
PHYSICAL REVIEW E VOLUME 53, NUMBER 1 JANUARY 1996

Theory of a critical point in the blue-phase-III —isotropic phase diagram
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In low to moderate chirality systems, there is a first-order phase transition between the isotropic
phase and the blue phase III (BP III) in chiral liquid crystals. Recent experiments [Z. Kutnjak,
C. W. Garland, J. L. Passmore, and P. J. Collings, Phys. Rev. Lett. '74, 4859 (1995); J. B. Becker
and P. J. Collings, Mol. Cryst. Liq. Cryst. 265, 163 (1995)] on high chirality systems show no
transition. This suggests that the isotropic phase and BP III have the same isotropic symmetry and
that there is a liquid-gaslike critical point in the temperature-chirality plane terminating a line of
coexistence. In this case the averaged alignment tensor (Q(x)) is zero in both the isotropic phase
and BP III. We introduce a scalar order parameter (@) = ((V x Q) Q) to describe both phases
and develop a Landau-Ginzburg-Wilson Hamiltonian in Q and Q, which can be motivated by a
coarse-graining procedure. Our model predicts that the isotropic-to-BP-III transition is in the same
universality class (Ising) as the liquid-gas transition. By looking at the fluctuations of Q around
the critical point, we obtain formulas for the light scattering and the rotary power, which are in
qualitative agreement with experiments [J. B. Becker and P. J. Collings, Mol. Cryst. Liq. Cryst.
265, 163 (1995)] and need to be checked quantitatively.

PACS number(s): 64.70.Md, 61.30.—v

Chirality in liquid crystals produces a fascinating ar-
ray of equilibrium phases with orientational structures
at length scales much larger than typical molecular di-
mensions. These phases include the cholesteric or chi-
ral nematic phase, blue phases [1,2], the chiral smectic-
C* phase [3,4], and the twist-grain boundary phase [5].
Three distinct blue phases (BPs) designated BP I, BP II,
and BP III have been identified in calorimetric, optical,
and other experiments [1]. The structures of BP I and
BP II are now well understood: both are cubic crystals
with unit cells characterized by a complex spatial pat-
tern of the alignment tensor Q(x), but with a spatially
uniform center-of-mass density. The space group sym-
metries of BP I and BP II are, respectively, 0 and 02.

There is as yet no consensus regarding the structure of
the BP III, or the blue fog, as it is often called. It has
been identified via calorimetric [6] and other measure-
ments [1] in a number of compounds as a thermodynam-
ically stable phase distinct &om the other blue phases.
It appears, however, to be homogeneous and isotropic
like the isotropic phase: no experiments have detected
evidence of icosahedral or bond orientational order sug-
gested by various theories [7—13]. Early light scattering
experiments, however, were best explained. by a random,
possibly isotropic distribution of double twist cylinders
("spaghetti model" ) [14,15]. Keyes has suggested [16,17]
that the BP III and isotropic phase, such as the liquid
and gas phases, have exactly the same symmetry and that
there could therefore be a continuous path between them

around a liquid-gaslike critical point terminating a line of
coexistence [18]. Recent experiments by Kutnjak et al.
[19] and by Becker and Collings [20] confirm the absence
of any BP-III—isotropic transition in the highly chiral liq-
uid crystal CE2. On the other hand, experiments on less
chiral systems (CE6 and CE4) show a finite latent heat
[21] and a jump in rotary power and scattered light inten-
sity [20], indicating a first-order isotropic —BP-III transi-
tion. The magnitude of the latent heat and the jumps
decreases in these chiral-racemic systems with increasing
&action of one of the chiral compounds, suggesting the
schematic phase diagram shown in Fig. 1 with a liquid-
gaslike critical point in the temperature (t) chirality (e)
plane (the analog of the pressure-temperature plane in a
liquid-gas system).

