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Randomly charged polymers, random walks, and their extremal properties
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Motivated by an investigation of ground state properties of randomly charged polymers, we
discuss the size distribution of the largest Q-segments (segments with total charge q) in such
polymers with N monomers (N-mers). Upon mapping the charge sequence to one-dimensional
random walks (RWs), this corresponds to finding the probability for the largest segment with total
displacement q in an ¹tep RW to have length L. Using analytical, exact enumeration, and Monte
Carlo methods, we reveal the complex structure of the probability distribution in the large N limit.
In particular, the size of the longest neutral segment has a distribution with a square-root singularity
at E = L/N = 1, an essential singularity at t' = 0, and a discontinuous derivative at E = 1/2. The
behavior near 8 = 1 is related to a another interesting RW problem, which we call the "staircase
problem. " We also discuss the generalized problem for d-dimensional RW's.

PACS number(s): 36.20.—r, 02.50.—r, 05.40.+j

I. INTRODUCTION

The importance of understanding proteins [1] has at-
tracted much attention to the statistical mechanics of
heterogeneous polymers. A particular type of heteropoly-
mers built with a random mixture of positively and neg-
atively charged groups along their backbone are called
polyampholytes (PA's). The presence of long-range elec-
trostatic interactions causes a rather unique behavior in
such polymers: the behavior of a single PA with un-
screened electrostatic interactions at a low temperature
T is extremely sensitive to its total (excess) charge Qo.
Geometrical properties of polymers can be conveniently
described by their radius of gyration (root-mean-squared
size) Rg [2]. At high T, the effect of electrostatic interac-
tions is small and Bg is approximately equal to that of an
uncharged polymer. However, upon lowering of T the PA
attempts to take advantage of the presence of two types
of charges along its backbone by assuming spatial con-
formations in which every charge is predominantly sur-
rounded by charges of an opposite sign. This behavior
can be approximately described using a Debye-Huckel-
type theory [3], which leads to the conclusion that at low
T the polymer should collapse into an dense state with
condensation energy E, „g —Nqo2/a, where N is the
number monomers, qo is the typical charge of a monomer,
and a is a microscopic distance such as diameter of the
monomer. In such a collapsed state, Bg N / . On
the other hand, renormalization group inspired scaling
arguments showed [4] that at low T one should expect
a strongly stretched state with R~ N. This apparent
contradiction was resolved by noting [5] that the lowT-
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behavior is extremely sensitive to the overall charge Qo.
It has been observed [5] that randomly charged PA's with
vanishing Qo indeed collapse at low T, while Rs, which is
averaged over unrestricted quenches, grows with decreas-
ing T. Such sensitivity is consistent with experimental
observations of PA's [6].

From a detailed study of the Qo dependence of Rs,
the following picture began emerging [7,8]: Consider a
dense (globular, approximately spherical) low Tstate of-
the PA. Its energy can be roughly separated into three
terms, such as

2

E = N +p—S+—Qo/Rg .

(In this description we omit the dimensionless prefac-
tors of order unity. ) The first term in this equation
represents the Debye-Hiickel-type condensation energy,
the second term is the surface energy (where the surface
tension P = qo/a, and the surface area $' = a2N2/s),
while the last term is the electrostatic energy of the
globule of radius Rg = aN / For vanish. ing Qo, the
globule remains approximately spherical. However, when

Qo ) QR --qoNi/2, the electrostatic term exceeds the
surface tension term, the spherical shape becomes unsta-
ble and. the polymer starts to stretch in order to minimize
the electrostatic energy. Since the threshold charge QR
increases with N exactly as the standard deviation of the
total charge Qo in a random sequence of charges, for any
N there will be a finite portion of chains with Qo ex-
ceeding QR. (Note that this property is specific to three-
dimensional electrostatic interactions. For the N depen-
dence of QR in general space dimensions, see Ref. [8].)
While the above arguments suggest that a typical PA
should stretch out at low T, such stretching may lead
to a loss of the condensation energy. A reasonable com-
promise between stretching (which minimizes the elec-
trostatic energy) and reinaining compact (which gains in
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condensation energy) is for the PA to form a necklace
of weakly charged blobs connected with highly charged.
"necks, " by taking advantage of the charge fluctuations
along the chain. The results of the Monte Carlo [7] and
exact enumeration [8] studies qualitatively support such
a picture. An example of such a low-energy configuration
is shown in Fig. 1.

While the exact treatment of electrostatic interactions
is not possible, we can pose a simplified problem which,
we hope, captures some essential features of this necklace
model. For example, we may ask what the typical size
of the largest neutral (or weakly charged) segment in a
random sequence of % charges will be. In order to an-
swer this question, we investigated the size distribution
of the largest Q-segments (segments with a total charge
Q) in such N monomers (N-mers). This problem can be
mapped to a one-dimensional random walk (RW): the se-
quence of charges (q;) (i = 1, . . . , N; q, = +I) is mapped
into a sequence of unit steps in the positive or negative
directions along an axis. The sequence of charges with
vanishing total charge Qo now corresponds to a RW that
returns to the origin after N steps, while a neutral seg-
ment inside the sequence of charges corresponds to a loop
inside the RW. Similarly, a segment with charge Q cor-
responds to a segment (in the corresponding RW) whose
end is displaced by Q units from its beginning. The pri-
mary objective of this work is to investigate the proba-
bility P~(L, Q) that the largest Q-segment in an N-step
RW has length L.

There is an apparent simplicity of the formulation of
the problem; i.e. , it is similar (and related) to the classi-

cal RW problems [9], such as the problem of first passage
times or the problem of last return to the starting point,
for which probability distributions can be computed ex-
actly by using the method of refiections [10]. However,
the search for the longest segment of the RW, among all
possible starting points, creates a more complicated prob-
lem. In its essence, the problem is more closely related
to the statistics of self-avoiding, rather than regular, ran-
dom walks. This will be clearly seen in Sec. V where a
particularly simple limit of the problem is reduced to a
problem of two interacting walkers (one of which is the
"staircase walker" ). The "self-interacting nature" of the
problem can be seen even more clearly in its generaliza-
tions to arbitrary space dimension d, where many analo-
gies between this problem and the self-avoiding walks
exist.

Some of the results presented in this paper have been
briefly reported before [11]. In this work we present a
complete exposition of those results, as well as many
new results related to this problem and its generalized
version. In Sec. II we define the problem accurately and
argue that in the large-% limit it can be described in
terms of a probability density p(/, q), where t = L/N
and q = Q/v N are the reduced length and charge, re-
spectively. This probability density is investigated using
Monte Carlo (MC) and exact enumeration methods, as
well as by analytical arguments. In particular, we show
that the function p(E, O) has an essential singularity in

the E ~ 0 limit, and diverges as I/g(1 —I) in the limit
E —+ 1. These properties can be easily understood from
qualitative arguments presented in Sec. III. In Sec. IV
we construct an exact integral expression that enables an
analytic investigation of certain properties of p(I. , q). In
Sec. V we show that our problem is related to a diferent
problem of two random walkers (which we call the "stair-
case problem" ). This relation enables us to use the latter
problem to investigate the behavior of p(E, 0) in the limit

1. While some of the properties of p(/, q) can be
deduced analytically, we had to complement our results
by MC and exact enumeration studies, which appear in
almost every section of the paper along with analytical
arguments on the subject.

