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Fitting of viscosity: Distinguishing the temperature dependences predicted by various models
of supercooled liquids
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In an e6ort to assess the applicability of various competing theoretical models, we have examined the
temperature dependence of the viscosity q( T) and of the o;-relaxation times of a wide variety of super-
cooled liquids. The overall best Ats over the entire temperature range above the glass-transition
temperature and for all the diverse supercooled liquids investigated are given by the expression
Tln[ti(T)/ti„]=E„+BT [(T —T)/T*]'~ O(T —T), where e(T*—T) is a step function that is 1

for T(T* and 0 for T )T*, and T* is usually greater than the melting point temperature. Our
analysis supports the notion that there is a single dominant species-independent, nonmolecular mecha-
nism underlying n relaxation for all supercooled liquids, throughout the entire T-range characteristic of
supercooled liquids.

PACS number(s): 64.70.Pf

INTRODUCTION

The salient feature characterizing a supercooled liquid
is the dramatic increase of viscosity (g) with decreasing
temperature, an increase which may encompass 15 orders
of magnitude over a temperature range of perhaps 150 K.
Structural relaxation times (the so-called a-relaxation
times) are more or less proportional to the viscosity, and
so also increase rapidly with decreasing temperature [1].
Below a temperature T, called the glass-transition tem-
perature, the relaxation times are so long that in most ex-
periments equilibrium cannot be attained, and the system
is said to be a glass rather than a supercooled liquid. Al-
though T does not represent a true phase transition, but
rather a dynamical crossover, the properties of nonequili-
brated glasses are quite different than those of
quasiequilibrated supercooled liquids. (We say
quasiequilibrated because below the melting point the
crystal is presumably the thermodynamically stable
phase. )

At the heart of most theories of supercooled liquids is a
description of the temperature dependence of the viscosi-
ty and the o.-relaxation times. In fact, the description
one gives for these quantities predetermines the nature of
the theory one chooses, or, conversely, the theory deter-
mines the manner in which one analyzes the data. Here
we shall examine in some detail the relationship between
fitting forms and theories, and shall consider the feasibili-
ty of using these studies to discriminate among theories.
Although in our discussion we focus on viscosity, the u-
relaxation time, which can be determined through prop-
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erties such as dielectric relaxation, can also be treated in
the same way; in fact, some of the data used in Figs. 1

and 4 were obtained by relaxation measurements. See
Table I. Previous studies of the kind reported here were
carried out by Rossler [2] and by Stickel, Fischer, and
Richert [3].
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FIG. 1. Scaled viscosity or a-relaxation activation energy vs
[(T*—T)/T*] for all liquids indicated in Table I. X=g or ~.
Parameters given in Table I are determined by means of Eqs.
(1), (7a), and (7b). The line is the fit of Eqs. (7a) and (7b).
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(1) W'hat to plot? We are interested in the temperature
dependence of the coe%cient of shear viscosity g. Plot-
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TABLE I. Material parameters and fits to Eqs. (7a) and (7b).

8 T* (K) E (10 K) T „, (K)

n-butyl benzene' 282
triphenyl phosphite' 180
isopropyl benzene' 180
propylene carbonate" 280
salol' 394
dibutyl phthalate' 148
o-terphenyl g 412
s-trinaphthyl benzene 288
n-propanol 56.1

a-phenyl-cresol 440
glycerol" 88.7
boron oxide' 63.4
poly(p-chlorostyrene)j 454
poly(propylene-glycol)' 558
poly(vinyl acetate)' 282

198
311
210
235
304
288
350
515
192
293
322
978
544
265
454

1.43
2.35
1.72
2.12
3.22
3.31
3.15
5.07
2.22
6.09
5.18

10.5
6.08
4.52
2.76

185
295
174
218
318
238
331
472
147
327
293
723
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ting g versus T is not useful, since g may change by as
much as 15 orders of magnitude over a 150-K tempera-
ture range. One is, therefore, more interested in the T
dependence of ln[il], even though, or rather because, it is
a far less sensitive measure of the correspondence be-
tween 6tting formulas and experiment. Because of this, g
is often expressed in terms of a T-dependent activation
energy, E ( T), according to

in[ri( T) ]=in[i) ]+E( T) /T,
where g is a T-independent but species-dependent pa-
rameter. Plots of in[71] versus T, or versus T ', are also
frequently given. We believe that the most insightful
plots are not the customary in[i'/q„]-versus-T plots, but
T 1n[rI/ri„]-versus-T, i.e., E ( T)-versus-T plots.

