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Order and localization in randomly cross-linked polymer networks
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We study, by molecular dynamics, the onset of order and localization in randomly cross-linked
polymer networks as the number n of cross links is increased. We find a well-defined critical number
of cross links n, above which the order parameter q = 1/X P. (~expik. r, ~) increases as q

(n —n, )~, with P 0.5 for ~k~ = 27r/L, where L is the length of the computational cell. At the
same critical number of cross links, particles in the network become localized around their mean
positions. We find that the distribution of localization lengths P(() is a universal function when
plotted in terms of a suitable scaled variable.

PACS number(s): 82.70.Gg, 78.30.Ly, 64.60.Ak

I. INTROI3UCTION

In the process of vulcanization [1] a polymer melt
is converted from a Huid to an amorphous solid with
nonzero shear modulus. While the theory of the vul-
canization transition has a long history [2], it is only in
recent years that techniques developed in the context of
spin-glass theory have been brought to bear on the prob-
lem of randomly cross-linked. macromolecules, which, be-
cause of the presence of quenched random variables
the location of the cross links shares some features
with the spin-glass problem [3—5]. These new approaches
make a number of specific predictions [5,6] for the proper-
ties of cross-linked macromolecules in the vicinity of the
critical point and it is therefore of interest to study this
transition both by experiment and by simulation of ide-
alized models. While there is an extensive literature on
computer simulations of both dense polymer melts and
networks [7], relatively little is concerned with the prop-
erties of networks near the transition between the liquid
and amorphous states.

In this paper, we report the results of molecular dy-
namics (MD) simulations of several systems consisting
of relatively short polymer chains of mass M = 10 or
M = 20. These chains were first equilibrated as a dense
melt and then randomly cross linked with a fixed number
n of bonds. The resulting network was again equilibrated
and its properties determined in subsequent molecular
dynamics runs. Because both macroscopic and micro-
scopic properties are sensitive to the details of the connec-
tions, especially near the transition, all properties were
averaged over 10 —25 of different realizations of the cross
linking. Because both long MD runs for each cross link-
ing and many different cross linkings are required, we
report here the results for rather small systems consist-
ing of 250, 600, and 1000 monomers. Calculations on
substantially larger systems are in progress and will be
reported elsewhere.

In our calculations, we have attempted to determine
the order parameter q(n), the fraction of localized par-
ticles Q(n), and the distribution of localization lengths

P((, n) as a function of the number of cross links, n The.
order parameter q is defined [4] in the following way:

1 /r, —r;/2
P(r;) = exp (1.2)

where r; is the mean position of this particle. The
width of this distribution, (, , is the localization length.
The "order parameter" q; is related to (, by q;(k)
exp( —k Q/2) and from this equation we may obtain the
localization length (, and a histogram of the function
P(().

The fraction of localized particles is to some extent
ambiguous in a calculation of finite length not all de-
localized particles will uniformly sample the entire com-
putational box even in a very long MD run. Therefore,

where the angular brackets indicate averaging over a
molecular dynamics run and the sum is over the N
monomers comprising the system. This function clearly
distinguishes between the liquid and amorphous states.
If we take k =

& l(n, n„,n, ), where the numbers n
are integers and L is the length of the cubic computa-
tional box, then q is clearly zero in the liquid state in
which each particle samples the entire volume, provided
we avoid the trivial k = 0 point. On the other hand, in
the amorphous phase at least some of the particles are
confined to a fraction of the computational box surround-
ing a mean position. Each of these particles contributes
a nonzero value to the sum in (1.1), making this expres-
sion positive. Clearly, q is a function of k as well as of
n. In our calculations, we have primarily used the three
smallest symmetry-equivalent wave vectors of the form
k = i (1,0, 0).

In order to obtain the distribution of localization
lengths, we have in fact calculated the order parameter q;
for each of the particles in the system. We assume, and
have verified for a number of samples, that in the rigid
state the distribution in space of individual particles is
described by a Gaussian probability density
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we have arbitrarily defined Q in terms of the localiza-
tion length. We calculate the fraction of particles with
(, ( L/4 and take this fraction to be Q. The qualitative
dependence of Q on the number of crosslinks is unaffected
by the choice of I/4 as the cutoff.

