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Adsorption of a minority component in polymer blend interfaces
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We analyze the adsorption per interfacial thickness of the minority component C, I c, in the interfaces
between A and B rich phases in ternary polymer blends as a function of yc & q & =yB, where yl is the
mean composition of I, and the net interaction per thermal energy between I and J, y». We find I"c
solving numerically the nonlinear decomposition equations in the steady state. When C is nonselective,

g&c =yBc =qy», I c increases as g increases and it is linear with yc for yc «y~ +yB. For selective

XAc QXAB and XBc ESTAB» the case of minimum adsorption, g=0, I c decreases as c increases
and it vanishes when c ~ 1.

PACS number(s): 05.70.Fh, 64.75.+g, 82.65.Dp, 64.60.—i

I. INTRQDUCTIION

For many years the polymer community has been dedi-
cated to producing polymer alloys with improved proper-
ties. Since polymer blends are strongly incompatible,
nonhomogeneous Inicrostructures result upon mixing.
The morphology, in particular the interfacial thickness
and its composition, determines the mechanical proper-
ties of these multiple phase materials. Binary polymer
blends are well understood [1]. Since limited interface
modifications are possible, the addition of 2-8 copoly-
mers to immiscible 2 and 8 polymers [2,3] has been pro-
posed as a mechanism to alter ihe interfacial properties.
A chemically inhomogeneous minority component, how-
ever, is not necessary to change the interfaces of immisci-
ble 3 and 8 blends. Here we determine in which cir-
cumstances a chemically homogeneous polymer C segre-
gates in the interfaces between a and P phases rich in 3
and 8 polymers, respectively.

The excess composition of C at the a and P interfaces
is a function of the net interaction per thermal energy
(kIt T) between components I and J, gII. In nonselective
C systems with no interactions between A and C and 8
and C (g„c=y~c =0), one would expect that polymer C
segregates in the interfaces between a and P phases since
it decreases the contacts between 2 and 8 [4]. In this pa-
per we analyze the adsorption of nonselective
(X~c &ac nX~~) a—nd se—ie«»e (X~c-~sac —EX~~)
minority components C in the a and P interfaces as a
function of yz & y~ =y&, where yl is the mean composi-
tion of I, and thermal energy (g and e) in ternary blends
with 3, B, and C degrees of polymerization equal to X,
%z =%~=X&=X. This adsorption has a strong efFect
on the kinetics and the microstructures during phase sep-
aration in ternary mixtures [5].

Consider a ternary system described by the free energy
functional per site,

where Xz is the number of monomers per unit volume
and

CPI X
~&0 = r N [PO, I( IV'I(x)I ) PO, I([cPI] )]

r=w, a, c
(3)

where po I is the chemical potential of I in a homogene-
ous system. The composition of C is eliminated through
the incoxnpressibility constraint. Hence the speci6c inter-
facial energy cr in Eq. (2) can be rewritten as

OOa=&v I ~fo +&~~ —
d

d v'a
+2K gg

d 9'a+Kgg dx
(2a)

with

&II —zlq +v~~, I —A, 8, (4a)

~~a =~cc .

An extremum of cr(5cr=0) is obtained solving simul-

where b fo is the free energy per site of a homogeneous
system, and I711 is the gradient energy term coe%cient
rejecting the unfavorable nature of inhomogeneities.
When hfo is unstable, such that equilibrium is estab-
lished if two phases coexist, the cornpositional gradient
terms are required to determine the equilibrium interface
profile. The adsorption of C in a Hat interface can be
determined from the equilibrium interface profile, given
by the lowest minimum of the specific interfacial energy
o.. In a tlat interface between a and p of compositions @I
and yl, o. is given by the difference per unit area of inter-
face between the actual free energy and that which it will
have if the properties of the two phases were continuous
[6]
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taneously the resulting two Euler-Lagrange equations [7],
which using the boundary conditions, b,fo and dyI/dx
tend to zero as x ~+~ leads to