The most noticeable feature of many supercooled
liquids is the fact that the activation energy E( T) is very
temperature dependent, increasing appreciably as the
temperature is lowered toward T . This is clearly seen in

Fig. 1. It is, of course, a fact that merely an appreciable
increase in E(T) can account for the observed stupen-
dous increase in i)( T).

Analyses in terms of d in[i) ] /d T, and even
d in[i)]/dT, have been carried out by Stickel, Fischer,
and Richert [3]. These analyses (although very uncertain
in the vicinity of and above the melting temperature T )

require fewer adjustable parameters and provide a more
challenging test for the various f][tting formulas and
theories; too challenging, we believe. Most of the
theories and fitting formulas are designed to describe the
leading temperature behavior of the viscosity, and the re-
quirement that they also describe the derivatives properly
is a heavy one, one that goes beyond the design of the
various proposed descriptions. We believe that the
behavior of E ( T) is commensurate with the design of the
descriptions, and so it is this quantity that we study. To
clarify the point made here, suppose that the "exact"
viscosity were i) =a T exp [E/T], where a, x, and E are
constants. So long as x

~

( 1, we would be content, at our
current level of understanding, with a "theory" that de-
scribed g by an Arrhenius function, i.e. , x =0. However,
if, as in Ref. [3], we tested for Arrhenius behavior by
plotting d ( T d ln[g]/dT)/dT, which would be 0 for Ar-
rhenius behavior, we would find that it was equal to x,
and we might therefore conclude, unconstructively, that
our "theory" was poor.

(2) Parameter count Countin. g of adjustable parame-
ters is not always a trivial task. Temperature- and
species-dependent parameters are adjustable for each T,
and each species. Although such parameters are used in
the universal susceptibility fits of Dixon et al. [4], in
studies of viscosity one does not usually encounter such
parameters because the Atting formulas explicitly address
the problem of the T dependence. T-independent, but
species-dependent parameters must be adjusted for each
substance. CutofF temperatures enter as adjustable pa-
rameters, be they high-T or low-T cutoIts or both. Where
a species-dependent crossover temperature T„ is intro-
duced to separate two regimes of qualitatively difFerent
behavior, T„., must be counted as a parameter. (This
crossover temperature appears as an upper or lower
cutoff temperature for the fits in each individual region. )

Finally, there are the universal dimensionless constants,
which ideally should be given by theory, but even when
obtained by empirical adjustment they contribute little to
the parameter count if the analysis involves many
difIIerent substances.

(3) Corresponding states. By corresponding states we
mean that relevant quantities [for all substances, at all
temperatures, frequencies (co) and times] can be scaled in
terms of a small number of adjustable parameters and
placed on a single, nontrivial master curve. Figure 1 is
such a curve for the T dependence of E(T), and Dixon
et al. [4] have obtained such a curve for the imaginary
part of the dielectric susceptibility c,"(T,m). The search
for corresponding states may come at the cost of small
deviations due to specific molecular behavior. An impor-
tant goal in the present case is that the description should
apply to all supercooled liquids: network (strong), molec-
ular (fragile), hydrogen-bonded, and polymeric liquids.