In Sec. II we describe our model and computational
techniques in more detail. Section III contains the re-
sults of these calculations and we conclude in IV with a
discussion and outlook for future work.

II. THE MODEL

Our model of polymers is identical to one used in an
extensive set of calculations by Kremer and C~rest and
collaborators [8]. All particles in the system interact
through a truncated, purely repulsive I ennard-Jones po-
tential

r,, & 2'/'o-.

On a given chain consisting of M particles, neighboring
particles are tethered to each other by means of the fol-
lowing potential [9]

2—-kBo2ln 1 — ~', r,~ ( Bo

r,~ &Bo,

where Bo ——1.5o and k = 30e/rr . The combination
of these two potentials prevents polymers from passing
through each other.

Our simulations consist of constant-energy molecular
dynamics calculations. The equations were integrated
with a standard velocity Verlet algorithm [10] with a time
step adjusted to conserve energy to 1 part in 10 over the
length of a run. All systems were first equilibrated as
melts at a density of po = 0.85 and an average temper-
ature k~T = ~. For these parameters, there is a wealth of
data available [8,11] with which we were able to compare
the properties of our dense melts. In all cases, quanti-
ties like the end-to-end distance, radius of gryration, and
eigenvalues of the moment of inertia tensor were consis-
tent with values reported in the literature.

Once an equilibrated melt had been obtained, the
chains were cross linked in the following way. A parti-
cle was selected at random and a neighborhood of radius
1.25o. was searched for other particles. Nearest-neighbor
particles on the same chain were excluded and one of
the remaining particles in the neighborhood was selected
at random. The cross linking was then achieved by im-
posing the tethering potential (2.2) between these two
particles. If no eligible particle was found in the neigh-
borhood, a new central particle was chosen. The entire
process was repeated until the desired number of cross
links had been generated. %'e did not find it necessary
to restrict the number of cross links per particle even
at the highest density of cross links it was rare that a

given particle was linked to more than two others not on
the same chain. Once the cross linking was complete, the
average temperature was increased from e/k~ to between
4e/k~ and 6e/k~ in order to speed up the sampling of
configuration space. Although this requires the use of
a smaller time step in the integration routine in order
to guarantee energy conservation, it does save computer
time.

The calculation of the order parameter (1.1) deserves
some comment. Instead of using formula (1.1), one could
calculate q from the expression

2'a (~, —~, )
q ~ e

where r,. is the mean position of particle i, which would
have to be determined either in a separate MD run, or as
part of the production run at the price of enormous cost
in data storage. The disadvantage to (1.1) in the context
of an MD calculation is that q(t = 0) = 1 and its running
average decreases as function of the integration time t.
Since one is interested in the infinite-time limit of this
and other quantities, it is necessary to extrapolate the
results. We have found empirically that q(t) = q(oo) +
a/+t, at least initially for heavily cross-linked systems,
and for very long times for systems close to the critical
number of cross links. This is shown in Fig. 1 for a few

samples, one quite close to the critical number of cross
links. For heavily cross-linked systems we have run the
MD calculations until the order parameter reached its
equilibrium value; in other cases, we have extrapolated
to t = oo, recognizing that this extrapolation may result
in a slight underestimate of q(oo). Clearly, the other
quantities such as the average localization length and the
fraction of localized particles can be extrapolated to t =
oo in the same way. The determination of the probability
distribution P((), on the other hand, must be done using
the values of q, (ty) at the end, ty, of the production run.
We have found that when plotted as a function of the
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FIG. 1. Plot of the order parameter q as function of in-
tegration time for 25 polymers each of size M = 10. The
critical number of cross links is between 37 and 38. The plot
illustrates that q(t) q(oo) + a/t ' and that q(oo) varies sig-
nificantly between diA'erent realizations of the same number
of cross links, even for n = 4G, which is substantially larger
than n .
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scaled variable (/((tf) the distribution is insensitive to
the value of tf at least for the length of MD runs that we
have used to generate our data. 0.8—

III. R.ESUITS
0.6—

0.4—
In Figs. 2 and 3 we display the order parameter for

25 chains of length M = 10 and 30 chains of length
M = 20. Also shown are fits to a power law of the form
q(n) = a(n —n, )~& and Q(n) = b(n —n, )~&, where the
parameter n was forced to be the same in both fits. In
both cases, the exponents were found to be Pz