S;(I)
Q=o
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FIG. 1. Low-T configuration of a polyampholyte, which
resembles a necklace made up of weakly charged beads and
a highly charged string. Dark and light spheres denote
monomers of opposite charge.
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FIG. 2. Example of a RS u, and the corresponding RW
depicted by S,(w). In this case, the longest 0-segments have
lengths L = 18 (dotted lines), while the longest 4-segments
(dot-dashed lines) have lengths L = 22. There are no 8-seg-
ments.
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An additional insight into the problem can be gained
by considering its generalization to d-dimensional RW s.
(This generalization is not related to the original problem
of PAs or to their einbedding dimension. ) In this gener-
alization, which is described in Sec. VI, Q is treated as
a d-dimensional vector rather than a scalar. As in the
one-dimensional case, Q = 0 corresponds to a loop in
the RW. Since the generalized problem investigates the
presence of large loops, it is somewhat related to the
problem of self-avoiding walks [2], whose behavior is also
controlled by self-intersections (i.e. , loops). In particular,
the probability distribution of the Q-segments becoines
trivial for d & 4, when large loops are virtually absent.

II. EXTREMAL SEGMENTS: DEFINITIONS
AND MAIN PROPERTIES

In this section, we present an exact definition of the
problem of extremal segments of a one-dimensional se-
quence and review the qualitative features of the result-
ing probability distributions.

Consider the set O~, which contains all N-element se-
quences (q;) (i = 1, . . . , W;g; = +1). Here, tL; physi-
cally corresponds to the charge (positive or negative) on
the ith monomer of the N-mer. Alternatively, it can
be thought of as the direction of the ith step of an N-
step one-dimensional RW. A randomly charged polymer
(or, alternatively, RW) can then be represented as a ran-
dom sequence (RS) cu 6 B~ picked with equal proba-
bility 2 . Figure 2 depicts an example of such a se-
quence and the corresponding path, where the position
S,(w) = P' i q~ of the path at index i gives the ac-
cumulated charge from the beginning of the polymer
till the ith monomer. [Sp(u) = 0.] In the language
of the RW's, S; is simply the displacement of the walk
from the origin after i steps. Every segment of the se-
quence between, say, steps i and j, has a certain charge
Q,~(u) = S~(u) —S;(ur). A segment for which Q,~. (cu) = Q
will be called a Q-segment. Given a randomly chosen se-
quence w C A~ and a charge Q, let P~(L, Q) denote the
probability that the Largest Q-segment in w has length
L. It should be stressed that the definition refers to
the largest Q-segment among many possible Q-segments
with diferent starting points that may exist in ~. For
example, the dotted lines in Fig. 2 indicate the longest
0-segments (L = 18) and the dot-dashed lines show the
longest 4-segments (I = 22) in a sequence with K = 24
[12]. Clearly, the longest Q-segment does not have to be
unique. If there is at least one Q-segment in the sequence
then its length L satisfies 0 & L & ¹ From the defini-
tions is clear that the 0-segment is always present and
therefore P& o Prv(L, O) = 1. However, the set of Q-
segments in a given sequence may be empty fc" ~P,') 0:
For example, the sequence shown in Fig. 2 l, .o 8-
segments. Thus, P& o P~(L, Q) ( 1 for ~Q~ ) 0.

Most properties of RS's have simple continuum limits.
We demonstrate this in Secs. III and V by discussing
RW problems that are exactly solvable, and relating them
to the behavior of P~(L, Q) in certain limits. Thus, we

0

0
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FIG. 3. Probability density of largest neutral segments as
a function of reduced length E = I/N Symbols depict exact.
enumeration results for W up to 36. In each graph, the solid
line shows the MC evaluation of p(8, 0) from 10 randomly
selected sequences of length N = 1000.

also expect P~(L, Q) to approach a similar scaling form
when K, L, Q —+ oo, while the reduced length E—:L/%
and the reduced charge q = Q/~N are kept constant. In
this continuum limit, it is more convenient to work with
the probability density

N
p(E, g)—:—[P~(L, Q) + P~(L + 1, Q)] . (2)

2

Of course, for sinall K, this definition of p(E, g) will still
depend on N. We expect it to become a function only
of the reduced variables in the K, I, Q —+ oo limit. Note
that at least one term in the square brackets of Eq. (2)
vanishes since P~(L, Q) = 0 for odd L + Q. To prevent
even-odd oscillations, we included two terms in the defini-
tion of p, as in the definitions that are used in continuum
limits of discrete RW's.

We have initially examined the behavior of P~(L, Q)
using numerical (exact enumeration and Monte Carlo)
methods, details of which are given in the Appendix.
Monte Carlo results obtained for a variety of large ¹s
up to N = 10 were virtually indistinguishable from each
other when plotted in the properly scaled variables. The
results for N = 1000 are depicted as a solid curve in each
one of the graphs in Fig. 3. For that particular value of N
we evaluated the probability density from 10 randomly
selected sequences. For short chains (up to K = 36) it
was possible to perform a complete enumeration and get
the exact results for P~(L, Q). When these exact results
are plotted in the scaled form, as presented in Fig. 3, we
can see that even for such modest values of N, there is
an extremely fast convergence to the continuum distri-
bution p(E, 0), depicted by the solid curve (especially for
E) 0.5).

The probability density p(E, 0) shown in Fig. 3 has sev-
eral remarkable properties.

(a) MC results show that p at E = — is very close to
unity (1.004 + 0.006). At that point the slope of the
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curve changes by an order of magnitude. While it is
impossible to ascertain from the numerical results that
there is actually a discontinuity in the first derivative
of p(l, 0) with respect to E, both the MC results and
analytical arguments indicate that S =

2 is a very special
point of the curve.

(b) For E ~ 0, the function exhibits an essential singu-
larity of the form

p(E) - E exp( —B//),

where B —1.7 and x —2. The estimates of the coeK-
cient B and of the exponent x have been obtained from
the MC data. However, in the 1 —+ 0 limit we are deal-
ing with almost vanishing probabilities, and therefore the
statistical accuracy is small. Thus the estimates depend
on the precise range of E's for which the Gt is performed.
Nevertheless, the existence of the singularity can be eas-
ily understood from the fact that for small E the absence
of large loops in the entire chain can be thought of as a
requirement that such loops are absent in many separate
and independent segments of the sequence. In Sec. III
this argument will be discussed in detail.