53 INGOF VISCOSITY DIY: DISTINGUISHING THE ~ ~ ~ 753

(4) I'h siysical implications offits. If
corporates a temper t

g 0 ts. If ua ln-

0 P P

sition at th
p icit assum ption that there is

iver e
a phase tran-

character ~ ~ .-".- T
re. a fittin for

a crosso
re, there is

im li

re, an implication f
mechanisms. 8 han relaxation

0

(5)
e subject to inde

uc
P

g g

are as follows.
o t e viscosity and relaxat'a ion times

i) Those wiwith as few adjustable parame parameters as possible,

()Tho th f phase chan es
e, e.g. , with as f

g and crossovers
e .,

'
ew "iver enc

s as

g
'va ives) as

inuities

d d tl dy an thermod nam'
ese can be

ynamically established.

sible i
i as ew novel and s e

'

P P

the corn licat'
remain

'
oas simple as o

s pos-

P

Ex

ca are independently substant'are inde en an iat-

xcept for the ra i
as Td

rapid increase in

11 uids
ar ~, the behavi

ase on phase c
a consequence

an mechanisms are d'fB
e crossover of

f 1 1
' of h d

h'u h'd fiect a
' '

etermination f ha e nitive de
C

e ransition at tern
o w eth-

ture T
g g P

ig. oes not re ui
e master

perature (T ) h
quire that there be a 1

p ase transition.
e a low tem-

d ""b'''h
Thil to 1„, fi, h

tween T
s t e data at alls all temperatures be-
i g perature.

c 1s im 11cdp
'

d continuity of me ', s

that h

mechanism, most f

ave been used t
eoreticall

' '
esy inspired expres

dence
o Uescribe the

essions

P

-1,--
cpcn-

ver a limited part of the
app ied successfully

P - iqu1 temper-

t t t 1c ura relaxati
a c ange

h
sion s.

ese fitting expres-

ACTIVATION ENERGY AY AND THK ARRHKN
FUNCTION

IUS

where is
'

o

(2a)

g0 is independent of T.o . In this case , g0 neecI not
n„, an i ~ oo the activation ener

E T o o „,so that E (T) '
erusually differ

, as indicate
CI S

elation

rt T)=rioexp[EO(T)/T, T( TCQ

dby ther

E ( T)=Eo( T)+ T lnin[poly„j, T (T„. (&b)

Of course, such a fit cc a t cannot describ
peraturc range. The E

'be data over the entir
?) res

e entire

fit, i.e., one with
g rom a low-TA—

wi constant E ( T or, is shown for

10

8

2 —
I

250
I I

350 400 450

Temperature (K)
500

this high-T data
deependent paramet

ata contains th

cutoff
eers g and E e

cu off temperature T
e ower

1 1 ight attempt to fit an Arrh

analyzin a fi
'

g a tting formula w' h
ver, care must bee exercised in

effective activati
u a with a particular

elow a cutoff tern perature:
that is restricted to use

If the activa
''vation energy in E .

fi T d ds eci, - epen ent constant E ( T =
',h h

aainFi. 1

s. glance a
g. and that obtained

at the scaled

ig. 2 indicates that an Arr
cribes the viscosit

a an Arrhenius ex-

ba ove a cutoff

'
n time well

temperature T
e e melting tern

QQ, which 1s
mperature T . A fit to just

FIG. 2. iscosity activivation energy E ( T) for
.03 X 10

, experi e a poi [
n- imited domains Eq. ( ) (

rrhenius: E ( T) =) Eo+ Tl [gn/—) — 0 g, hih-Tig -T VFT:

——,ow-T VFT: D=10.4 T =
ween 243 and 293 K [7].



754 KIVELSON, TARJUS, ZHAO, AND KIVELSON 53

OTP in Fig. 2; the cutoff temperature is in the vicinity of
275 K, well below the melting temperature T =331 K.
This fit depends upon the three parameters I pa, ED, T„j,
and additional parameters are required to fit the data
above T„.