~fO =&AA
dx

d O'B d+B
+2K~B — +K

dx dx dx

There are many solutions for Eq. (5), and the actual
minimum of o cannot be obtained analytically [4]. The
linearized solution for a fiat a and P interface along the x
axis, however, gives for a nonselective minority C
(yc =pc =pc ) values of qrc(x) —yc )0, demonstrating
the adsorption of C in the interface. The adsorption of a
homopolymer in the interfaces of two segregated solvents
(NA =NB =1) has been studied by this method in Ref.
[8]. Also, the linearized solution for the interfaces of a
compressible binary blend (which corresponds to an
athermal yAc =yBc =0 minority solvent Nc = 1) shows
an excess of vacancies at the interfaces. The linearized
solution of Eq. (5) for ternary polymer blends will be
given elsewhere.

In this paper we follow a different method to determine
the interface profile which is not restricted to small
yc(x) —gc values, and from this interface profile we
compute the adsorption of C at the interfaces. We nu-
merically solve the equilibrium composition profile yI(x),

I=A, 8, and C, from the steady state solution of the
nonlinear decomposition equations. In Sec. II the
dynamical model and the techniques for numerically
solving the nonlinear decomposition equations are de-
scribed. The numerical results of the adsorption of C per
interfacial thickness as a function of yc and thermal en-

ergy in nonselective and selective minority C systems are
given in Secs. III and IV, respectively. In Sec. V we con-
clude and discuss our studies.

II.DYNAMICAL MADEL AND NUMERICAL
METHODS

The kinetics of spinodal decompositions are described
by the continuity equations [9],

= —VJq I= A, B,C,

where the Aux J~ is chosen to obey the mass conservation

„BcJI =0. In this reference frame for the fiux, one
finds JI=JI yi gi —„BcJI with JI = MI Vp—I, I= 3,
8, and C, where pz, the chemical potential of I per site in
an inhomogeneous system, is given by @I=oh,foldyI—2K~~V' y~, and M~ is the Onsager coe%cient of I. Elim-
inating the variable yc(r, t) with the incompressibility
condition and using the Gibbs-Duhem relationship

„Bcyidpi=O locally, Eqs. (6) become

8
&&

[O'I("~I)]™IIV(Po, i Po, c 2~IIV O'I 2~IJV I'J j

IJV (Po,J Po, c 2+JIV 0 I 2&JJV 9 I )~

where

ao,
PO, I=

&
MII=(1 O'I)'MI+%I—

aqI J&1, J=A, B,C

(7)

g A)'PBMA ( VB)PAMB+ B'AV BMC

Since long polymer blends are well described by mean
field theories, analytic forms of go I in Eqs. (7) can be
used. Here for simplicity we use the Flory-Huggins mean
field free energy per lattice site, or the regular solution
model for blends, given by

~fo O'A inV'A O'BIW'B pclW'c
kTB A B +C

+XWBV'W O'B

+O'BcV'B9'c+XacV'w f'c .

The gradient energy terms are computed using the ran-
dom phase approximation [10]

xII =kB Ta /( 36@I), I= A, 8,C,
where a is the monomer size. More general approaches
which lead to xII dependent on the local composition [11]
[replacing foI is Eqs. (9) by yi(r)] do not affect our re-
sults. The mobility in blends of long degrees of polymeri-
zation is given by [12] MI=(gI/NI )(DoN, /kB T), where

Do is the diffusion coefficient of monomers, and X, is the
effective number of monomers per entanglement length.

We solve Eqs. (7) in terms of dimensionless parameters
x =(kB T/2xN )' r and r=M(kB T) t /2aN, and re-
duced mIJ =MIJ/M and RIJ =~IJ/~, where
M=(1/4N)(DoN, /kBT) and x=kBTa /9. Equations
(7) in dimensionless forms are solved using the finite-
difference method for the spatial and the temporal deriva-
tives. The values of Ax and h~ are chosen to simulate
continuous dynamics avoiding artificial numerical slow-
ing down efFects or pinning, due to the inability of Eqs.
(7) to describe the kinetics of phase separation when the
interfacial thickness is smaller than hx. The simulations
are done in a 20 square lattice with L, grids, with
L, =64. Periodic boundary conditions are used to avoid
surface effects. Since the initial high temperature state is
a homogeneous mixture, the initial compositions y~ and

for each grid are chosen to be uniformly random
number distributed in the interval [gA —g, g„+g] and
[pB —g, @B+g], respectively. We choose /=0. 005,
6~=0.01, and Ax = 1.2 here. We have run the numerical
simulation until the steady state is achieved. The steady
state is achieved when the volume fractions and the com-
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positions of the two phases reach the equilibrium values,
and the dynamic structure factors are self-similar.