(c) For E ~ 1, p(I. , O) diverges as A/fir(l —E), with
A = 1.008 + 0.005. This estimate of the constant A has
been obtained from MC results for the N = 1000 se-
quence. In Sec. IV we prove the existence of the square-
root singularity from an integral relation that is derived
for p(E, q). The proof, however, does not provide a value
for the prefactor A, and we are limited to MC estimates,
as well as results extracted from exact enumeration stud-
ies that will be presented in Sec. IV. (The accumulated
evidence of MC and exact enumeration shows that A is
definitely larger than 1.) Some more intuitive, although
less rigorous, results regarding the 1 —+ 0 and E —+ 1
limits are presented in Sec. III. The exact enumeration
results depicted in Fig. 3 are not suitable for extraction
of asymptotic behavior, since the %'s are too small. In
Sec. IV we show that it is possible to exactly calculate
PN(L = N —M, Q) for small M (i.e., M = 0, 2, 4) and
arbitrary sequence length N. In principle, the correct be-
havior of p(E, 0) in the I —+ 1 limit can be deduced from
the exact values of P~(L = N —M, O) only if the limit
N, M —+ oo (while keeping M/N = 1 —I. constant) is
taken before the E —+ 1 limit. Somewhat surprisingly, if
we attempt to match the asymptotic form of p(E, 0) near
/ = 1 with P~(L, 0) for L = N —2, we find A = 1, i.e. , we
reproduce almost the exact value of the prefactor. Thus,
the discrete distribution approaches its asymptotic (con-
tinuum) form within a few steps of the extreme L = N.

At this point we would like to remark on a possible
relation between our problem and the problem of "ran-
domly broken objects" [13,14]. It is particularly worth-
while noting the similarity between the plots in Fig. 3 and
the results displayed in Fig. 1(a) in the work by Derrida
and Flyvbjerg (DF) [14]. In the latter case, a segment of
unit total length is divided into mutually exclusive parts
by a self-similar random process. Figure 1(a) in [14] rep-
resents the probability distribution for the length of the
largest segment. Obviously, in the DF model the second
largest segment must be smaller than 2. This leads to a

singularity in the distribution of the largest segment at
(Similar arguments lead to additional singularities at2

etc. ) Despite these similarities, several important8'7 4'l

differences exist. Most importantly, in our model neutral
segments can overlap and there is no restriction on the
sum of their lengths. Thus, the basic reasoning for the
existence of the singularity at 2 in the DF model does
not apply to our problem. We do not know whether there
is some deeper relation between these problems.

Consider next the full probability density p(E, q), which
is depicted in Fig. 4. Introduction of an additional vari-
able q significantly increased the CPU time needed to
analyze a single RS. The MC data in this figure rep-
resent only 10 sequer'~-s of length % = 1024; i.e. , its
accuracy is smaller than the MC results depicted by the
solid line in Fig. 3. Figure 4 demonstrates further pecu-
liarities of p(/, q): For fixed E, the q dependence of p is
qualitatively diBerent for l ) — and Z ( &. When l ) 2,

1. 1

the distribution has a single peak at q = 0, which ap-
proaches a Gaussian shape as Z increases, while for 8 ( 2
we see a minimum at q = 0 and two peaks symmetrically
located around the minimum. While qualitatively such
behavior can be easily understood (e.g. , for small / the
0-segments are very unprobable, sirce they are typically
large, and consequently the maximum must be reached
for a nonzero value of q) the transition between the l ( 2

and Z ) —regions is rather sharp: we analyzed the q de-2
pendence of the graphs representing the fixed-E sections
of Fig. 4 and concluded that the transition from a single
maximum to a minimum surrounded by two maxima can-
not be obtained by a variation of. parameters in a simple
function (the way it is done in the mean-field descrip-
tion of a phase transition near the critical temperature).
The numerical data create an impression of two diB'erent
functions glued along E = 2.

The areas Ag = J dq p(I. , q) under fixed-E sections
are shown in Fig. 5. For 8 ) 2 it will be proven in Sec. IV

FIG. 4. Probability density of largest Q-segments as a func-
tion of reduced charge q and reduced length E. The results
have been obtained from MC simulations (see text).
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P (L Q) = ).P (L Qlqo)~~(q ) .
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(5)

In the case of Q = 0, i.e. , for O-segments, we note that
from the definition it follows that the conditional prob-
ability is normalized, i.e. , PL P~(L, O~qo) = 1. We fur-
ther note that as a function of L, the conditional prob-
ability is expected to be peaked at value that depends
on Qo. Let us assume for simplicity that the peak is
very narrow; i.e., the length of the largest 0-segment is
uniquely determined by Qo and can be described by a
function Qo(L). Indeed, when Qo 0, the longest 0-
segment typically has L N, while for very large Qo,
the longest 0-segment must be short. Thus Qo(L) is a
monotonically decreasing function. This approximation
is especially reasonable for the extremes 8 —+ 0 or 1. In
that case, P~(L, O) = WN (Qo(L)), and thus

1.2
0.4 0.6

I

0.8 1.0 J (~ o) = —~~(qo(L))
N dqp
2 dL

that At const/gl —/; Figure 5(b) demonstrates the
numerical validity of this relation —Aggl —I. remains
approximately constant in the range of validity. The ac-
curacy of the small-E regime is rather low; we only note
that Ag is approximately linear in P for 0.15 ( E ( 0.5,
as can be seen from Fig. 5(a).

III. QUALITATIVE ARGUMENTS

In this section we present approximate derivations of
several features of p(E, q). Despite the approximate na-
ture of the arguments, they are rather intuitive, and
will be useful when we generalize the problem to d-
dimensional RW's.

Most properties of RW's have simple continuum limits.
As an example, let us consider the special case L = N
of our probability distribution: The probability P~(L =
N, Q) that the largest Q-segment has length N is simply
equal to the probability that the overall charge Qo of the
RS is equal to Q. This probability (for even N + Qo) is
given by

~&(qo):— »obgS~(~) = qo)

2
—N NI

l( —Qo)/ I'[( + qo)/ 1'

exp( —Qo/2N) .

(4)

Consider a restricted subset of all RS's in ON, which
consists only of sequences with total charge Qo. The
conditional probability for the largest Q-segment in a se-
quence selected from this subset to have length L will be
denoted as P~(L, q~qo). This probability is related to
P~(L, Q) by the relation

FIG. 5. (a): A plot of the areas Ag computed from the
distribution in Fig. 4. (b): Demonstration of the relation
Ag 1/gl —E for E ) 1/2.

Standard scaling arguments suggest that for Qo (( ~N
we can relate L = N —aqo, where a is of order unity.
This gives Qp(L) J(N —L)/a, and finally leads to

(Nl 2 1 l const

( 2 ) vrN i ga(N —L) ) ger(l —/)

On the other hand, for Qo )) ~N, the length of the
longest 0-segment will be of order of a scale at which the
random excursion of the RW becomes comparable to the
drift produced by Qo, i.e. , when L~/2 = (2B) ~/2Lqo/N,
where B is a constant of order unity. Thus, Qo(L)
N Q2B/L and

/Ni ( 2 „„l(gB/2N&
0

~

—H N/Ir

( 2 p ( 7rN ) ( Ls&z )
const
g3/2

Thus, this simple scaling argument correctly repro-
duces the square-root divergence for 8 —+ 1, and the
exp(const//) singularity for / ~ 0.