VOGEL-FULCHER-TAMMANN

One method of describing the temperature-dependent
activation energy is by means of a generalized Vogel-
Fulcher-Tammann expression

EvFr( T) =DT[ TD I( T T0) ]—', (3)

where D, TQ, and x are temperature-independent con-
stants. D and To are species dependent, whereas x is as-
sumed to be universal. Although it is by no means clear
what exponent x gives the best fit [8), for simplicity in the
face of the fact that this expression gives only modestly
good fits regardless of the value of x, one normally
chooses x=1. Thus what is often used is the simple
Vogel-Fulcher-Tammann (VFT) equation [1]

EvFr( T) =DT [ Ta I( T—TD ) ] (4)

The use of Eq. (3) or (4) implies much about one's view of
supercooled liquids. In particular, it implies a diver-
gence, and hence a phase change at T0. A phase change
to what? Although its structure is usually not specified,
the resultant phase is sometimes called an ideal glass.
The ideal-glass phase-transition temperature T0, also
called the VFT temperature, lies well below T, and so it
is dynamically inaccessible. By this one means that if the
temperature is 1owered to T0, the system wil1 have been
nonequilibrated from Tg downward. Because of the very
rapid increase of g with decreasing T; it is not unreason-
able to fit the data to Eq. (4), but such a divergence is not
required because a rather modest, nondiverging increase
in E(T) can account for the observed rapid increase in
g(T). The parameter D is sometimes called the fragility
constant: liquids with small values of D, under about 12,
are called fragile, while those with large values, above 20,
are called strong. The former are often molecular glass
formers, whereas the latter are often network systems [1].

Although it can be rationalized in terms of a number of
models, including a free-volume approach [9], there is at
present no generally accepted theory that yields the VFT
equation. But the postulate that there is a divergence at
(or near) T0, and consequently a phase transition is sup-
ported by the observed temperature dependence of the
entropy of melting, AS,&, . This quantity decreases quite
markedly as the temperature is lowered below the melt-
ing point, being reduced at T to about 20% of its value
at the melting point [1]. Furthermore, an extrapolation
of the data to temperatures below T suggests that the
entropy of melting vanishes at a temperature (the
Kauzmann temperature) in the vicinity of TD [1]. It has
been thought, quite reasonably, that the correspondence
of this thermodynamic divergence, i.e., of AS,&„ togeth-
er with the dynamic VFT divergence, i.e., of g, argued
for a low-temperature phase change near TD. But no crit-

T ' ACTIV ATION ENERGY

Fits with Eq. (2a) and E0(T) given by

E0( T)= A /T', T & T„, (5)

where 3 is a species-specific parameter and z a universal
exponent, have also been attempted [16—19]. No critical
divergence at any nonzero temperature is implied in this
expression. In particular, Bassler [18] investigated the
fits with z=1. He obtained good fits for the viscosity
data above about 10 P; this implies an upper-cutoff tem-
perature T„, which for OTP is about 275 K. Further-
more, he set A = ( CT~ ) and pa= q~ exp( —C ), where q~
is the measured viscosity at the glass temperature T .
Thus, in addition to the cutoff temperature T„above
which this formula does not work, one can make use of
either C and T~, or of g0 and A, as the adjustable param-
eters. Bassler found that the C's were fairly constant for
classes of liquids, i.e., fragile and strong, but we neverthe-
less believe it must be taken as an adjustable parameter.

We have used the parameters given in Ref. 2 to con-
struct an E(T)-versus-T-curve for the Bassler model for
OTP; see Fig. 3. Besides the fact that this formula has a

ical theory built about this low temperature critical point
has been fully successful [10—12]. Not only do conven-
tional critical theories predict less dramatic increases
than observed in 71(T), they predict diverging correlation
lengths and corresponding divergences in the order pa-
rameter susceptibility and in associated thermodynamic
quantities, none of which have been observed. In fact, no
rapidly increasing correlation length has been unambigu-
ously distinguished [13]. However, recently Menon and
Nagel [14] have presented an analysis that leads to a
divergence near TD in the dielectric constant (a non-
dynamic, structural quantity), provided one assumes a
corresponding divergence (such as that given by the VFT
expression) in the a-relaxation time.