III. ADSORPTIQN QF C IN NQNSKI. ECTIVE
MINQRITY C(y~c =y~c =gy~~ ) SYSTEMS

In the presence of a nonselective minority C, the ad-
sorption of C per interfacial thickness in the a and P in-

terfaces, I c, in three dimensions is defined as

1" =—J [y (r) g—' ]dV,
1

where y&=yc=y~&, V is the volume of the whole sys-
tem, and V is the volume of the interface. In two dimen-
sions (2D) we substitute V—+ A, V—+ A, where 3 is the
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FIG. 1. The steady state composition profiles (a) and (c) for the symmetric ternary systems 1 shown in (b) and 2 shown in (d), with
mean compositions (0.4S,0.45,0.1) and (0.4,0.4,0.2), respectively. The phase diagrams for (b) yX=2. 7 and (d) y%=3.0. In (b) the
equilibrium compositions in the tie line ( ~ —) are given by U= {0.754,0. 146,0. 1) for a, and V= (0. 146,0.754, 0. 1) for P, re-
spectively, and in (d) the equilibrium compositions, X= (0.811,0.0945, 0.0945) for a, Y= (0.0945,0. 811,0.0945) for P, andZ=(0.0945, 0.0945,0.811) for y, respectively. Plots of (e) (R )„„vsr'~' and (f) S(», k) r(R/)„„vs k(R )» of system 1. The scal-
ing results shown in (f) are valid from 7 =7600. S„„{k, r) is defined as g I„I „S„„(k,r) /g I„I „1 with

»S( ,k)r=((1 /L)g, g, ,e'"'[y„(r+r')p„(r') —g&„]),where the sums are over all of the L grids, and k is the wave vector which
belongs to the first Brillouin zone in reciprocal space. (R )„„is defined as 1/(k)„„with (k )„„=gkS»(k,r)/QS»(k, r).
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FIG. 1. (Continued).

area of the whole system and A is the area of the inter-
face. According to Eq. (10), I c is dimensionless and
gives the excess compositions of C at the interfaces.

The steady state profile for blends with

aa =g~c =+ac =g and mean compositions
(gz, &pz, yc)=(0.45, 0.45, 0. 10) at yN=2. 7 is shown in
Fig. 1(a). The equilibrium compositions gl and
I= A, B, and C, obtained by equating the chemical po-
tential of each component, are given by the tie-line in the
equilibrium ternary phase diagram shown in Fig. 1(b). In
these blends we find I c -yc for quenches deep into the
two a and P phases. This scaling holds for systems un-
dergoing two phase separation quenched far from critical
points, and for deeper quenches where three phase re-
gions appear in ternary phase diagrams.

Since the adsorption of a third component K in the in-
terface between any two phases rich in I and J is a gen-
eral phenomenon, it is also observed in quenches into
three phase regions a, P, and y, rich in A, B, and C, re-
spectively. This is shown in the steady state composition
profile for a system with initial compositions (0.4,0.4,0.2)
at yN=3. 0 in Fig. 1(c), which a, P, and y phase equilib-
rium compositions are given by the corners of the XYZ
triangle in the ternary phase diagram shown in Fig. 1(d).
This adsorption strongly influences the microstructures
during phase separation. Since the decomposition into
three phases is initiated by decomposing into two phases
a and P rich in A and B, respectively, and the minority
component is adsorbed in the a and P interfaces during
the decomposition, a third phase y rich in the minority
component will form at these interfaces. When the inter-
face is very broad [as in quenches inside the small three-
phase triangle NOP in Fig. 1(b)], the minority phase does
not coarsen, it can be considered simply as increasing the
interfacial thickness between the two majority phases.
When the thermal energy decreases [as inside the triangle
XYZ in Fig. 1(d)], the minority phase can no longer be
considered to thicken the interface, but appears as a
phase that separates these two majority phases in the