It is useful to consider an alternative derivation of
the behavior in E —+ 0 limit, since such derivation in-
volves a somewhat different view of the same properties.
A RS with an extremely short 0-segment must have a
strong imbalance between the charges (large Qo), i.e. , re-
semble a biased random walk. Consider the probability
Z~(L) = PL, o P~(L', 0) that the largest 0-segment in
an ¹ tep sequence does not exceed length I. If L &( N,
this quantity can be used to estimate Z2N (L) for a se-
quence twice as long: Two halves of the sequence of
length 2N must be biased walks with the same direc-
tion of bias to prevent creation of long loops, which start
in one half of sequence and end in the other half. In
addition, loops longer than L must be absent &om each
half of the sequence. Thus, Z2~(L) = Z~(L). This—
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relation is only approximate since it disregards the cor-
relation between the two halves of the sequence close to
its middle. (Loops longer than L can begin in one half
of the sequence and end at the other half; correction for
this effect may introduce an L-dependent prefactor. ) If
the continuum limit is well defined, we can express this
relation in the form

lating the behavior of random walkers near reHecting or
absorbing walls (see Ref. [9]). It can be used to calcu-
late various seemingly nontrivial probabilities in terms of
probabilities that are easily evaluated. One such result,
which is important for the following discussion, is that
the probability for an %-step RW to never return to its
starting point is equal to the probability that it reaches
its starting point exactly at the Nth step [15], i.e. ,

E/2

p(l, 0)dE = — p(I, O)dE (9) Prob(S;(cu) g 0, 1 & i & N)

This relation is satisfied by p(l, 0) = (2B/E2) e +~~. The
approximation casts serious doubts on the exact value
of the preexponential power x, defined in Eq. (3). Note
that two different derivations of the behavior of p(E, O) in
the 8 ~ 0 limit produced diferent values of x. Our MC
results are not accurate enough to distinguish between
these predictions. However, it can be shown that the
approximate equality (9) can be rephrased as an exact
inequality [(left-hand side) & (right-hand side)]. This leads
to the conclusion that x & 2, which rules out the value
3/2 suggested in Eq. (8).

The method of reflections is a standard tool in calcu-

= Prob(S~(~) = Oj = W~(0), (10)

where Wiv was defined in Eq. (4). This relation permits,
for instance, an exact solution to a simplified version of
our problem. In the modified problem, the largest Q-
segments are selected among those that start from the
beginning of the RS, rather than all possible starting po-
sitions. This modified probability P~(L, Q) is given by
the probability that the path w reaches position Q at the
L th step, and that it never again passes through position
Q until the Nth step. Using Eqs. (4) and (10), we obtain
the result (for N, L, and Q all even or all odd)

(N —I )!
[(L —Q) /2]'[(L + Q) /2]' [(N —L) /2]' [(N —L) /2) '

7r QL(N —L)

p'(E, q) = exp( —q /2E).
vr E(1 —E)

(12)

We intuitively expect p and p' to behave similarly, at least
in the E ~ 1 limit, and indeed in that limit p' resembles
p [see Eq. (17)].

IV. EXACT RELATIONS

The probabilities P~(L, Q) for diff'erent values of N,
L, and Q satisfy an interesting relation, which in the
continuum limit becomes an integral expression that re-
lates p(E, q) at arbitrary values of E ) — and q to the
values of p(E = —,q). While such a relation is insufficient
to completely determine the function p(I., q), it suffices to

Unfortunately, the search for the longest Q-segment
in the RS among all possible starting points creates a
more complicated problem. However, we similarly expect
P~(L, Q) to approach a scaling form when N, L, Q —+
oo, while the reduced length E = L/N and the reduced
charge q = Q/~N are kept constant. In this continuum
limit, it the probability density is defined analogously with
p: p'(/, q) =

2 [P~(L, Q) + P~(L + 1, Q)]. In this limit
Eq. (11) reduces to

determine some of its important features. In this section,
we derive this relation and explore its consequences.

We first consider the following sets of random se-
quences, for N/2 & L & N and arbitrary Q:

+Q —(~ + ~2L N. S2L N(~)— Q}—
B~ = (w g 02'~ 1,~

. Largest Q-segment in w

has size N —I ),
Cg = (cu 6 Biv . Largest Q-segment in ~u has size L).

Ag is the set of all (2L —N)-step sequences with total
displacement (charge) Q. This set has 2 W2L, ~(Q)
elements, where the function R has been defined in
Eq. (4). The set Bg contains all (2N —2L)-step se-
quences whose largest Q-segments are exactly half as
long as the whole sequence. By definition, there are
2 ~ lP2(~ 1,)(N —L, Q) such sequences. Finally, Cg
is our "target set, " which consists of all %-step sequences
whose largest Q-segment has length L. This set contains
2~P~(L, Q) sequences. We shall use the sequences from
the A- and B-type sets to construct the sequences of the
"target set": It is possible to construct a one-to-one onto
mapping

f: U(Bg x Ag g) mCg,
Ql
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i.e. , each sequence in Cg can be uniquely associated with
a pair of sequences from Bg and A@ g for some value
of Q', and vice versa. The mapping f is schematically
shown in Fig. 6. Basically, the sequence from Ag
is inserted into the sequence from Bg at its midpoint
to create a sequence in Cg. After such an insertion we
obtain a sequence of length 2(N —L) + 2L —N = N,
which contains a segment of charge Q —Q' + Q' = Q of
length (N —L) + (2L —N) = I Th. us we created an
N-step sequence with a Q-segment of size I. From the
process of construction it is clear, that this is the largest
Q-segment in the sequence: if a larger Q-segment had
existed in the resulting chain, we could have reversed the
process by removing a segment of length 21 —K from the
center of the chain. This would have yielded a 2(N —L)
step chain whose largest (Q —Q')-segment was longer
than half of its entire length, contradicting the initial
assumption regarding the chain from the set Bg g . The
"reversibility" of the process also proves the one-to-one
correspondence between the sets. It shouM be stressed,
however, that this process requires that the midpoint of
the resulting N-step sequence is necessarily included in
the largest Q-segment. Thus, the proof is valid only for
L & N/2.

Since Ag, and Ag, are disjoint when Qi g Q2, equat-
ing the number of elements in the domain and range of
f gives the identity

+
dqp(/, q) =

+OC)

~ .i-, , ),
(16)

which con6rms the observation from the MC data that
for E & 2, Ar is proportional to 1/v 1 —E Th.e relation
(16) provides a method for measuring the otherwise un-
known proportionality constant by detailed calculation of
probability density at E = 2, i.e. , measurement of Ai/2.

In the 8 ~ 1 limit, the variable q' disappears from the
exponent in Eq. (15), and the relation reduces to

ity constants. (Since the equation is valid only for E & —,
the normalization condition of p cannot be used either. )
Equation (15) expresses an unknown function in an in-
terval of E's via the values of the same unknown function
at a particular point 8 = 2. Despite these limitations,
Eq. (15) can be utilized to explain some properties of
p(E, q) and to extract information using alternative meth-
ods, as will be explained below. Before proceeding, we
note that in the E ~ 2 limit the Gaussian term in the
integrand of Eq. (15) [the exponential term with the pref-
actor 1//2m(2I. —1)j becomes 8(q —q'), and the integral
relation reduces to identity.