Use of the VFT equation involves an activation energy
given by the expression in Eq. (2b), with E0(T) given by
the expression in Eq. (4). The VFT equation has been
fitted separately to both the high- and low-T viscosity
data [15]. Fits to the data below an upper cutoff T„de-
pends upon the four adjustable parameters Iga, D, TD,
and a high-T cutoff temperature T„I, and it yields TQ's
that are comparable to the Kauzmann temperatures. The
fit of this low TVFT a-ctivation energy E(T) for OTP,
with the parameters given in Ref. [7], is shown in Fig. 2.
The fit below the cutoff T„=293 K is quite good, but, of
course, in this case it requires the four adjustable parame-
ters I pa, D, TD, T„]just to describe the data at tempera-
tures below T„. To fit the high-T data above T„, one
would need additional parameters.

The VFT fits to the high-T data also depend upon the
four adjustable parameters I pa, D, TD, T„],where T„ is
now a low Tcutoff tem-perature. (Note that g0%rl„. )

The results for OTP, obtained with the parameters given
in Ref. [7], are shown in Fig. 2; the cutoff' temperature
used [5] in the fits is 257 K, but even the fits above this
temperature are, at best, only fair.
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vs T. See Eqs. (1), (2a), and (2b). g„=1.03X10 P and
E„=3150 K. o, experimental points [6,7] [Eq. (1)].
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MCT power law [Eq. (6)]: E ( T)
= T[ —y ln[(T T, )/T, ]+In[g, /rl„]—], where T, =290 K,
y=2. 55, and go=1.74X10 3 P [29]. ———,Bassler model:
E( T) = T{ln[r)0/7)„]+AT ], with In[rlo]= —53.8 and
A =4.73 X 10 K' [2].

theoretical basis, it is interesting because it gives reason-
able fits at T's below 275 K with only the three species-
specific adjustable parameters, I A, go, T„f. However, to
fit the data at T s above T„,more parameters are needed,
at least two if one requires that the temperature deriva-
tive of rI( T) be continuous at T„. Note that in Fig. 3 we
present E ( T), not Eo( T).

A scaling procedure that is similar to that of Bassler,
but that does not depend on a particular fitting form, is
that proposed by Rossler [2]. In this approach, in[a] for
a group of fragile liquids is plotted versus T/T„where
T„ is an adjusted glass transition temperature, adjusted
for each substance so as to obtain the best single-curve
representation of all the liquids for viscosities in excess of
10 P. To the extent that such a single curve represents
the data, the procedure is equivalent to a fit with two ad-
justable and one or more universal parameters (e.g.,
Bassler's adjustable T and T„, and his "universal" C
and z); of course, if one includes nonfragile liquids in the
study, then the single-curve scaling no longer holds (e.g.,
Bassler's parameter C is no longer universal}. For
viscosities below 10 P, this scaling procedure breaks
down, and more adjustable parameters are needed.

g(T)=g, [(T T, )—/T, ] r, T& T, , (6)

where g, and T, are species-dependent, temperature-
independent parameters, and y &0 may or may not be
species dependent. It has been reported that better fits to
the viscosity data in a low-temperature range (but still
above Tg) can be obtained with Eq. (6) than with the
VFT formula, but the exponent y takes on values of
about 11 or 12 [20]. Such large exponents are not compa-
tible with ordinary critical theories. Although the T, s so
obtained are not equal to the To's of VFT fits, they are
also below T .

A different outlook on supercooled liquids is given by
mode-coupling theories (MCT). These are dynamical
(rather than the usual thermodynamic) critical theories,
and in their extended form they are built about an avoid-
ed dynamic critical point T, . In common with usual
thermodynamic critical theories, the MCT predicts
power-law divergences with rather modest exponents y.
Because, as explained above, fits to Eq. (6) for data near
Tg yield very large values of the exponent y, early ver-
sions [21] of the MCT, which associated T, with a tem-
perature at or below T, were discarded. However, more
recently, Gotze [22] has suggested that the dynamical
critical temperature should not be associated with a tem-
perature as low or lower than T, but with a temperature
T, that lies below the melting point T, but well above
Tg. Well above such a T„one can fit the data to Eq. (6)
with an exponent y between 2 and 3, as is suggested by
MCT at its simplest level. This fit requires four parame-
ters: y, T„g, and a low-T cutoff temperature T„,which
lies above T, and below which the fit is clearly poor [23].
Thus, from a purely fitting point of view, this expression
does little, particularly since it excludes from considera-
tion the most rapidly varying g(T) data at temperatures
below T„. But to the extent that the theory can yield in-
dependent or interdependent values of y and T„Eq. (6)
remains interesting. Values of MCT fits of E( T) for OTP
are given in Fig. 3.

