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Simulation of multicomponent fluids in complex three-dimensional geometries
by the lattice Boltzmann method
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We describe an implementation of the recently proposed lattice Boltzmann based model of Shan and
Chen [Phys. Rev. E 47, 1815 (1993);49, 2941 (1994)] to simulate multicomponent 11ow in complex three-
dimensional geometries such as porous media. The above method allows for the direct incorporation of
fluid-fluid and fluid-solid interactions as well as an applied external force. As a test of this method, we
obtained Poiseuille flow for the case of a single fluid driven by a constant body force and obtained results
consistent with Laplace's law for the case of two immiscible fluids. The displacernent of one fluid by
another in a porous medium was then modeled. The relative permeability for different wetting fluid sat-
urations of a microtomography-generated image of sandstone was calculated and compared favorably
with experiment. In addition, we show that a first-order phase transition, in three dimensions, may be
obtained by this lattice Boltzman method, demonstrating the potential for modeling phase transitions
and multiphase flow in porous media.

PACS number(s): 47.55.Mh

I. INTRODUCTION

Fluid Aow in porous media plays an important role in a
wide variety of technological and environmental [1] pro-
cesses such as chromatography, oil recovery, the degra-
dation of building materials, and the spread of hazardous
wastes in soils. The displacement of one Auid by another
also exhibits a rich variety of pattern formation including
a fractal or self-affine growth morphology [2]. Such
diverse behavior is a consequence of growth mechanisms
that depend on the Iluid properties (such as viscosity or
surface tension), the structure of the porous medium, and
the external driving force that displaces the Auids. The
complexity of multicomponent Auid Aow in random
porous media makes it theoretical and experimental
study a great challenge.

Recently there has been significant progress in the de-
velopment of computational Auid dynamics methods
based on cellular automata [3,4] ideas called lattice gas
automata (LGA) and lattice Boltzmann (LB). Early ver-
sions of LGA and LB methods were plagued by systemat-
ic problems such as velocity-dependent pressures and the
lack of Galilean invariance. However, key progress has
been made in both LGA and LB methods, such that the
above well-known problems are essentially resolved
[5—9]. Also, for many applications, LB algorithms have
been simplified through use of the single relaxation time
scheme of Bhatnager, Gross, and Krook [5,7,8, 10].

LGA and LB methods have shown great potential for
the modeling of multicomponent Auid flow in porous
media [11]. LGA and LB methods can naturally incorp-
orate interactions between different fluids and between
Auids and solids. Furthermore, LGA and LB methods
are ideally suited for computation on parallel computers

since most algorithms only depend on nearest-neighbor
information. Over the past few years, there have been
several efforts to extend LGA and LB methods for the
study of immiscible Auids and Aow in porous media. The
first LGA model of immiscible fluids was formulated by
Rothman and Keller [12]. In addition to the usual col-
lision dynamics of LGA, they model immiscible Auids by
introducing a mechanism that, according to information
at neighboring lattice cells, alters the particle distribu-
tions at each lattice cell enabling the pressure tensor to
become anisotropic near the Auid-Auid interface. This
mechanism redirects the momentum of particles of each
given Auid component according to the gradient of a
"color" field defined by the spatial distributions of the
components. As a result, an effective surface tension
force is produced that separates different Auids. This ap-
proach was first extended to LB methods by Gunstensen
et al. [13,14] and further developed by others [15,16],
and has been applied to the study of multicomponent
Row in porous media [17].

More recently, an alternative LB approach to modeling
immiscible Auids has been developed by Shan and Chen
[18,19] (SC). Their approach involves the introduction of
an external force at each cell as a function of neighboring
cell properties. This force is used to modify the momen-
tum values in the equilibrium distributions at the cell. A
distinct feature of this formalism is that, although at each
local cell there is a gain or loss of momentum, the global
momentum conservation of the system is still exactly
satisfied when boundary effects are excluded. Further-
more, all forces on a Auid can be easily related to an in-
teraction potential. In contrast to earlier LB methods,
this approach also has the capability of modeling thermo-
dynamic first-order phase transitions [20] in single-
component Auid. Earlier results of SC were presented for
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the cases of two-dimensional (2D) hexagonal and four-
dimensional face-centered hypercubic (FCHC) lattices.
In this paper we adopt this latter formalism to study the
Aow of a multicomponent Auid subject to gravitational
and surface tension forces in complex three-dimensional
geometries such as porous media.

