predictions of MCT.

where Q.I&
——nI n~ ng and g = A; s —

A; I is the scattering
vector.

Computer simulations and experiments [13] show that
for depolarized scattering (i.e. , VH geometry) in pure
molecular fiuids, the cross terms in Eq. (2.5) make only
a small contribution compared to the "self" terms, so
that, to a good approximation,

() i (()~~ (0)~'~ ( (&) —""'('))
) (2.6)

For simplicity we will assume that the molecules are ax-
ially symmetric so that the polarizability tensor is given
by

0 0i 0
(o o n~i

(2.7)

We define the mean polarizability o. by

1
n = —

(n~~ + 2n~)
3

(2.8a)

and the anisotropy P by

p = (nii —ni) . (2.8b)

The total depolarized Rayleigh ratio RvH due entirely
to the anisotropy is given by [19]

RVH = Nk (isp ),
while the polarized Rayleigh ratio Rvv is given by

(2.9)

Rvv = Riso + VH )3
(2.10)

where R;, is determined by the isotropic part of the po-
larizability tensor and is therefore independent of rota-
tions. For gases, where the molecular positions are un-
correlated, R;, is given by Eq. (2.3), where n is the av-
erage polarizability, given by Eq. (2.8a). In this case the
integrated depolarization ratio

IvHP=
Ivv

RvH
Rvv

(2.11)

is given by

(p'/») 3(ni 1 —ni)
+ 4p /45 5(nil + 2n1. ) + 4(nil n J )

(2.12a)

[Equation (2.12a) can be used to find p from measure-
ments of p in gases. ]

In liquids, where NA )& 1, B;, is reduced by inter-
ference efFects, typically by a factor of 10 —100 relative
to Eq. (2.3). As first shown by Einstein, the integrated
intensity R;, for Huids results from density fluctuations
and can be computed as [20]

N
m gq ) (0)X g. ~Is(0)~

m=1
(2.5)

~2
R";. = 4kgy T(n —1) r.z,—

0
(2.12b)
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where ~T is the isothermal compressibility. For liquids,
we therefore take

B~~:B&s + BQHth fl

3
(2.13)

( )
Iv~(~)
Ivv(~)

(2.14)

is strongly frequency dependent. For simple liquids,
I;, (w) appears as a narrow triplet consisting of a cen-
tral quasielastic thermal difFusion component plus two
symmetrically shifted Brillouin components [21]. In this
spectral range, p(~) may be very small. But for frequen-
cies beyond the range of I;, (cu), both Ivv (w) and Iv H (w)
display the same broad "rotational wing" and p(u) =

4
independent of the relative anisotropy P/n.

B. Interaction-induced scattering

Since the observation of a broad depolarized com-
ponent in the light scattering spectra of monatomic
gases (for which P = 0) by McTague and Birnbaum in
1968 [22], the study of interaction-induced (or collision-
induced) light scattering in liquids and gases has been
pursued by many investigators [23]. While several differ-
ent interaction-induced scattering mechanisms exist [24],
the most important one for dense liquids is the dipole-
induced-dipole mechanism, first discussed by Silberstein
in 1917 [25]. In the DID picture, the dipole moment

p, induced on a molecule i by the incident light in turn
polarizes its neighbors, which then radiate at the same
frequency. The fluctuations of the total dipole of the
sample produces the scattered DID intensity.

For simplicity, we will ignore optical anisotropy and let
each molecule have isotropic polarizability n. A molecule

at &;, polarized by the incident field Ey, will have a
dipole moment p= n Ey. The electric field at r~ due to
this dipole is [26]

The reduction in B;, also leads to depolarization ratios
for liquids that are usually much larger than for the cor-
responding gases.

The spectral depolarization ratio

cal molecules, then the total far-field polarized scattered
intensity I&V due to the polarization induced on each
molecule by the dipole field (2.16) is

k4 ( Ivv
IDID I 4 ) i TZZ( ) (2.i8)

and the corresponding depolarized intensity is I&0
3 IDID
4 VV'

The sum in Eq. (2.18) depends on the positions of all
N V molecules and cannot generally be calculated ana-
lytically. (For high-symmetry distributions, the sum van-
ishes identically. ) Therefore, molecular dynamics simula-
tions (e.g. , [27,28]) have been employed to calculate the
sums. Bykhovskii and Pick [28] find that for a Lennard-
Jones liquid at zero pressure, at densities near the glass
transition,

f IVV

) .' T"(re)
)

while Na. 1, so that the DID intensity per molecule is

a4
Ivv (WV) = Iro. x 0—.25K (2.19)

B.vv —N k x 0.25, (2.20a)

B~~ =N k n x0.19. (2.20b)

(Note that the depolarization ratio pDID
——0.75 is the

same as the result for orientational fluctuations at fre-
quencies above the range of I;, .)