Of course, it is clear that ~~ does not actually diverge at
an intermediate temperature T„and an extended MCT
introduces hopping mechanisms which lead to an
avoidance of the critical point at T, [22,24]. Near and
below T„where the collective a modes relax very slowly,
hopping is thought to compete effectively with the collec-
tive modes. Thus, although the simple theory predicts a
critical divergence in g as one approaches T, from above,
the extended theory allows hopping to take over at tem-
peratures somewhat above T„and allows it to keep both
the relaxation time and g finite at and below T, . Al-
though there is no theory for the hopping motions, the
characteristic relaxation times are generally thought to
vary as an Arrhenius function, goexp[Eo/T] [24]. The
total picture is then equivalent to describing the
intermediate-T regime ( T & T & T, } by the MCT curve

POWER-LAW FITS

Since ordinary critical theories tend to yield power-law
divergences, one might also try to fit the viscosity to a
power law:
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FIG. 4. Scaled viscosity or a-relaxation activation energy vs
[(T*—T}/T*]'~' for all liquids indicated in Table I. X=rI or
~. Parameters given in Table I are determined by means of Eqs.
(1), (7a), and (7b). See Fig. 1 for symbols. The line is the fit of
Eqs. (7a) and (7b).

in Fig. 3 and the low Tregime ( T-& T, ) by the low TAr-
rhenius curve in Fig. 2. Thus, in addition to the parame-
ters needed to fit Eq. (6) in the temperature regime well
above T„at least two extra parameters are needed to ex-
tend the fits down to T, even if one excludes from con-
sideration the crossover temperature regime in the vicini-
ty of the avoided critical point T„and the behavior for
T& Tm.

MCT fits suggest a change in relaxation mechanism as
rejected in power-law T dependence above and Ar-
rhenius dependence below a T, that 1ies between the
melting point and T; such changeover behavior has been
reported [2,7,24], but the smoothly varying, strongly
temperature-dependent, experimentally determined ac-
tivation energies, reported in Figs. 1 —4, argue for a
different interpretation. Other analyses [25] of data also
argue against a change in relaxation behavior at a tem-
perature between T and T .

FRUSTRATION-LIMITED DOMAINS

A rather different fitting formula, which does not ir."p.y
a low-temperature divergence, has been presented in
which the activation energy has the form [5,26,27]

E (T)=E + T*B[(T —T)/T*]~8( T' —T), (7a)

where 8(T —T) is a step function which is 1 for T & T

This formula fits the data well over the entire measured
temperature range. See Figs. 1 and 4 and Table I. It
leads one to a very different picture than do the fitting
formulas discussed above, one in which an appreciable in-
crease in E (T) occurs as T is lowered, along with a corre-
sponding dramatic increase in rl(T), but in which there
are no divergences.

So one turns to a very different theory if one accepts
the fits in Eqs. (7a) and (7b) than if one accepts the fits
with the other equations given above. A theory that
focuses on self-forming frustration-limited domains
(without the imposition of quenched disorder}, and on an
avoided high-temperature critical point T* (in contrast
to the low-T critical points associated with the other for-
mulas) has recently been presented [27]; in this theory T
represents not the ultimate congestion, as do the critical
points in the other theories, but the temperature below
which collective motions begin to play a role. Below T*.

this approach, supported by the success of Eqs. (7a} and
(7b) in fitting the data, as well as by statistical mechanical
model calculations, suggests a single dominant structural
relaxation mechanism all the way from T* down to T .
The theory also suggests that T*~ T [5,27]. See Table
I.