This paper is organized in the following way. In Sec.
II, a brief review of the LB method and the concept for
dealing with Auid interactions is then given in Sec. III.
The projection of the 4I3 FCHC LB model to the three-
dimensional space, which is an extension of the 3DQ19
LB model of gian, O'Humieres, and Lallemand [7] is then
described in Sec. IV. To make a connection with the
original 40 model, we compare, in Sec. IV, the simula-
tion result of a erst-order phase transition in the 3D mod-
el of a single-component Auid at the critical point with
the theory. We next show, in Sec. V, how to introduce a
constant force on a Auid such as gravity. As a test case,
we simulate Auid Aow between parallel plates driven by a
constant gravitational field and obtain Poiseuille [21]
Aow. In Sec. VI we describe the modeling of surface ten-
sion forces between two Auids. Section VII describes a
simple ansatz to incorporate forces between a Auid and a
solid wall. We show that arbitrary static contact angles
may be obtained by varying the surface tension force.
This is followed by Sec. VIII in which we combine the
above techniques and present results of simulations of
multicomponent Auid Aow in porous media. A relative
permeability curve for wetting and nonwetting Auids was
calculated using a porous medium based on a microto-
mography image of sandstone. Relative permeability re-
sults are compared with recent experiments. Section IX
contains conclusions and comments.

II. LATTICE BQLTZMANN METHOD

In this section we present a brief description of the LB
method. The basic approach of the LB method is to con-
struct a lattice on which one solves for the evolution of a
particle distribution function that obeys a lattice
Boltzmann equation (in contrast to the LB method, the
LGA method describes the evolution of individual parti-
cles on a lattice). The distribution function n, (x, t),
where the superscript o. labels the Auid component and
the subscript indicates the velocity direction, is the
amount of particles at node x, time t, and velocity e,
where a =1„.. . , b. The magnitude of e, is equal to c,
the lattice constant divided by the time step. Macroscop-
ic quantities such as density p (x, t) and Quid velocity u
of each Auid component o. are then easily obtained from
these distributions as simple moment sums

p (x, t)=pm n, (x, t)

n, (x+e„t+1)—n, (x, t) =Q, (x, t), (3)

Q, (x, t)=— 1
[n, (x, t) —n, 'q'(x, t) ],

where n, ' '(x, t) is the equilibrium distribution at x, t
and ~ is the relaxation time that controls the rate of ap-
proach to equilibrium. The equilibrium distribution can
be represented in the following form for particles of each
type [18]:

n ' '(x)=n (x) d ——u
1

0 0 c

1 dp
n 'q'(x)=n (x) — + e u

D(D+2) D+ 4 ege~.uu u
2c b

'
2bc

(7)

and dp is the fraction of particles with zero speed in equi-
librium. It has been shown that the above formalism
leads to a velocity field that is a solution of the Navier-
Stokes [9] equation with the kinematic viscosity [22] v,

S
ca~a 2

v —c (8)

where c is the concentration of each component. The
above form of LB equations is typically used for single
speed lattices such as the two-dimensional hexagonal
(b=6) and the four-dimensional FCHC (b =24). We
will later consider the projection from four dimensions to
three dimensions.

III. INTERACTION POTENTIAL

To model surface tension forces in multicomponent
Auids or Auids that are characterized by a nonideal gas
equation of state, the interaction potential V(x, x') can be
incorporated [18]:

V(x, x')=G .P (x)g (x'),

where Q, is the collision operator representing the rate of
change of the particle distribution due to collisions. The
collision operator is greatly simplified by use of the single
time relaxation approximation [5,7, 10]

g m g n, (x, t)e,
u (x, t)=-

p (x, t)

where I is the molecular mass of the o.th component.
The evolution of the particle distribution function
satisfies the lattice Bolizmann equation

where Q (x)=F (n(x)) is a function of n(x) and
G (x,x) is the interaction strength. Assuming that
6 involves only nearest-neighbor interactions for sim-

plicity, the rate of change of momentum at each site is

cr S b

(x)= —g (x)QG g iI'j (x+e, )e, .
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The new momentum at each site for each component
then becomes

dp
n (x)u'(x)=n u(x)+r (x),

dt

where u' is the new velocity used in Eqs. (5) and (6).