—0.5 and
Pg 0.4, although we do not attach too much signifi-
cance to these numbers since (i) the systems are rather
small and (ii) there is at this point insufficient data in
the critical region. We note that Castillo, Goldbart, and
Zippelius [6] predict Q (n —n, ), i.e. , Pg = 1, con-
sistent with the mean-field theory of percolation. As ar-
gued by de Gennes [12] and verified by Grest and Kremer
[13], mean-field critical exponents provide an excellent
description of the percolation transition of cross-linked
polymers in the long-chain (M ~ oo) limit. Although
our data are best fit with a considerably smaller expo-
nent, the fit is dominated by points far from n and we
cannot rule out a larger values of the exponents Pg and
Ps. We have also determined q and Q for the larger sys-
tern of 100 polymers of length M = 10. The results are
consistent with those shown in Figs. 2 and 3. In this
case, the critical number of cross links is n = 117, sug-
gesting that as the number of polymers is increased at
fixed M, the critical number of cross links per polymer
becomes smaller and closer to the value at which perco-
lation occurs [13].

As mentioned above, we have also determined the
distribution of localization lengths for all three of our
systems. Castillo, Goldbart, and Zippelius [6] have
predicted that the P(() is a universal function of the
scaled localization length (/(, where, in their theory,

(n —n, )
o s in the vicinity of the transition. In

0
40 60 80 100 120 3 40

FIG. 3. Same as Fig. 2 for M = 20 and N = 600. The
exponents are again given by P~ = 0.5 and Pg = 0.4. The
critical number of cross links n 52.3.

Fig. 4 we show this distribution for several values of n
in the regime where most of the particles are localized
plotted as function of the scaled variable (/((n) and it
is clear that the data indeed collapse to a single univer-
sal function for these parameters. An equally excellent
collapse is shown in Fig. 5 for the smaller system of 250
particles. On this graph we have also plotted the univer-
sal function derived by Castillo, Goldbart, and Zippelius
[6] with the location of the peak adjusted to correspond
to that of our data. Clearly, the simulation data are not
well described by this function for large ( where P(()
decays much more slowly than the theoretical curve.

Very close to the transition, the function P(() changes
character, developing a secondary peak in the tail of the
distribution. This is illustrated in Fig. 6 for two values
of n close to n . It is noteworthy that the data again
collapse to a single curve, indicating that for all cross
linkings there is only one significant length, (, in the
system. The distribution is also remarkably insensitive
to changes in N and the length of polymer. In Fig. 7 we
plot one such curve for each of the three diferent systems
that we have simulated. In each case P(() is taken from
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FIG. 2. The order parameter q and fraction of localized
particles Q plotted against n for M = 10 and N = 250. The
critical number of cross links n, is estimated to be n, —37.5
and the curves are power-law fits with exponents P~ = 0.5
and Pg = 0.4.

FIG. 4. Plot of the normalized distribution of localiza-
tion lengths P(f) as a function of the scaled variable $/( for
100 polymers of length M = 10 in the strongly cross-linked
regime.
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FIG. 5. Same as Fig. 4 for 25 polymers of length 10. Also
shown is the universal probability density derived in [6].

FIG. 7. Plot of P(() for K = 250, 600, and 1000 for
n )) n . The good agreement between the three sets of data
is evidence that finite-size efFects are minimal.

the regime in which most of the particles are localized.
This collapse is less compelling in the critical region
the secondary peak at large ( shifts to larger values of
(/( as the number of polymers is increased.

We note that our calculation of the function P(() is
diferent from that envisaged by Castillo, Goldbart, and
Zippelius. In their formalism, only the fraction Q of lo-
calized particles is described by this distribution there
would be a second peak of weight I —Q at ( = oo if the
entire system were described in this way. We are unable
to sharply distinguish between localized and free particles
since o. & ( & I, where I is the size of the computational
box. Therefore, it is not surprising that our P(() is quite
different from that of [6] in the critical region since our
delocalized particles appear in the tail of P(() as well as

in the secondary peak mentioned above. However, for
the parameters used in Figs. 4 and 5 almost all particles
are localized and we believe that the difference between
the two functions cannot be accounted for by these con-
siderations.