later stages of the decomposition process.
In the absence of hydrodynamics we find that the

growth law R(r) —r' is always obeyed in ternary sys-
tems undergoing two and three-phase separations even
when the decomposition patterns are not self-similar.
Ternary systems, however, do reach a scahng regime at
the very late stages. Our dynamical scaling results are in
agreement with the results obtained by Monte Carlo
simulation [13] and molecular dynamics [14] in small
molecule systems, where only the composition pl= —,',
I= A, B, and C, was studied. In Fig. 1(e) we plot the
domain growth as a function of time for a system with
mean compositions (0.45, 0.45, 0.1) quenched to
gX=2.7, showing the ~' power law. In ternary sys-
tems the segregation of the minority component at the in-
terfaces breaks the self-similarity observed even at the
early stages of the decomposition in binary systems.
Self-similarity, however, is obtained when the interface
segregation reaches the steady state [see Fig. 1(f)]. A
thorough analysis of the scaling of the phase separation
dynamics is given elsewhere [5].

The adsorption of a nonselective minority C,
y~c =y~c =gyq~, is at a minimum when g=0, and it in-
creases as g increases. For example the adsorption of C
calculated numerically from Eq. (10) in 2D for a system
with initial compositions (0.45, 0.45, 0.1) at y„~N=2. 7 is
0.0067 for rI=O, and 0.0117, more than 10%%uo of gc, for
g=1. The steady state composition profile for the system
with rl=O is shown in Fig. 2(a) and the equilibrium com-
positions of a and P are obtained by the tie-line in the ter-
nary equilibrium phase diagram shown in Fig. 2(b). Our
results can be understood analyzing the contribution to
the free energy from infinitesimal cornpositional Auctua-
tions. A Taylor's series expansion of Af in the Fourier
components of f&(r) = [5y&(r) —5gz(r)]/(2g) and
f2(")= ~pc( r) where % =%a +Ps and 5q&1( r)
=pl(r) gl, I= 3, B, and C—, in systems with y~ =@~,is
given by
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QII(k) 112
&f(Il()(k), $2(k)] )- g g QI(k)+ g, 5(k+k'+k")g, (k)p, (k')g~(k")

I=1,2 k k, k', k"

+1111+ g, 5(k+k'+k" +k'")P, (k)1(,(k')Q)(k")f)(k"'),
k, k', k",k"'

Q))(k) =g [4/(yN) 2y„—~+4Ir„„k ],
Q2~(k) =1/I g(1 g)N—]+(0.5 —2t))y~~

+(s„~+2ITcc)k

Q& ip
= 12/N

(12a)

(12b)

(12c)

(12d)

I

For a single wave compositional fluctuation of wave-

length A, &=2m/k&, g&(r)= 3 &e
' +c.c. , if gzzN

& 2/g+ 21' ~ ~ k
&

a comp ositional fluctuation in tj'j2( r )
ik .r= A2e ' +c.c. of half wavelength k2=2k, is induced

by the negative Q»2 term in Eq. (11). For this periodic
pure interface profile between A and 8, the composition
of the minority C is maximum when 5yl(r)=0, I= A

and 8, which means it segregates at the interfaces. The
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FICx. 2. (a) The steady state composition profile of a nonselective C system (y&c =g&c =0) with mean compositions (0.45, 0.45, 0.1)
for p»N=2. 7, shown as (x) in the phase diagram (b), in which the equilibrium compositions in the tie line ( ~ ),
D=(0.754,0. 146,0. 1) for a, and E=(0.146,0.754,0. 1) for P, respectively. (c) Plot of I c in Eq. (10) in 2D vs pc in systems with
y& =y&. The solid curve is obtained calculating A2 in Eq. (13) multiplied by a constant 0.23.
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most probable amplitude of the induced compositional
fluctuation in C, A2, is given by

Q„(k, )Qi, 2A2=
QiiiiQp2(k2) Qii2/3

(13)

and as q increases A2 increases. When gg~„X increases
such that Q»»Qz2(k&=0) —Qttz/3&0, however, three
phases will appear in the steady state. In this case there
is adsorption of each component for deep quenches as
shown for the symmetric case g = 1 at gIJX =yX=3 in
Fig. 1(c).