IV. PROJECTION FROM FOUR
TO THREE DIMENSIONS

To carry out calculations in three dimensions we pro-
jected the above formalism from the 4' FCHC lattice to
the D3Q19 model described by Qian, d'Humieres, and
Lallemand where D is the dimension and Q is the number
of velocity directions (or states) [7]. The projection in-

volves doubling the population of states that have a single
nonvanishing velocity component. For instance, a corn-
ponent corresponding to the velocity vector (1,0,0) in the
D3Q19 model is a combination of the (1,0,0, 1) and
(1,0,0,—1) components from the 4D FCHC lattice (see
the Appendix). By combining such components one ar-
rives at the following equilibrium equation from Eqs. (5)
and (6):

n, 'q'(x)=t, n (x)[1+3e, u+ —,'(3e, e, :uu —u )], (13)

where we have taken d0= —,', 6 =24, a=4, c =2, and

here t, =
—,', and t2= —,', . Equations (12) and (13) were

originally obtained by gian, d'Humieres, and Lallemand
[7].

While the form of the interaction potential and force
term [Eqs. (9) and (10)] is the same for both D3Q19 and
the FCHC lattice, care must be taken to carry over re-
sults from four to three dimensions. Consider the case of
a nearest-neighbor interaction in four dimensions. As-
suming there is no variation of density along the fourth
dimension, the force equation can be written

o S
(x)= —P (x)+6 gg (x+e, )e,

dt
0

dimensions corresponds to a potential that couples
nearest and next nearest neighbors in the D3Q19 lattice
model. In this case,

d S
(x)= —P (x)g g 6' g (x+e, )e, ,

dt

26 for ~e' =1
6' = 6 «r le'I=&2

0 otherwise,

where G is a constant. To test this approach we tried
modeling a first-order phase transition as described by SC
[18]. Here we take f(x)=1—exp[ n(x)]. —The predict-
ed value of the critical coupling [18], where the phase
transition takes place, is 6, = —4(1 —do)/b =

9

(d =—' b =24). Figure 1 shows the difference between0
the maximum and the minimum density in a single Quid

as a function of G. Clearly there is a transition to two
phases at the predicted value of 6, .

V. EXTKRNAI. FORCE: GRAVITY

It is straightforward to introduce the action of a con-
stant body force, such as gravity, on the Quid. The force
term is simply dp(x)/dt=gn (x), where g is the gravita-
tional constant. The new momentum is then

n (x)u'(x)=n (x)[u(x)+r g] .

As an initial test of this force term we try to simulate
Poiseuille Aow where a constant body force drives a Auid

+g P (x+e, )e,

+g g (x+e, )e, (14)

where a0 includes states that have zero fourth com-
ponents and a+, a correspond to states that have posi-
tive and negative fourth components, respectively. Note
that states with zero fourth components correspond to
the diagonal states in D3Q19. Therefore we can write

0—
0. 12 0.14 0.16 0.1B

(x)= —g (x)+6.. g P (x+e. )e.
dI ~' ~lag

+2 g g (x+e, )e,
nondiag

(15)

As can be seen, the nearest-neighbor interaction in four

FIG. 1. Phase diagram showing the maximum diA'erence of a
single Quid's density Ap (here I= 1) as the interaction
potential's strength 6 is varied. The X's correspond to data
from numerical simulations. The solid line is included to guide
the eye. The phase transition takes place near the predicted
value of GQ 9.
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between two parallel plates. The simulation should pro-
duce a parabolic [23] velocity profile with the maximum
velocity in the center of the plates. Figure 2 shows a ve-
locity profile generated in our simulation. The solid line
is a fit to a parabola. To obtain the so-called no-slip
boundary condition (zero velocity at the wall) it is com-
mon practice to use the "bounce-back" [24] method
where all particles hitting the wall are rejected back.
This method is only accurate to first order in the velocity
fields. Note that our solution, which is accurate up to
second order, was obtained by constructing a distribution
of particles at the pore-solid interface with zero net veloc-
ity at the wall. Here the distribution of particles going
out from the wall are set equal to their complementary
incoming velocity distributions while the complementary
distributions in the plane of the wall are set equal to their
average value producing a zero velocity equilibrium dis-
tribution. This new distribution is then evolved accord-
ing to Eq. (3). Recently, improvements over the bounce-
back method have also been made by Noble et al. [25],
which produce solutions of second-order accuracy.