From Eqs. (2.20a) and (2.10), the ratio of the intensi-
ties of DID scattering to orientational fluctuation scat-
tering (rot) for Ivv is approximately

Therefore, for a macroscopic scattering volume (V ))
A ), assuming random phases for the scattered fields
from diferent volume elements, the corresponding DID
Rayleigh ratios are

(2.15)

ID'D 45= —x, x0.25=
Ivv 4 (nii —n~)

2.8n N~

nii —n~

(2.21)

where

E~~ = ) nT~~(r, , )E~~,
igi

(2.i6)

T' (r) = (3 & ~ & ~ —~~~—) .r3 (2.17)

If a small volume element V && A contains NV identi-

where n is a unit vector &om r i towards r ~. The p
component of the total dipole field at r ~ due to all such

r; molecules (neglecting retardation effects) is given by

(The same result applies to IvH. ) The numerical factor
2.8 in Eq. (2.21) is approximate, but can easily be refined
using the data in [28].

In deriving Eq. (2.21) we have assumed that the DID
and rotational contributions are independent. Computer
simulations for anisotropic molecules indicate that small
cross terms exist as well [13,14], but we will not consider
these terms here. As shown by Frenkel and McTague [13],
molecular dynamics simulations for N2 and CO2 indicate
that the orientational and DID spectra are similar in form
and that the orientational contribution dominates at all
frequencies out to 300 cm
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C. Numerical evaluations

3 n —1

4~N n2+ 2
' (2.22)

In principle, Eq. (2.21) should be sufficient to deter-
mine which scattering mechanism, DID or rotational, is
dominant for glass forming liquids such as salol. As-
suming that cross terms between orientational and DID
polarization can be neglected. , all that is needed is the
number density N, the mean polarizability o. , and the
polarizability anisotropy P. Unfortunately, P has not
been measured for salol or any of the common glass form-
ing materials (e.g. , CKN, OTP, and glycerol). We have
therefore followed an indirect route in order to determine
the dominant scattering mechanism for salol.

First we measured the VV and VH spectra of the
molecular liquids CCl4, CHC13, CH2C12, and CS2 for
which N, n, and P are known. From the integrated
spectra we found the corresponding Rayleigh ratios and
compared them with the theoretical predictions of' Sec.
II. Reasonably good agreement was obtained, indicating
that the method is applicable. We then measured the
VV and VH spectra of salol as well as of salol dissolved
in CCI4. As described below, the results show that ori-
entational fiuctuations are the principal source of light
scattering for salol.

Measurements of B and p have been reported for many
liquids and gases; for liquids, typical experimental val-
ues for Rvv are 1 x 10 cm [29—31]. Much of the
data up to 1962 had been summarized by Fabelinskii [29].
The older literature is often unreliable, however, partly
because vibrational Raman scattering was often inadver-
tently included and partly because the limited sensitiv-
ity available before the advent of lasers made B~~ and
p dificult to measure accurately, particularly in gases.
The average polarizability o. is usually determined from
measurements of the re&active index n via the Lorentz-
Lorenz equation [32]

while P is determined either from Kerr constant measure-
ments or from depolarization measurements performed in
the gas phase [29].

In Table I we list values of o. for the five materials stud-
ied, obtained with Eq. (2.22) using handbook values [33]
for the refractive index n and number intensity ¹

Po-
larizability anisotropy values P and depolarization ratios
p for CC14, CHC13, and CH2C12 are from the depolarized
light scattering measurements of Bridge and Buckingham
[34], while for CS2 both n and P are from Bogaard and
Orr [35].

The second section of Table I lists the theoretical
Rayleigh ratios predicted for these materials in the liq-
uid phase at 20 C, taking A = 27r/k = 4880 A. The
B",, values were computed using published KT values for
CC14, CHC13, and CS2, while for CH2C12 and salol vT
was approximated by values obtained from the Brillouin
shifts and previously determined sound velocities. The
third entry in this section gives B~~, assuming that the
VH spectrum is rotational in origin, as shown by the
ffrst entry (RP~«). The last entry in this section shows
the calculated intensity ratio I 1D/I' «(or BD1D/B' «),
which applies for either VH or VV. Note that this ra-
tio is ) 16 for CC14 so that interaction-induced (DID)
scattering should predominate (as expected), while for
the other materials the ratio is ( 0.12, indicating that
orientational Huctuations should dominate. Finally, in
the last section of Table I, we include experimental R~~
and p values for CC14, CHC13, and CS2. Since we did
not measure absolute intensities in our experiments, we
arbitrarily adopted the value Bvv(CHC13) —1.0 x 10
(cm ) as a standard in the analysis of our data presented
in Sec. III.