By integrating both sides of Eq. (15) over q, we find a
relation between the areas Ag, for 8 ) —:

P~(L, Q) = ) wzl, ~(q —q')P (~21)(N —L, q').
Ql

(14)

p(E-+ l, q) = e
/4z. (1 —/)

Taking the continuum limit of the above equation, we
replace the probabilities P by the probability density p,
and the discrete probability W by its continuum (Gaus-
sian) form, which follows from Eq. (4) and obtain

Q Q

X

AQ I

N—L N —L~I I Ij~
858%$+8$8

III ~ I I ~ I II I ~ I I ~ I ~ ~ I I ~ I II I~ I I ~ I ~ I I II I ~ I I~ I I I I~ I I ~ ~ ~ I I ~ I II II~
2L—N

aaaa: :gSSS
Q ~111~ II I ~ IIII I ~ I ~ I ~ ~ 111~ I ~ I ~ \I ~ I ~ ~ IIIIII I ~IIIII ~ III ~ II I ~ I II I~ I I ~ ~ ~ ~ I IIIII ~ IIII ~ ~ I I ~ I IIIIII I ~III~

+oo1
p(I, , q) =

/4vr (2/ —1)(1 —/)

I
— ' ' -'1'

xe 2(2t —'j) p ~ q )
where q' = Q'/i/N. Since the equation is linear in the
function p, it cannot be used to determine proportional-

This relation both confirms our contention that p(l, 0)
has a square-root divergence A/gn(1 —E) with A

&Ai~2, and demonstrates that the fixed-8 sections of the
surface in Fig. 4 approach a pure Gaussian shape when
I —+ 1.

The proportionality coeKcient of the square-root di-
vergence A is simply related sum over Q of the probabil-
ities for the largest Q-segment to be exactly half of the
length of the RS. By complete enumeration we calculated
the probabilities PM(M/2, Q) for all Q and M ( 30,
and formed the sums A(M)—:z i/M g& PM(M/2, Q).
(Only even sequence lengths M were used. ) The sums

A(M) converge to A in the M + oo limit. Figure 7
depicts the sequence of the estimates A(M) plotted ver-
sus 1/M. The extrapolation to 1/M = 0 provides an
estimate A = zAi/2 ——1.011 + 0.001. This result is con-
sistent with the MC estimates of A, and has smaller error
bars. It is interesting to note that despite the fact that
A is almost unity, it is definitely larger than 1.

Finally, we note that the discrete relation in Eq. (14)
can be used to produce exact analytical forms for P~.
Consider cases when L = % —M and M is a small num-
ber. Equation (14) can be rewritten in the terms of M
as follows:

FIG. 6. Schematic illustration of the mapping f Apair.
of sequences from B~i and A~ gi are combined to form a
sequence from |g.

P&(N —M, Q) = ) W~ 2~(q —Q')P, M(M, Q').
Ql
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placement of the ith step from the origin of the walk. I.et
us define the following variables:

1.04

I;(u) = max (Sp(u), Si(u), , S;(cu)),
m;((u)—:min (Sp((u), Si((u), , S;(~)) .

(19)
(20)

1.02

1
0 0. 1 0.2 0.3 0 4

FIG. 7. Exact enumeration results for the determination of
the coefficient A. The series A(M) = -~M+ PM(M/2, Q)
converges to A as 1/M —+ 0.

P~(K —2, 0) = 2 2 ~ (~ —2)'
(1V—2) y

(% —8)! 91% —1186%+ 3576
(K —4) (N —6)

Unfortunately, the expressions become increasingly com-
plex with increasing M, and it is not possible to use this
method to determine the continuum limit of p(E, q).

We did not find analogous integral relations for E ( 2.
Here, the situation is complicated by the fact that, in a
given sequence, there may be several longest Q-segments
that are disjoint.

Consider a case of, say, M = 2. The function P4(2, Q')
is nonzero only for Q' = 0, k2, +4, and can be easily
found for those cases by examining all random sequences
of length 4. The function W~ 4(Q —Q') is known exactly
for arbitrary values of K and Q —Q'. The sum over Q'
is finite it contains only 5 terms, and therefore can be
performed. As a result we can find an exact expression
for P~(K —2, Q) for an arbitrary value of N. A Sim-
ilar procedure can be performed for M = 4. Thus, for
arbitrariLy large (even) K we get

The variables M, and m,. represent the maximal and min-
imal coordinates achieved by the random walker up to
(and including) the ith step. In Fig. 8(a), the dot-dashed
and dotted lines depict I,. and m, , respectively, corre-
sponding to a RS w shown above the graph. (The corre-
sponding S; is depicted by the solid line. ) The variable
M, (m, ) is a monotonic nondecreasing (nonincreasing)
function of i, which graphically looks like an ascending
(descending) staircase. One can also view M, and m; as
two walls that contain the entire RW. Initially the walls
are located at Mo ——mo ——0, and they gradually sepa-
rate from each other: whenever the random walker inside
reaches a wall and performs an additional step in the di-
rection of the wall, it pushes the wall to a new position
thus increasing the distance between the walls.

Consider two RS's, cuq and w2, selected from O~. We
are interested in the probability

pl, = Prob[S, (~2) ) M;(~i), 1 & i & Ij (21)

that the path u2 remains above the maximum point of uq
that far, for the first I steps. The dotted line in Fig. 9
depicts the RS wi, which generates the staircase (solid
line) that the RS w2 is supposed to remain entirely above
of. We denote the determination of Pl, as the "stair-
case problem. " The dot-dashed line in Fig. 9(a) depicts
a permitted ~2, while dot-dashed lines in Figs. 9(b) and
9(c) show examples of forbidden cases. (Analogously, one
can define of problem of RW staying below m, , and a
problem of RW staying either above M,. or below m;,
i.e. , staying outside the walls pushed by the RS wi. )
Every step of the staircase begins when the RS ui ar-
rives to that particular maximal value of S for the first
time. The step ends when the sequence exceeds that
value for the first time. The sizes of these steps are in-
dependent of each other, and their distribution is given
by the first arrival time to index 1, i.e. , Prob(size of a
step= Lc) = k Prob(Sy = 1) k s~ . (For a general

V. EXTREMAL SEGMENTS AND THE
"STAIRCASE PROBLEM"

In this section, we define a new problem in the theory
of random walks, related to two simultaneous walkers,
and analyze it detail. We derive the relation between this
problem, and the problem of extremal segments, and use
this relation to investigate the properties of p(I. , O) in the
E —+ 1 limit.