Though Eqs. (11)—(13) cannot be used to describe deep
quenches in the steady state when the compositional Auc-
tuations are not small (also we must include mass conser-
vation laws), it suggests that I c in Eq. (10), proportional
to A2, is indeed linear in yc for yc «y. When qy~z&
is small, however, a critical point appears when yc in-
creases towards g~c"= I —2/(y„sX), shown in Fig. 2(b)
for g =0, and the adsorption of C should decrease as y&
increases, A2(ki=0)-yc(1 —gc)(yc"—gc). This sug-
gests a maximum of the adsorption at a certain y& & yc".
The numerical results for the adsorption when g=O are
shown in Fig. 2(c). In this figure we compare the adsorp-
tion computed from the values of A2(k, =0) in Eq. (13)
multiplied by a constant with the numerical results in the
steady state. They are in good agreement, though the ad-
sorption of C per interfacial thickness near the critical
point cannot be obtained from our equations because the
effects of the heat bath terms are neglected (also, mean
field results do not hold near critical points).

0.8

(Pi(x) o g

I=A
I=8
I=C

j

is independent of the position of X. Therefore we analyze
the adsorption of C, per interfacial thickness in selective
C systems in terms of I'c"'=I P'=I c in Eq. (15). Notice
that 8=1 corresponds to a binary blend with cp& =chez and
cp2=y~ +y&, therefore there is no adsorption. Further-
rnore, for any value of c& 1 we find no adsorption of C
and the maximum adsorption is for c.=O, the nonselective
case of minimum adsorption (i)=0). The numerical re-
sults of I z with y& and c, for systems with yz =@~ are
given in Fig. 4(a). In this figure we only show quenches
far away from critical points, where we find that as yc in-
creases I c increases.

IV. ADSORPTION OF C IN SELECTIVE
MINORITY C(y z& =gy z /zan =eg zz ) SYSTEMS

The adsorption in systems with a selective minority
component C, y~& =cg~~, is analyzed for simplicity set-
ting y~c=O. When C is selective (EAO) the equilibrium
composition of C in the a and P phases is not equal. In
Fig. 3(a) we show the interface composition profile in the
steady state for a system of initial compositions (0.45,
0.45, 0.1) at y~&%=2. 7 and E=0.2. The equilibrium
compositions y& and yr are obtained by the tie-line in the
phase diagram shown in Fig. 3(b). When yc&g~c, the
adsorption of component I per interfacial thickness, I I,
is defined as the excess composition of I in an ideal sys-
tem consisting of a and P phases assumed homogeneous
right up to a dividing surface X, in 3D:

0.0
-50 0

(&)

(14)

where V is the volume of a phase in the ideal system. In
2D, V~ A, V~ A, and V = A, where A is the area of
the a phase in the ideal system. Even though for selec-
tive minority component systems I I depends on the posi-
tion X, I"J ' defined as

—a —P

(15)

(b)

FIG. 3. (a) The steady state composition profile of a selective
C system (gz& =0, y&c =0.2y» ) with mean compositions
(0.45,0.45,0.1) for y»%=2. 7, shown as (x) in the phase dia-
gram (b), in which the equilibrium compositions in the tie line
( ~ ), F=(0.734,0.151,0. 115) for a, and
G ={0.135,0.782,0.083) for P, respectively.
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Since the adsorption of C defined in Eq. (15) is related
to b,y'i= ~pl @—I ~, we analyze b,yl, I= 3, B, and C, as a
function of yc and c. The equilibrium compositions are
obtained by equating the chemical potential of each com-
ponent. We find Ayc —y&, where b =-0.945 for
(pg((cp„+$7~ and Ayc/(pc is a universal scaling of E.,
shown in Fig. 4(b), regardless of the values of gl, I= A

and 8 (even for y~ Wyii). For E ) 1, when there is no ad-
sorption, b,yc/gc is a universal scaling of E for all yc
values. Since the relations between hyl, I= 3, and B,