Finally, we show in Fig. 8 the average localization
length as function of the number of cross links. All three
systems display the same general behavior with ( attain-
ing a limiting value of roughly 0.35L at the critical point.
For these systems this corresponds to ((n, ) & I.75Rs
where Rg is the average radius of gyration of the poly-
mer in the melt. The theory of [6] is expected to be valid
when ( )) Rg and our polymers are therefore not long
enough to provide a test of this theory in its primary re-
gion of applicability. For large n it is possible to fit the
data to a power law of the form (/I (n —n, ) but
the value of v is quite imprecise, ranging from 0.2 to 0.4,
depending on what part of the data set is used.
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FIG. 6. The distribution of localization lengths for n n
for 30 polymers of length M = 20. In this regime P(() de-
velops a secondary peak at large ( presumably due to the
presence of a significant number of free particles. This peak
shifts to larger values of ( as N is increased.

(n-n )/n
C C

FIG. 8. The average localization length ( plotted as a func-
tion of number of cross links for N = 250, 600, and 1000.
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IV. DISCUSSION where

In this first set of simulations, we have shown that
the amorphous state of a randomly cross-linked polymer
network with conserved topology is characterized by a
universal distribution of localization lengths. This distri-
bution seems to be largely insensitive to both the chain
length and the system size, at least away from the critical
region. This result is consistent with recent theoretical
predictions although the shape of the universal function
is substantially different from the predicted one [6]. We
have also measured the order parameter and fraction of
localized particles as function of number of cross links
and found that both increase as q, Q (n —n, )t, where

P lies in the range 0.4 ( P ( 0.6 for both quantities. This
value of the exponent P is closer to the critical exponent
for the gel fraction in three-dimensional percolation than
it is to that predicted by mean-field theory or the tree ap-
proximation [12]. It remains to be determined whether or
not this result will survive when more data in the critical
region and results for larger values of % and M become
available.

To better understand the vulcanization transition,
many calculations remain to be carried out. Firstly, we
are in the process of calculating the shear modulus for
these systems. This is done by applying a simple shear
and calculating the stress tensor as a function of the dis-
tortion [14]. The effects of conserved topology on the or-
der parameter and the distribution of localization lengths
can be investigated. We are exploring this by reducing
the parameter o. in the repulsive Lennard-3ones poten-
tial close to zero, thus allowing the chains to cut through
each other.

Finally, as mentioned in the Introduction, the cross
links are quenched random variables similar to fixed ran-
dom exchange interactions in spin glasses. One of the
more intriguing aspects of spin glasses is the potential
for replica-symmetry breaking [15] or ergodicity break-
ing. We have investigated the question of broken ergod-
icity for our systems using the method of Thirumalai,
Mountain, and Kirkpatrick [16]. These authors showed
that the time dependence of the so-called energy metric

(4 1)

is strikingly different in liquid and amorphous phases.
Here the subscripts o. , P refer, in their case, to differ-
ent initial states of a mixture of two species of parti-
cles and E i(t') is the energy of particle j in an A'-

particle system. They found that in the liquid state the
function d(t) decays to zero very rapidly whereas in a
glassy state it reaches a plateau that decreases slowly on
a much longer time scale, indicating the presence of en-

ergy barriers large enough to prevent the two systems
from sampling the same region of phase space. The mix-
tures of Thirumalai, Mountain, and Kirkpatrick are dif-
ferent from our system in that there are no quenched
random variables, analogous to our fixed cross links, in
that case. We have calculated d(t) for a number of differ-
ent cross linkings both close to the transition and deep in
the solid phase. In our calculations, the states n and P
difI'ered from each other by the assignment of initial ve-
locities (same average energy). In all cases, the function
d(t) decays to zero within several hundred time steps,
suggesting that phase space, for a given choice of cross
linkings, is not sectioned. This may again be due to the
fact that the chains are short the amount of volume
available to particles between two cross links is certainly
not very large for chains of length 10 or 20 and one would
expect any energy barriers to be small. Nevertheless, the
issue of replica symmetry breaking or broken ergodicity
is an important one and it will be interesting to investi-
gate this for longer chains and by other methods such as
the calculation of the overlap distribution P(q p) of the
order parameter [15].
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