Fits to the data with Eqs. (7a) and (7b) can be made
over the entire measured temperature range. These fits
involve the four species-dependent parameters [rI„,E
B, T*I, and the universal parameter y =—,'which we shall

take as given. In those liquids (such as o-terphenyl de-

picted in Figs. 2 and 3), for which data are available over
a wide temperature range from well above the melting
temperature down to T, one can fit the two parameters

and E by using only data at temperatures well

above T*, and once these parameters are determined one
can fit 8 and T* to the low-temperature data; this is
equivalent to fitting two parameters in each of two in-

dependent experiments. Unfortunately, for many liquids
the temperature range of available data is somewhat lim-

ited, and all four parameters must be evaluated simul-
taneously.

In examining the fits of Eqs. (7a) and (7b) we can also
take a different point of view by trying to establish the
value of y empirically. We have done the latter by fitting
the available data for 14 liquids with different values of
the parameter y. Fits with y =3 were given in Ref. [5],
and fits with y =—', were given in Ref. [27] and in Figs. 1

and 4 and Table I of this article. We have also made fits
with other nearby values of y. The fits are not very sensi-
tive to the value of y, provided y is in the range —', to 3,
with the best fits obtained with y =—', . The sum of the

squares of the deviations was about 10% smaller for y =—',

than for y=3 or —', ; in this range of y values, 8 and T
change only slightly, but, of course, their changes are in-
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terrelated. Thus the value y = —,
' can be established exper-

imentally as well as theoretically.
Of course, the conclusion concerning the success of the

fits in Fig. 4 is, to some extent, a matter of judgment.
One sees that the glycerol data appear to deviate some-
what from the scaling curve at low T's. It should also be
mentioned that the theory underlying Eq. (7a) is valid
only for T (T*, and for temperatures just around T* it
is merely an interpolation formula.

GLOBAL FITS

We have compared various fitting formulas For viscosi-
ty and e-relaxation times in what we believe to be a con-
sistent manner that is useful in discriminating between
various models. All our fits are semilog fits with no other
weighting. Rather than examining in[i'], in[a/rlo], or
Eo(T), we have examined E(T)=T in[g/g„], where all
these quantities are specified in and around Eqs. (1), (2a),
and (2b). Where fits are made to data from a limited
range of temperatures, the cutoff temperature must be in-
cluded as an adjustable parameter.

In this paper Eqs. (7a) and (7b) have been used as a
four-parameter global fit, i.e., a fit over the entire temper-
ature range for which data are available from well above
the melting point down to T . All other fitting formulas
are explicitly restricted to limited temperature ranges for
which cutoff temperatures become part of the set of ad-
justable parameters; consequently, global fits that require
continuity but allow adjustable cutoff temperatures have
a large number of adjustable parameters. A number of
these have been discussed by Fischer [28] and by Stickel,
Fischer, and Richert [5].

For global fits that use different fitting formulas for the
high- and low-temperature regimes two parameters (the
two cutoff temperatures) can be eliminated by imposing
the condition of continuity at the crossover temperature
T&, the temperature at which the high- and low-T ex-
pressions cross. (Tz is not an independent adjustable pa-
rameter. ) Only five adjustable parameters are then needed
for such global fits with procedures consisting of (a) a
low TVFT plus a-high-T Arrhenius function, or (b) a
high-T VFT plus a low TArrhenius fu-nction, or (c) a
high-T mode coupling and a low-temperature Arrhenius
function. (A high-T mode-coupling plus a low TVFT fit-
requires six parameters. ) Reasonable fits to the data (but
not necessarily reasonable physics) can sometimes be ob-
tained in this way, but since they involve five or more pa-
rameters we shall not pursue them further.