Since the frequency dependence of B and B' has
not been analyzed for the materials we are studying here,
it could be possible that B' dominates at low frequen-
cies while B becomes important at higher frequencies.
Frenkel and McTague [13] reported molecular dynamics
studies of B and R' ' for N2 and CO2 and found that

TABLE I. Theoretical and experimental Rayleigh ratios (cm ).
Quantity
pe~@ (g )
n (cm') [Eq. (2.22)]

KT (10 "cm'/dyn)

Theory (liquid)
Rva [Eq. (1.5b)]
R,", [Eq. (2.12b)]
Rvv [Eq (2.13)]
Rv~ [Eq. (2.20b)]
—', RDv'g /R;..
RDID/Rrot

[(Eq. 2.21)]

CC14
(5x10 '[34]

10.5 x 10
&28x10

(from n aud p)
106 [46]

&96x10
9.6 x 10
9.8 x10
1.54 x 10

0.021) 16.

CHClg
0.625 x10 [34]

x10 24

2.6 x10
(from n and p)

101 [46]

9.3 x 10
8.7 x 10
9.9 x 10
1.17 x10

0.018
0.12

CH2C12
1.124 x10 '

[34]
6.44 x 10
2.66 x10

(from n and p)
65 [47]

1.2x10 '
4.8 x 10
6.4 x10
7.46 x10

0.021
0.06

CS2
0.072 (from n and P)

8.6 x10 [35]
9.4 x10 [35]

93 [46]

1.6 x10
1.85 x10
4.0 x10
2.85 x 10

0.021
0.02

CI 3 Hy003

2.24 x 10

36 [47]

3.9 xl0

5.83 x10
2 x10

Expt. (liquid)
Pexpt
pexptvv

0.0195 [45]
5.88 x10 [30]
12.5 x10 [29]

0.114 [45]
18.6 x10 [29]

0.502 [45]
83.9 x10 [31]
77 x10 [29]
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bonate, orthoterphenyl, glycerol, or metatoluidine, for in-
stance. In Ref. [38], this depolarized salol spectrum and
its thermal evolution was analyzed using the y" (~, T)
predicted by the idealized MCT [11]. Consistent results
were obtained and were subsequently refined [39] using
an extended version of the MCT. Consistent results were
also obtained with the idealized MCT when analyzing
y"(u) spectra of the molecular glass formers propylene
carbonate [2], orthoterphenyl [5], glycerol [3], and more
recently metatoluidine [8].

The preceding results represent a challenge for the the-
ory. MCT has been developed as a theory of density
fluctuation dynamics and. the theoretical predictions of
MCT apply directly to the density fluctuation correlators
Ps'(t). These are the predictions that have been never-
theless compared. sucessfully to the light scattering mea-
surements. This success indicates that coupling between
the orientational motion and the center of mass motion
of the molecules is responsible for the similar dynamics
of the orientational and density fluctuation correlators.
Such a coupling has been extensively studied in molecu-
lar crystals possessing orientational disorder by different
authors (including one of us [40]) and has been recently
reviewed by Lynden-Bell and Michel [41]. However, for
molecular crystals, the high symmetry of the crystals and
of the molecules involved make the theoretical situation
relatively easy to st;udy. The absence of local symmetry
in a molecular liquid and of the very small number of ele-
ments of the point group symmetry of the corresponding
molecules makes the problem of applying the MCT in
systems where this orientation-translation coupling must

be taken into account a much more dificult problem to
solve. It therefore remains to be shown that the orien-
tational correlators exhibit the same properties as the
d.ensity correlators. We note, however, that a molecular
dynamics simulation of CKN by Signorini, Barrat, and
Klein [42] provides important evidence supporting this
conjecture. They computed the temperature-dependent
susceptibility spectrum g"(~) for the displacement of
Ca + ions and found a temperature-dependent minimum.
They also analyzed the orientational correlation function

C2(t) = (P2(cos 0)) for the rotational dynamics of the
NOs ions. From C2(t) they computed the corresponding
susceptibility yz (u) and found that, at different temper-
atures, y2'(cu) has a shallow mirumum at approximately
the same frequency as the minimum of the corresponding
y" (w) curve. The agreement between these two minima
suggests that for CKN the orientational and translational
dynamics are strongly coupled. This result agrees with
the MCT prediction that close to T~, in the region of
the suceptibility minimum, the correlator of any variable
that couples strongly to the density should have the same
form as the density correlator P~(t) [11].

Finally, we note that Dixon et al. [43] have compared
their salol dielectric data [44] with the depolarized light
scattering data and found significant differences. This
observation seems surprising in view of the fact that
both the dielectric and light scattering spectra of salol
probe the same orientational dynamics. However, dielec-
tric measurements of polar molecular liquids probe the
dynamics of orientable dipoles described by the correla-
tion function Cq(t) = (Pq(cos 0)), while depolarized light
scattering probes the dynamics of the anisotropic polar-
izability tensor described by C2(t) = (P2(cos0)). While
both techniques probe the same orientational dynamics,
the detailed forms of these correlation functions, and thus
of the corresponding susceptibility spectra, need not, be
the same. We will discuss this point further in a future
work.
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