VI. FLUID SEPARATION: SURI"ACE TENSION FORCE

The Quid-Quid interaction can be modeled by using
P=n (x) with G =0 and G Wo for ohio so that

o. S b

-(x)= n(x)g—G g n (x+e, )e, .
dt 0 a=0

By varying 6 we can control the surface tension force be-
tween the Auids. At large enough 6 two mixed fluids
separate and a well defined interface forms between the
fluids of ordcI two OI' more lattlcc spacings depending on
the strength of 6.

The pressure change across a Quid-Quid interface 6P is

well described by Laplace's [21] law

where y is the surface tension and ~ is the local curva-
ture. For a spherical drop ~=2/r, where r is the radius
of the sphere. SC demonstrated, in two dimensions, that
the pressure difference across the interface of Auids form-
ing circular disks of varying radii was consistent with
Laplace's law (here i~= 1 lr). To test our 3D code a series
of spherical drops were generated and the difference in
pressure inside and outside the drop was determined.
Figure 3 shows the pressure difference vs the curvature of
several different radius drops generated in our simulation,
which is in good agreement with Laplace's law.

VII. FLUID-SOLID INTERACTION

To describe the interaction between a Auid and a wall
we introduce the interaction force

f (x)= n(—x) QG, s(x+e, )e, ,

where s =0 or 1 for a pore or a solid, respectively. By ad-
justing the interaction strength G, (positive for nonwet-
ting Quid and negative for wetting Quid) for each fluid we
control which Auid preferentially wets a surface.

A contact angle t9 is defined as the angle made at the
point the Auid-Quid and the fIuid-solid interface meet.
Typically, a Quid is regarded as wetting for small contact
angle and nonwetting if the contact angle is large. We
find that reasonably well defined contact angles may be
obtained by adjusting the interaction strength 6, for
each Quid such that one of the fluids wets a surface. Fig-
ure 4 shows different static contact angles, obtained in
our simulations for different values of 6 . While any
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FICx. 2. Velocity profile obtained using the constant force
term of Eq. (16). The velocity is U, in units of (lattice
spacing)/(unit time step), and m is the distance from the center
of the channel in units of lattice spacing. The crosses are from
the simulation and the line is a fit to a parabola.

FIG. 3. Change in density (here m =1) across the surface of
a spherical droplet (6p) vs its curvature (sc). The slope of the
line i,s proportional to the surface tension.
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FIG. 4. Change of static contact angle as surface tension
forces are varied. The dark area represents one Auid and the
light area a second Auid. The two Auids are sandwiched be-
tween two plates. In the top panel the surface energies are the
same for both Auids. In each successive lower panel the surface
energies are adjusted so that the two-Auid interface relaxes to a
different static contact angle. In the bottom panel the dark fluid
completely wets the surface.

static contact angle may be obtained, there is no guaran-
tee that Auid dynamics near the contact line is correctly
simulated. Careful consideration must be made of several
issues such as the correctness of the interaction potential,
the equilibrium distribution, and the resolution near the
Auid-solid boundary. Further research is needed to deter-
mine how well our approach can model contact line
motion and what modifications may be needed.

VIII. FLOW IN POROUS MEDIA

With all the necessary forces determined, we are able
to model multicomponent Auid Aow in porous media.
The porous medium used in this study was derived from
a high resolution microtomography image of a Fontaine-
bleau sandstone [26]. Due to limits in computer memory
the microstructures used in the simulations were 64 sub-
sections of the original 224X288 microstructure where
the lattice spacing was of order 7.5 pm. The porosity was
approximately 15.2%.