If this scenario is correct, then it should be possible to
establish an almost one-to-one correspondence between
the liquid-gas and the BP-III—isotropic transition. To
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FIG. 1. Schematic phase diagram for chiral nematogens in
the t-e plane showing the liquid-gaslike critical point termi-
nating a line of coexistence of the isotropic phase and BP III.
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do this, we need to identify an order parameter distin-
guishing the isotropic phase &om BP III and to con-
struct from it a Landau-Ginzburg-Wilson (LGW) Hamil-
tonian. As we have argued, both the isotropic and the
BP III are homogeneous and isotropic. They must there-
fore be characterized by either scalar or pseudoscalar or-
der parameters (the latter because the system is com-
posed of chiral molecules that admit pseudoscalar invari-
ants). This means that the mean value (Q) of the ther-
mally ffuctuating alignment tensor Q, which develops
nonvanishing spatially modulated components in BP I
and BP II, cannot be used as an order parameter: (Q)
is zero in both the isotropic phase and BP III. What
then is a good. order parameter? The mass density p
is a candidate, but density changes across the BP-III—
isotropic transition are extremely small. We are thus
left with quadratic combinations of Q such as (trQ2),
(@) = ((V'xQ) Q) = (s;~i,Q, iV'~QA, ,i), and similar terms.
As we shall see shortly, both (trQ2) or (g) (or some linear
combination of the two) are reasonable candidates for an
order parameter. Indeed, self-consistent calculations of
a BP-III—isotropic critical point reported by Keyes [17]
in essence treat (trQ2) as an order parameter. We feel,
however, that (@), which exists only in a chiral system,
is more fundamental because the BP-III—isotropic criti-
cal point exists only in chiral systems. The parameter
(trQ ) could be used to describe a liquid-gaslike critical
point terminating a line of coexistence of two isotropic
phases of achiral nematogens. To our knowledge no such
critical point has been observed yet. We thus take (i/d)

to be our order parameter, even though changes in (@)
will necessarily be accompanied by changes in (trQ ).
Changes in both (g) and (trQ ) will lead to changes in
rotary power and the intensity of scattered light.

Having identi6ed an order parameter, we next need to
develop a phenomenological LGW Hamiltonian that can
describe both the transition in @ and changes in correla-
tions of the alignment tensor Q. There are several ways of
arriving at this Hamiltonian, all of which will ultimately
give the same result. The simplest approach is to write
down the most general functional of @ and Q consistent
with the symmetry of the problem. Alternatively, one
can view Q and a Hamiltonian 'Rdi[Q(x)] expressed in
terms of Q as the providing fundamental "microscopic"
description down to some length scale a = 2m/A, where
A is a wave-number cutoB. Then an effective coarse-
grained Hamiltonian as a functional of Q and g can
be constructed by integrating out variables with wave
numbers A' ( q ( A subject to the constraint that
@ = (V' x Q) Q. The Hamiltonian 'R~[Q(x)] has the
scaled form of the Landau —d.e Gennes &ee energy used in
inost studies of blue phases [2]:

1 /t 1
'R&[Q(x)] = — d'z —trQ'+ —(V C3 Q) (V g Q)

2 (2 2

l0+—VQ VQ —K(V x Q). Q
2

—V6 f d rtrQ d- f d rjtrQ ]

where (V Q) (V I3 Q) = (Vi, Q;~) and VQ VQ =
V;q;~ V'A,.Qg~. All quantities are unitless. The distance x
is measured in units of the order parameter correlation
length (~ = 25nm at the first-order transition temper-
ature T~ of the racemic mixture [22]. Then the chiral-
ity r = q, (~ is the wave number q, of the cholesteric
phase relative to 1/(R. A scaling factor for the energy
density is provided by 16LAT~/T~ --4 x 10 ergs/cm,
where I is the latent heat per volume of a racemic mix-
ture and 4T~ ——T~ —T~, where T~ is the mean-field
limit of metastability of the isotropic phase [23]. The en-

ergy scale of the Hamiltonian then is 16L(&AT~/T~
6 x 10 ergs. The red. uced temperature t is de6ned by
t = (T —T~)/AT~ [22]. Typical values for the tem-
perature scale are 0.5 —1K. Finally, g stands for the
ratio cq/ci of two Landau coefficients. After Stinson
and Litster it is smaller than 1 for 4-methoxybenzlidene-
4'-n-butylaniline (MBBA) [24]. We stress that higher-
order terms in Q [25,26], in particular terms such as
[(V x Q) . Q]",p ) 2, may be needed to produce a BP-
III—isotropic critical point.