Consider a random sequence (walk)
= (qi, q2, . . . , q~ j. It can be graphically represented by
a plot of S; versus i, where S; represents the total dis-

M(co)

~(pi)

m(M)

FIG. 8. (a) A sample RW w, depicted along with S, (w),
M, (cu) and m, (w). (h) The conjugate sequence w*.
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vival events for each L), and confirmed this particular
value of n to within 1%. Figure 10 shows $1, x Ls~4 as
a function of I/log2(L). The fact that this combination
remains independent of L when L ~ oo demonstrates
the assumed power law. The points on the graph pro-
vide successive estimates of the prefactor C@, the error
bars indicate statistical uncertainties (one standard de-
viation) for each L We e.stimate the asymptotic value of
the coeKcient as C@ ——0.263 + 0.001.

A very closely related probability distribution is

$1, = Prob[S, (cu2) ) M, i(~i), 1 ( i ( L], (23)

03

6)&r ~
~i

FIG. 9. Illustration of the probabilities Pl, and Pr, . Con-
figuration (a) contributes to both, (b) to neither, and (c) con-
tributes to @I. but not to Pr, .

expression of first arrival times see Ref. [9].) This proba-
bility is normalizable, but the mean step size is divergent.

We note that a particular element of our "staircase
problem, " namely, the structure formed by the first RW
(~i) is almost identical to the "ladder problem" [16],
which is well known in probability theory (see, e.g. ,
Refs. [17]). The standard definition of a "ladder" includes
only the points of the RW where a new (unprecedented)
maximum or minimum has been reached, thus making
the index i a random variable. However, the object de-
fined in our problem maintains the value of the preced-
ing maximum (minimum) between consecutive maxima
(minima), and is thus defined at each value of i. We use
the term "staircase problem" to d.enote the problem of
two walkers, one of which is forming an object closely
related to a "ladder. "

The probability PL, of w2 staying above the staircase
after I steps decreases with increasing L. It is easy to
put loose upper and lower bounds to Pl. . (i) w2 needs
to remain above the origin up to the Lth step, since
M;(wi) & 0. Thus, Pz, decays faster than L ~, which
is the asymptotic behavior of the probability of never re-
turning to the origin given by Eq. (10). (ii) The condition
is satisfied if uq remains completely below the origin and
w~ remains above the origin up to step L. Therefore,
$1. decays slower than I . Given these bounds, it is
reasonable to expect an asymptotic power law for Pl, .

i.e. , this time the two paths are allowed to meet at posi-
tions where t'ai has reached a new maximum. Figures 9(a)
and 9(c) both correspond to the permitted events in the
definition of $1,. Now let

fl, = Prob[S;(A&2) ) M;(~i), I & i & L —I;
SL (~2) = SL, (uri)]

denote the probability of such a meeting occurring for
the first time at step L. Meeting at the Lth step repre-
sents an extremely simple event, i.e. , despite the fact that
we are considering the behavior of two random walkers,
it is easy to construct all possible cases for short L. In
Fig. 11, the solid and dot-dashed lines represent uq and
w2, respectively, for L =1, 3, 4, and 5. We can see that
there is a single possibility for L = 1, 3, 4, and 6.ve pos-
sibilities for I = 5. (The diagram in the bottom right
represents 4 diferent cases; the dashed lines indicate the
alternative segments in both wi and w2. ) fr, is simply
equal to 2 (probability of a single diagram) multiplied
by the number of distinct such diagrams. Since (f;j is
a rapidly converging series, we can easily evaluate the
infinite sum P,. f; to a high accuracy by summing the
first few terms. (The convergence of the infinite series

P, f; can be easily seen from the fact that it is bounded
from above by the probability that wq is at a maximum
when the two RW's meet for the first time. ) We can use

0.270

0.265

a ~ le aa~~g

0.260

0.255

lim $1, = CyL
L —+oo

(22)

where 0 & o. & 2. We will later argue that o. = 4.
We performed a MC investigation of the staircase prob-
lem for L ranging from 10 to 40960 and sample sizes of
about 3 x 10 Ls~4 (yielding approximately 3 x 10 sur-

0.250
0.00 0.10 0.20

1llag, L
0.30 0.40

FIG. 10. Numerical demonstration of the power-law rela-
tion Pr, L ~, and the determination of the constant C4, .
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1.42

1 41

1.40

1.39

1.38
0.0 0.1

FAIL

0.2

FIG. 11. The first few configurations used to generate the
statistical weights f' (see text).

the probabilities f, to relate P~ to P' via the following
relation:

L

4~ =4~+ ).fc, 4r. I., —
L1——1

L L—L1

+ ). ). fi, fi, ei i, i, + ".
L1——1 L2 ——1

(25)

Fast decay of f~ with increasing L, allows the replace-
ment off' g, , Pg g, g, , . . . in Eq. (25) by Pg in the
L ~ oo limit, leading to

1
Wr. = ~ffr. .

I. 1 Pf, (26)

The coeKcient Cf can be calculated to high accuracy by
summing up the series (f; j. We have obtained the value

Cf ——1.413 + 0.005 by extrapolating from finite sums of
f;, which we have obtained exactly for L up to 18, and
up to L = 100 using a Monte Carlo method. The results
are shown in Fig. 12.

Finally, we are in a position to discuss the connection
of the staircase problem to the problem of our main in-
terest. For simplicity, let us only consider P~(L, O) in
the I jlV ~ 1 limit and examine all Rs's with S~(~) ) 0
whose largest neutral segments are L steps long. To con-
struct such a sequence, we can start with a neutral seg-
ment wo of size L, depicted by a solid line in Fig. 13.
This segment is completed into the N-step RS by adding
pieces to its two ends (thick dashed and dotted lines in
Fig. 13), in such a way that a larger neutral segment is
not created. In order to avoid overcounting when there
is more than one largest neutral segment, we can, for ex-
ample, require that the initially selected segment is the
leftmost of all largest segments. Let L' be the size of the

FIG. 12. The value for Cy = limr. - (1 —P. f, ) is cal-
culated by keeping a finite number of terms in the series and
extrapolating to 1/L = 0. Both exact and Monte Carlo data
are shown. The MC data are obtained by starting with a
single ensemble of 10 RW's, thus the data points are not
statistically independent.

piece or~ added to the right-hand side of wo. (The left-
hand side piece ag will then have length N —L —L').
To avoid creating a larger neutral segment that begins
somewhere inside wo and ends somewhere inside uR, the
sequence uR must remain above the staircase generated
by the successive maxima of wo, i.e. , if the sequence wR
is translated to the beginning of the sequence ufo (as de-
picted by the thin dashed line in Fig. 13) they must sat-
isfy conditions defined in the staircase problem. Similar
restrictions apply to the segment wL, however, this time
both (d p and to~ should be viewed "backwards" (thin dot-
ted line in Fig. 13). [Formally, for any sequence w it
is convenient to define a conjugate sequence w*, which
consists of the elements q; of u written in reverse or-
der, as illustrated in the Fig. 8(b). The conjugate of
a given path can be obtained by rotating the original
path by 180 around the axis normal to the plane. Thus,
the staircase conditions have to be satisfied between the

mo

~~

4'
~4

~ g ~~
~ 0 ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ 1
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ +

FIG. 13. Construction of a sequence that contributes to
Pyg(L, O). A neutral segment ~s of length L is augmented
by two segments wz, and ~n, such that wz (~z) always stays
above the maximum of ctfo (ct)0). ~a is allowed to touch a new
maximum of cup, since this only produces neutral segments of
length L, which are to the right of 4Jp.
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sequences wp and wl .] Since Mp is a neutral segment,
its elements are not completely independent, while our
original definition of the staircase problem required the
presence of two completely random sequences. However,
when N —L (( N, the two ends of Mp can be treated ap-
proximately as independent RS's, and they become com-
pletely independent in the (N —I)/N —+ 0 (i.e. , l —+ 1)
limit. Finally, we notice that the above requirements
were somewhat over-restrictive: we are allowed to cre-
ate neutral segments exactly of length I between wp and
u~, and therefore the probability will be described by
PL, rather than by Pl, . The segment wl„however, must

P~(L, 0) = 2 Q QN L —L'~—L(0)WL'
L'=p

(27)

the factor 2 coming from RW's with Siv(w) & 0. Finally,
taking the sum over L' in the large K limit, we obtain
(for even I,)

satisfy probabilities described by Pl, because we initially
required that the neutral segment created by wp is the
leftmost segment in the RS. This yields

2C@2Cf 2
lim Ptv(L, O) =

I, /N mi — (N —L) i/2 —2n 7rL(N —I )

F(~)F(~) 2

[&'(1 —&')]i-- r(2~) (N —L)»2 2-- 28

In the above, I (x) is the factorial function. This result
has several remarkable consequences: First of all, this
result suggests that p(E, 0) has a well-behaved continuum
limit only if n = 1/4. This implies that $1, L s/4, a
result we have not yet found in the literature. Knowledge
of C@ and Cf now enables an independent calculation of
the proportionality coeKcient A through the relation A =
~2C~Cf [I'(1/4) ] /I'(1/2) = 1.025+ 0.015. Although 1t is
slightly larger and less accurate, this result is consistent
with other estimates of A.

sider the qualitative derivation of the asymptotic prop-
erties of p(E, O) in the l —+ 1 limit as derived for the
d = 1 case in Sec. III: As in the one-dimensional case
we may assume that the length of the longest loop can
be approximately thought of as a function of the overall
disp/acement Qp (end-to-end vector) of the entire walk.
Under such an assumption we expect L = N —a~Q~
which is analogous to the one-dimensional case, except
for the overall charge Qp that is replaced by the modulus
(length) of the vector Qp. The generalization of Eq. (6)
to d dimensions is

VI. HIGHER DIMENSIONS p'"'(~, o) = —,~' '(IQ. (L) I) (29}

The fact that p(I, O) has a singularity at E = 1 is a
consequence of the fact that a R%' in one dimension re-
turns to its starting position very often. Thus, it is clear
that the behavior of p(8, 0) depends strongly on the di-
mensionality of the RW. In order to investigate this, we
have generalized the original problem to RW's on a d-
dimensional hypercubic lattice. Now the "elementary
charge" (scalar) of the one-dimensional problem is re-
placed by an elementary step (vector) between neighbor-
ing sites on that lattice along one of 2d possible direc-
tions, and there are (2d) possible N-step walks. (We
cannot use the analogy with the sequence of charges, any-
more. ) The probability distribution P~ (L, Q) can be eas-
ily generalized:

where the one-dimensional Wiv(Qp) of Eq. (6) has been
replaced by W~ ( Qp~), which is the probability that the(~)

Length of a d-dimensional end-to-end vector of an %-step
RW is ~Qp ~. Near Qp ——0 this probability is proportional
to N "/ tQp ~" . Substituting this expression into Eq.
(29) and using the relation between L and ~Qp~ we find
p(g, 0) (1 —E) ~" 2l/ . Thus, we expect the probability
density to approach a constant in the E ~ 1 limit in
d = 2, and to decay to zero as v 1 —E in d = 3.

The relations that have been demonstrated from an
approximate argument above can be proven exactly by
generalizing Eq. (15) to d dimensions. The generaliza-
tion is straightforward and leads to the form

P~(L, Q) ~ P'"'(L, Q),

A~ M A&
(d)

where Q = (Qi, . . . , Qd) is now the d-dimensional dis-
placement of a segment in the RW, and q = (dN)

Most of the arguments used to explore the features of
one-dimensional RW s can be applied with minor changes
to the d-dimensional walks. As an example, let us con-

2(1 —I) (7r(2E —1))
/'1

x d g e ~&~~ ~& p /

—,q )

Thus, for the E ~ 1 limit we obtain
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described in the Appendix, for N ranging from 14 to 896
and sample sizes of 10 . The threshold lengths are also
shown in Fig. 15. We find that I'(N) N ', where
ps = 0.27, ps 0.44, and I'7 = 0.55. Since the exponents
P" are positive, the threshold in the terms of the reduced
variable Ed(N) N ' vanishes with increasing N.

The above arguments do not provide a deFinite answer
for the borderline dimension of d = 4. (The reader is
reminded that the self-avoiding walk problem at the crit-
ical dimension d = 4 slightly difFers from the d ) 4 cases:
e.g. , regular power laws are modiFied by logarithmic cor-
rections. ) Through MC calculations with up to 107 RW
samples and values of K up to 5000, we And that in d = 4
the entire distribution p( ) (8, 0) can be fitted very well to
the form E 'e '/', for finite values of¹ Figure 16 de-
picts such curve for N = 1000. (The sample size is 10 .)
The peak position a2/ai approaches 0 either logarith-
mically (a2/ai 1/lnN), or with a very small power
of N, i.e. , a2/ai N ' where P4 = 0.16. Thus, the
distribution still converges to a 6 function in the contin-
uum limit. Although the qualitative behavior of p(") (I', 0)

data (N=1000, 10 samples)
urve, e,=2.89, a,=0.14

4

0 g)i

0.0
I

0.2 0.4 0.6 0.8

- l.5

-2.0 -

e Peak position
Power Iaw fit (P~O 16).

-2.5

-3.0

-3.5

In(N)

(b)

10

FIG. 16. (a) The distribution function p' l(t, O) is fitted
very well with a function of the form/ 'exp( —a2/'). (b) P4
is determined from the finite-size scaling of the peak positions
as approximately 0.16.

is easily understood, it would be interesting to obtain a
quantitative understanding of the distribution, especially
at the borderline dimension of four.

VII. DISCUSSION

The problem of extremal segments originated &om the
desire to consider a simplified description of the ground
states of randomly charged polymers. We used MC, exact
enumeration, and analytical techniques to analyze the
problem, and our results provide convenient tools for a
semiquantitative analysis of the ground states of PA's.
In particular, we show that a "typical" RS contains very
large neutral segments, i.e. , it is possible to construct a
ground state from a single very large blob with relatively
short ends of the chain dangling outside the blob.