Two cases were studied. In the first case we consider
the morphology of an invading nonwetting (wetting) Quid
that displaces a wetting (nonwetting) Quid in the porous
medium. In this simulation quasiperiodic boundary con-
ditions were maintained in the direction of the applied
force such that any Auid exiting the porous medium
reenters at the inlet and is converted to (or relabeled as)
the injected wetting (nonwetting) fiuid. As a result, the
total momentum and volume of both Auids is kept con-
stant at the boundaries. Periodic boundary conditions at
the inlet and outlet of the porous media were obtained by
either introducing a gap (a region of no solid) at the inlet
and outlet of several lattice spacings or by constructing a

mirror image of the porous medium across the plane be-
tween the inlet and outlet.

Figures 5(a) —5(c) shows the pore space, the pattern
formed by the invading nonwetting Auid, and the pattern
formed by the invading wetting Auid, respectively. In
Figs. 5(b) and 5(c) approximately 50% of the available
pore space has been invaded by the Auid. Note the
dramatic difterence in the pattern formation. In the case
of nonwetting invasion, the invading fluid pushes out the
wetting Auid by entering a pore and filling the region
somewhat like an expanding balloon filling a cavity. In
this process the nonwetting Auid gradually pushes out
most of the wetting Auid, except that near the solid sur-
face.

In the case of wetting invasion, the wetting Auid moves
along the surface and often traps the nonwetting Auids,
which is unable to escape through the smaller pores [see
Fig. 5(d)]. Our simulations are consistent with experi-
ments [27] that demonstrate that residual saturation of a
wetting Quid (for nonwetting invasion) may be consider-
ably smaller than the residual saturation of a nonwetting
iiuid (wetting invasion).

Since the computational time needed to reach steady
state in these injection simulations is very long (of the or-
der of weeks on typical workstations) we used an alterna-
tive approach to determine the relative permeability for
the wetting and nonwetting Auids as a function of satura-
tion. The two Auids were initially introduced in a uni-
form manner throughout the pore space (a similar ap-
proach was used by Gunstensen and Rothman [28] and
Auzerais et al. [26]). The relative permeability for each
Quid (wetting or nonwetting) was then determined as a
function of its saturation. The advantage of this method
is that steady-state Aow is reached in a much shorter time
interval, allowing for substantially more simulations.
The disadvantage is that by initially starting the system
as a mixture many regions may be more accessible than if
we had tried displacing one Auid by another, thus leading
to a diA'erent Auid morphology.

In general, we could calculate the relative permeability
by taking the ratio of the volumetric Aow rate of the par-
tially saturated system to the volumetric Aow rate of the
fully saturated porous medium for a given Auid and ap-
plied force. However, we found that in many cases the
response (change in volumetric Aow rate with respect to
driving force) of the Quid to an applied force was not
linear. For example, at intermediate saturations the
nonwetting Auid exhibited pinning effects at low driving
forces, resulting in little or no Aow. To determine the rel-
ative permeability in this case, a large enough applied
force was used such that the response to the applied force
was linear. The relative permeability was then calculated
by taking the ratio of the slopes of the volumetric Aow
rate vs driving force curve for the partially saturated sys-
tem and the fully saturated one.

Values of relative permeability, obtained from simula-
tion on a 64 cubed system for diferent saturation of wet-
ting and nonwetting Auids, are shown in Fig. 6. Included
are values from relative permeability experiments [27]
carried out on the same Fontainebleau sample used to
generate the microtomography image that was utilized in
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our simulations. Agreement is quite good despite the
smallness of our system (relative to that used in the ex-
periments) and diff'erence in initial conditions. Due to lo-
cal variation of the pore structure, system size is impor-
tant in the determination of macroscopic parameters

such as permeability [26j. Also, assuming that the
porous medium is homogeneous at a large enough length
scale, calculations of permeability using several smaller
systems will produce a distribution of permeability values
that becomes narrower as system size is increased. From

,c'.: 3w

(b)

(c)

FIG. 5. (a) Pore structure, obtained by x-ray microtomography techniques, used in Auid invasion simulations. The light region

represents the pore space. The solid portion was Inade transparent to reveal the pores. The porosity is 15%%ua. The small plane of pore
space at the bottom is where the invading Auid enters. (b) Pattern formed by a nonwettting Auid displacing a wetting Auid in the pore
space shown in (a). The nonwetting Auid fills the pores similar to a balloon expanding in a cavity. (c) Pattern formed by a wetting