8.0
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II 8 g
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0.0

I

0.5

(&)

1.0

1.0

-1.0

)I
iI

iI
I

I

I
1

I

-5.0
-5 0

I

-3.0
inc
(b)

-1.0 1.0

FICz. 4. In SeleCtiVe C SyStemS (y~C=O, yBc=Cy~B) fOr

ygBN=2. 7: (a) Plot of I c in Eq. (15) in 2D vs c, varying yc in
systems with y& =yB. The symbols (~), (0), (~), and {~)
correspond to pc=0.02, 0.06, 0.1, and 0.14, respectively. (b)

0.945
Plot of ln(hyclyc ) vs inc in the regime of yc «y~+yB
and for c) 1 regardless of yc.

with y& are not universal in the regime studied
here (E & 1), we could not find the scaling of I c with

0'c and

V. CONCLUSIONS AND DISCUSSION

We conclude that for nonselective minority component
systems there are two types of behavior of the adsorption
of the minority C: (1) when the system has a critical point
increasing yc, in which case there is a maximum in the
adsorption of C per interfacial thickness, I c, at a certain

gc & gc",' and (2) when there is a three-phase region in-
creasing yc, in which case there is adsorption of each
component E in the interface between the I and J rich
phases. In both cases, I c-yc for yc &(y~+y~ at
deep enough quenches. In the deep quenches studied
here the interfacial thickness is still much larger than the
chains radius of gyration R~ ~ N'', so the coarse grained
free energy functional used here can describe the system.

For the general selective minority component systems
where g&c=gg&z and gzc=cgzz, it is not possible to
make scaling arguments due to the complex phase dia-
grams that result in these systems. However, one will al-
ways find adsorption in the two-phase region, provided g
and c are not too large. This is clear by the fact that we
analyze the adsorption in the cases where there is the
least amount of adsorption, q =0 and E&0, shown in Fig.
4(a). In general, for systems with gc «g~ =gii under-
going two-phase separation, the adsorption of C per in-
terfacial thickness (I c) is symmetric about the line rj= E.

As g=c, increases, I c increases. When E (rj) is fixed, I c
increases from g=O (e=O) up to g=E, and then de-
creases as g ( E ) increases.

Our results are in principle applicable to ternary mix-
tures of small molecules [we recover the linear depen-
dence of I c in Eq. (10) with gc, setting VII=~ and
N1=1 in our equations for deep quenches into the two-
and three-phase regions]. When the range of interactions
between the molecules is small, however, fluctuations will
have large e6ects and the 2D results presented here will
be at most qualitatively correct for deep quenches. Since
in 3D polymer blends a molecule interacts with the N'
molecules that are within the rad. ius of gyration, mean
field results are applicable, and our 2D results are there-
fore expected to reproduce the results in 3D.

The dynamics for deep quenches, such that the interfa-
cial thickness is very narrow in the later stages of the
decomposition, will be modified due to hydrodynarnical
efFects [15j. Coarsening of the third phase rich in the
minority component for deep quenches into the three-
phase region, for example, will occur by the Aow of ma-
terial from one region to another. Since in our studies
the volume fractions of the two phases rich in the majori-
ty components are equal, so that their interfaces are con-
nected, the domain growth law of the minority phase will
be very fast (a R -r growth law is expected). The steady
state interface profile obtained here, where the decompo-
sition dynamics are driven by the interfacial gradients,
however, will not be modified by the hydrodynamical
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effects. Notice that for deep quenches into three phases
the minority phase by both dynamic mechanisms grows
at the junctions between the A-rich —8-rich interfaces
(the critical nucleus forms at these junctions, and the flow
material if hydrodynamics are present is from slender to
thicker regions which are also at these junctions) giving
the same pattern with different growth rates.
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