Besides the original motivation, the problem of ex-
tremal segments is interesting in its own right. It looks
like one of the classical problems of random walks and,
nevertheless, is highly nontrivial, and the results indicate
a solution with very rich and unexpected structure. The
problem can be related to other interesting problems of
the RW's, such as the "staircase problem. " While sev-
eral features of the problem have been established ana-
lytically, we did not Find a complete analytical solution
of the problem. We think that such a solution is possible
and further attempts of Finding it are worthwhile Gener-
alization of the problem to arbitrary space dimension d is
not related to the original problem of charged polymers,
nevertheless interesting in its own right.

While the similarity between certain features of our so-
lution and the DF random map results [14] may appear
somewhat super6cial, we think that this point should be
thoroughly investigated in a attempt to establish at least
a partial connection between the problems. This may
shed some light on the nature of the singularity at Z =

2
and provide some indications about other possible sin-
gularities at smaller 8's which, at the present accuracy,
cannot be observed numerically.

The numerical "proof" of the continuum limit in our
work was limited to a particular class of RW's, in which a
unit displacement appears at each step. Within that class
we presented evidence of a continuum limit where the
properly scaled functions become independent of¹ Pre-
liminary results within a slightly broader class of RW's,
in which the size of the step has a binomial distribution,
indicate that the same universal curves are attained even
within this broader class of RW's. It may be possible to
prove the universality of the continuum limit by attempt-
ing to perform a renormalization-group-like treatment of
the problem, i.e. , attempting to deFne the problem in the
limit where the RW becomes a true Gaussian walk (walk
of idealized Brownian particle). This limit, however, is
far from being trivial. In particular the definition of what
is called a loop (i.e., how close two difFerent points of the
walk should be located so that the segment will be called
a closed loop) presents a nontrivial problem in the con-
tinuum limit. Such a short distance scale can undergo a
nontrivial scaling, similarly to the excluded volume pa-
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rameter in the treatment of self-avoiding walks. A differ-
ent approach to the question of universality may begin
from an expansion of the solution near the dimension
d = 4, as in the treatment of self-avoiding walks.
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APPENDIX: NUMERICAL METHODS

In this Appendix, we describe the numerical methods
used in our study. All of the algorithms were imple-
mented on a Silicon Graphics R4000 workstation.

We use two approaches to attack the problem numer-
ically: The first approach is to compute the exact dis-
tribution P~(L, Q) for small values of N by consider-
ing all possible N-step walks. Since the computational
time increases exponentially with N, this method prac-
tical only up to N 30, and we have analyzed RW's
with up to 36 steps this way. Thus, in order to deter-
mine the scaling form p(E, q), it is necessary to use a
random sampling of the set O~ for large values of N.
Using such a Monte Carlo procedure, we have investi-
gated RW's of up to 1024 steps. Since the q = 0 case
is especially interesting, we have used more efficient al-
gorithms to determine p(l, 0) to a higher accuracy. For
both the exact enumeration and MC calculations, our al-
gorithms require O(K) operations to process one sample
from O~ for p(l, 0), and O(N ~ ) operations to process
the full probability distribution p(t, q). Further details on
the individual algorithms, as well as the algorithm used
to determine p(")(I,0) are given below.

1. Algorithm for p(E, O)

current step number i is recorded in F(S;(w)) if the site
is visited for the first time, i.e. , if F(S,(u)) = —l. If the
site was visited earlier, the maximum loop size is replaced
by the maximum of itself and the difference i —F(S,).
Since F(S,) stores the first time a site is visited, the
largest loop in the walk must correspond to one of such
differences. A Rnite number of operations are needed for
each step, therefore this part of the algorithm involves
O(N) operations.

2. Algorithm for p(g, q)

The selection of RW's (enumeration or MC) and the
creation of the histogram are also straightforward for this
more general problem. The main task is to And an ef-
ficient algorithm that produces the sizes of largest Q-
segments (for all Q) in a given sequence ~. A straight-
forward generalization of the algorithm for p(E, 0) would
have required O(% ) operations per sequence. However,
our algorithm takes advantage of the fact that the same
positions are visited many times, and it requires only
O(%s~2) operations instead. As usual, the algorithm
traces the sequence one by one. There are two main
arrays. At a given step i, one of them keeps track of the
sizes of largest Q-segments encountered that far. The
second array is actually a dynamically allocated list of
pairs of integers. Each pair in the list stores a charge q
and size of the largest q-segment that ends at the cur-
rent step i, The siz. e of this array grows as +i on the
average. At each increment in step size, all pairs in the
list are updated by adding the next element in the se-
quence to q and incrementing the corresponding lengths
by one. These lengths are then compared with the cor-
responding values in the first array, which is updated if
the new length is larger. A new element is added to the
list of pairs whenever the walk reaches a position for the
first time, a condition that is checked for separately. All
the operations in an update can be accomplished by a
single pass through the list of pairs, thus the whole algo-
rithm requires only O(As~2) operations to complete, as
mentioned earlier.

The only difference between exact enumeration and
MC algorithms involve the number of RW's analyzed:
In exact enumeration, the number of analyzed RW's in-
creases exponentially with N, whereas the samples are
chosen at random in the MC routines, and the sample
size is usually set to a constant. Standard random num-
ber generators are used to generate the RWs in the MC
algorithm. For each RW, the size of the largest loop is de-
termined and this is recorded in a histogram (with sizes
from 0 to L) that eventually represents the probability
distribution we are looking for. The determination of the
largest neutral segment in a given sequence is identical in
both enumeration and MC algorithms, and is described
below.

Given a RW w, an array F(Q) stores the step number
i when S,(w) = Q for the first time. Initially, F(Q) = —1
for all Q. At each step of the RW (including step 0), the

3. Algorithm for p&~&(E, O)

For the MC determination of p(")(E, O) at higher di-
mensions, the O(K) algorithm described in Sec. A1 of
this appendix requires O(K~) storage elements for the
array F(Q), which quickly becomes prohibitive with in-
creasing d. The storage requirement can be reduced to
O(dN) by storing the time series of the position S;(w) of
the RW instead. However, the simplest algorithms would
require O(K ) operations to find the largest 0-segment
given such a data structure. Note that the typical RW
in dimensions d & 2 does not revisit the same site more
than a few times, and therefore the total number of 0-
segments in a RW should be only of O(X). We have
taken advantage of this fact in order to devise an algo-
rithm that requires only O(&log K) operations to do the
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job. The algorithm is as follows:
After the position array S(i) is formed, its contents

[which are the position vectors (Qi, . . . , Qg)] are indexed
in lexicographical order. This operation requires only
O(2Vlog%) operations, when an efficient sorting algo-
rithm like Heapsort [18] is used. All 0-segments in the
sequence start and end at the same position by deGni-

tion; therefore, the two end points will be adjacent in the
lexicographical index. Going through the index sequen-
tially, it is then possible to determine the largest of the
0-segments in only O(%) operations. The extraordinary
speedup of this algorithm makes is possible to go up to
sample sizes of 10 for 1000-step RW''s in seven dimen-
sions.
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