Auid displacing a nonwetting Auid in the pore space shown in (a). The rougher appearance of the pattern formed by the wetting Auid

is due to it moving primarily along the solid surface. (d) Remaining blobs of nonwetting Auid as a wetting Auid displaces a nonwet-

ting fluid. Most of the blobs are pinned in the porous media. However, those near the top of the image will exit. When steady state
was reached, close to 18% of the remaining Auid was trapped nonwetting Auid.
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I ( I I I periment [27] at 97% saturation of nonwetting Quid was
0.92. For the same saturation using the LG method [26],
k„=0.95, while we obtained k, =0.94 using the LB
method described in this paper. Despite the good agree-
ment with experiment, the nonwetting saturation in this
case is so high it is not clear if this saturation regime pro-
vides a stringent test of either LG or LB methods. How-
ever, our calculations of the wetting quid's relative per-
meability show a dramatic drop in relative permeability
at moderately high saturations (80%), as seen in experi-
ments (see Fig. 6), indicating that our LB simulation
methods capture at least some of the important features
of the multicomponent Auid transport.

0.2—
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0.0 1 I I I I I I

0 80 40 60 80

percent saturation of wetting fluid

100

FIG. 6. Relative permeability values k„for difFerent satura-
tions of wetting Auid in sandstone. The filled squares corre-
spond to the nonwetting Quid relative permeability. The filled
triangles correspond to the wetting Quid permeability. The in-
verted box and triangle correspond to experimental data provid-
ed by T. S. Ramakrishnan of Schlumberger-Doll.

IX. CONCLUSION

We have applied the formalism of SC to the modeling
of multicomponent Quid Aow in complex geometries such
as porous media. Reasonably good agreement between
our simulation values of relative permeability and experi-
mental data was found. An advantage of this formalism
is perhaps its simplicity and transparency in interpreta-
tion of how to include external interactions. While our
results are encouraging, future research includes the test-
ing of this method for Bow of nonideal gases, Auids with a
viscosity mismatch, three-phase Aow, and improved accu-
racy of calculations near the solid surface.

additional simulations on 6ve difFerent 64 sections of the
sandstone image we found, for the case of an 80% satura-
tion of wetting fluid, that the average relative permeabili-
ty was about 0.27+0. 12, where the + value corresponds
to the spread of values obtained (the experimental value
was approximately 0.2). Given the resolution of our im-

age, it is doubtful that accurate estimates of the relative
permeability of the wetting Quid can be obtained at low
values (below 60%%uo) of saturation of our sample. Since
the wetting Quid is most likely to reside along a surface
forming a thin layer, our simulations cannot accurately
represent the flow of the wetting Quid without further im-
provement of resolution. Further studies include the
dependence of relative permeability calculations on sys-
tern size and resolution.

While at least qualitatively similar results have been
obtained by Gunstensen and Rothman [28], Fc,rreol and
Rothman, [29] and Chen et al. [15,30] using difterent lat-
tice Boltzmann methods, it is not clear how well their es-
timates of relative permeability would directly compare
with experimental data. A favorable comparison to ex-
perimental values of relative permeability for nonwetting
invasion using the lattice gas method was recently ob-
tained by Olson and Rothman [26]. Here, for compar-
ison, the value of relative permeability k„obtained by ex-
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APPENDIX

The D3Q19 model corresponds to the case where the
velocity of particles is limited to the following directions
in three dimensions: (+1,00), (0, +1,0), (0,0, +1),
(+1,+1,0), (+1,0, +1), (0, +1,+1), and (0,0,0). Here
there are a total of 19 components with the last corre-
sponding to rest particles. The 4D FCHC lattice model
limits velocities of particles to (+1,0, 0, +1),
(0, +1,0, +1), (0,0, +1,+1), (+1,+1,0,0), (+1,0, +1,0),
(0, +1,+1,0), and (0,0,0,0). Here there is a total of 24
components plus one corresponding to the rest particles.
As can be seen, D3Q19 is the same as 4D FCHC without
the fourth component.
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