To implement the procedure we write the partition
function as

where we have introduced the delta functional A[rp(x)]
with the Fourier representation

17A r'

A[(p(x)] = exp
I

+i d xA(x)p(x) I

2m

which can be proved by discretizing the integrals. Now
we break up Q into a "slow" and a "fast" part

where Q& (q) = 0 if A' & q & A and Q) (q) = 0 if q & A',
and integrate over Q) and A. Then

-n~tc, vj (5)

is a functional of the independent variables @ and Q&,
which we assume to have spatial variations with q ( A'.

A complete calculation of 'R[Q&, g] for the initial Hamil-
tonian R~[Q] is tedious and not terribly illuminating.
In the Appendix, we calculate this quantity for the har-
monic part of 'Rdi[Q]. In particular, we calculate @ and

terms in 'R[Q&, @] and show that the dominant cou-
pling term is proportional to @(V x Q) . Q. The aver-
age of any function of Q or @ with wave number q with
0 & q & A' can be calculated using either 'Rdi[Q(x)] and
the partition function of Eq. (2) or Q[Q&, g] and the
partition function of Eq. (5).

We are interested in properties near the critical point
where (@) = @,. We therefore define p via



T. C. LUBENSKY AND HOLGER STARK 53

and express our Hamiltonian in terms of p rather than
g omitting a constant part. Then

g ~ ~ —pA jg«

r = agAt + bye~,
h = a2At+ b24v,
m = a3At+ b3Lv,

(i4)
(i5)
(16)

where we have replaced Q+ by Q with the understand-
ing that its wave vectors are restricted to q ( A'. Our
new Hamiltonian 'R[Q, p] can be decomposed into parts
depending, respectively, on Q and p separately and a
coupling term

where we introduced Lt = t —t and Lv = K —v. . We
now have a standard description of a liquid-gas transi-
tion. Thus in the vicinity of the critical point, the order
parameter (y) obeys the scaling relation [18]

(~) =r &I
(hl

'R [Q, p] = 'Ri [Q] + R2 [@]+ 'R~ [Q, p] . (8)

'R2[(p] = d x rp + —c(—V(p) —tvip + u(p —hy
1 2 1 2 3 4
2 2

in which all quantities are unitless. We restrict ourselves
to the simplest forms for the other two terms

'Ri[Q] =—1 , (td'~ —trQ'+ —(V g Q) (V g Q)(2 2

+—VQ VQ —(K + 2AQ, ) (V x Q) Q
g
2

~

(10)

'Rc [Q, p] = —A d x(p(x) (V x Q) . Q .

'Ri[Q] has basically the same form as the harmonic part
of 'R~[Q(x)] in Eq. (1), but with the chirality r, the
coeKcient of the chiral term, renormalized. We now have
a complete Hamiltonian allowing us to describe both the
critical properties of p and the coupling of p to Q.

The phase transition and correlations in @ are deter-
mined by an efFective Hamiltonian in which Q has been
removed altogether

To produce a critical point, 'R2[p] should have the same
form as the LGW Hamiltonian describing a liquid-gas
transition