There are, however, a number of global fitting pro-
cedures that require fewer parameters. Procedures that
use (d) a low TArrhenius plus -a high-T Arrhenius func-
tion or (e) a low-T Ba.ssler plus a high-T Arrhenius func-
tion incorporate only four parameters. Fits making use
of these procedures, as well as those obtained by using
Eqs. (7a) and (7b), are illustrated for OTP data in Fig. S.
The y values (the square of the differences between fitted
curve and data points) are 24, 11, and 6 for the double-
Arrhenius, the Bassler plus Arrhenius, and Eqs. (7a) and
(7b) fits, respectively. (These numbers are meaningful

only when compared to fits over the same data points. ) It
can also be seen in the caption to Fig. S that the preex-
ponential factors are not physically reasonable for the
double-Arrhenius and Bassler plus Arrhenius fits.

Additionally, a global fit that makes use of (f) a low T-
VFT plus a high-T Arrhenius function, and which also
requires that the preexponential factors be equal, makes
use of only four parameters. This fit is also indicated in
Fig. 5. For this procedure, the g value for OTP is 12,
while, as indicated above, for the Eqs. (7a) and (7b) pro-
cedure it is 6. [Because there is considerable high-quality
dielectric data available for the fragile liquid salol, we
also compared its g =3 for procedure (f) with its y =0.2
for Eqs. (7a) and (7b).]

One can conceive of three-parameter global fitting pro-
cedures. One can develop such a procedure with two Ar-
rhenius functions or with a low-T Bassler plus a high-T
Aarhenius, in which one additionally equates the low-
and high-T preexponential factors. However, we were
unable to obtain reasonable fits with thes procedures, the
y values for OTP being in excess of 50.
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FIG. 5. Four-parameter fits for log, o[g) vs temperature for
orthoterphenyl. 0, experimental points [6,7].
frustration-limited domains [Eqs. (7a) and (7h)], with

= 1.03 X 10 ' P, E =3150 K, 8 =412, and T =350 K.
y =6. , g=max[t)„exp(DTo)/(T To)] for T & T~, —
g„exp[E„/T] for T& T~ j. T„=363 K, TO=208 K,

= 1.03X 10 5 P, and E =3125 K. D =6.48, y2= 12.
—,q= max[ qoexp[EO/T] for T & T~, g„exp[E„ /T] for

T & T, j. T„=308 K, q„=1.03 X 10 ' P, q, =1.12 X 10 44 P,
E =3150 K, and E0 =30791 K. y =24.
g=max[goexp[CT„ /T ] for T & T~, q„exp[E„ /T] for
T& T„j. T~ =300 K, g =1.03X10 5 P, go=8. 2X10 ~4 P,
E =3150 K, and C=1.6X10 K. y =11.
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It seems reasonable, therefore, to conclude that to date
the best global fit to the data is provided by Eqs. (7a) and
(7b). Not only when applied over the entire studied tem-
perature range above T is this form parameter lean in
comparison with most other fitting formulas, and better
than other extant four-parameter fitting procedures, but
this procedure also implies that below T the viscosl, ty, as
well as its temperature deriuative, are continuous functions
of T, that below T there is no temperature at which a
diuergence (not even an inaccessible or avoided one) need
be incorporated, and that there is no need to postulate a
change from one a relax-ation mechanism to another in the
range bet&veen melting and T . A single mechanism ap-
pears to dominate over the entire range below T*, and if
this is the case, the mechanism is likely to be a collective,
nonmolecular one. This point of view is taken by the
theory of self-forming frustration-limited domains [27].

In Figs. 1 and 4 we have illustrated the corresponding-
state character of the fits to Eqs. (1), (7a), and (7b) over a
large temperature range. Because of this scaling, we fo-
cused only on the single liquid OTP, a liquid that exhibits
the full range of liquid and supercooled liquid behavior,
i.e., Arrhenius behavior above a crossover and non-
Arrhenius behavior below it. Many studies of liquids
have been limited to one region or the other, and so can
be described adequately by one of the many limited-range
fitting formulas, but the full-range problem is the topic of
study here.
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