where P is the order parameter and E = P + p the gap
exponent. In mean-field theory, P = 1/2 and A = 3/2,
whereas at a three-dimensional liquid-gas critical point
P 0.32 and b, 1.54. To provide qualitative informa-
tion about the behavior of the order parameter, which
can be compared with the rotary power and light scat-
tering data of Ref. [20], we plot in Figs. 2 and 3 the
mean-field form of —(p) (calculated with to = 0 and
u = 1) as a function of At for different values of Ar.
In experimental phase diagrams, the coexistence curve is
approximately parallel to the chirality (K) axis [27]. We
therefore take h = At [a2 ————1, b2 ——0 in Eq. (15)].
In Fig. 2 we take r = Ar [ai ——0, bi ——1 in Eq. (14)].
The resulting function is odd under reHections about the
At = 0 axis: (ip(At) ) = (&p( —At) ). In Fig. 3 we take
r = 2At + 0.3AK. The curves —( p(At) ) now have no
symmetry and look qualitatively like the measured rotary
power and intensity curves. For Ar = 0 and IAtI ~ 0
the "field" dependence of (y(Et) ) follows IAtIi~~ with
b = 4/P = 3 in both cases. Furthermore, the discon-
tinuity in (p) at the phase transition behaves like ~~r~
or, if the coexistence line is given by At = 0, like QIArI.

Having determined (p), we can now calculate the au-
tocorrelation function of the alignment tensor Q using
'R[Q, ip]. We choose a mean-field approximation for p

0.6

0.4-

0.2-

z = rp e-~"-"~« (12)

-0.2

(i3)H,ir[ip] = ——ln 17Qe
1

d x
I rp + —c(Vy—) —urp + uy —h(p

I

fi
(2 2

-0.4-

-0.6-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

contains renormalized parameters r, c, m, u, and 6 com-
pared to those in the Hamiltonian 'R2[p] in Eq. (9). They
are all functions of the temperature t and the chirality
v. The parameters r, m, and 6 go linearly to zero as the
critical point (K, t) = (v.„t ) is approached [18]:

FIG. 2. Temperature behavior of —{y) with r = AK, ,
h = At, and u = 1: (a) —first-order transition at A~ = —1,
(b) second-order transition at the critical point (Am = 0), and
(c) beyond the critical point at Ae = 1. All three curves are
odd under At ~ —At.
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04 m=2

Q(q) = ). &-(q)M-(q),

where

-0.2

1
Mp(q) = (3q g q —1),

6
(1S)

-0.4-

-0.6

1
Mi(q) = [q m, (q) + rn(q) q] = M' (q), (20)

2

-0.5-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 M2(q) = ~(q) ~(q) = M', (q), (21)

FIG. 3. Temperature behavior of (rp) w—ith r = 2At +
0.3h, r, h = At, a—nd u = 1: (a) first-order transition at
Ar. = —1, (b) second-order transition at the critical point
(Am = 0), and (c) beyond the critical point at A~ = 1. None
of these curves showers any symmetry. (22)

replacing p by ( p) in Q~[Q, p] of Eq. (10) and restrict
ourselves to the harmonic part of 'R[Q, y] in Q. It can be
diagonalized in the usual way [2] by going to a spherical
basis

and {(,iy, q) forming a right-handed system of orthonor-
mal vectors. Then the correlation function for the am-
plitude Q (q) is

G-(q) = (I&-(q)l') =
t —m[r + 2A(g, + (ip))]q+ [1+$(4 —m )]q2' (23)

with k~T given in the energy unit we introduced above.
One can check that this provides the correct description
of G in the vicinity of the critical point even when crit-
ical fluctuations are correctly incorporated into ( p).

We can now discuss scattering and rotary power ex-
periments in the vicinity of the critical point. Basically
the scattering intensity at scattering vector q is

I(q) = I,(q) + AI(q), (26)

with

(27)

AI(q) = ) AG (q)a (q)(p)+O((y), A~, b, t),

where

I(q) = ):&-(q)~-(q)
m= —2

~-(q) = let . M-(q)&'I' .

(24)

(25)

where

4k' TmAq

{t,—m(r, + 2AQ~) + [1+$(4 —m2)]q )
(28)

e, and ey describe, respectively, the polarization of the
incident and the scattered light. In typical scattering
experiments, the intensity of light scattered through 90
is monitored [1S]. In this case, q = v 2ko, where ko is
the wave number of the scattered light. The scattering
intensity I,(q) at the critical point is obtained by setting
(p) = 0 in Eqs. (23) and (24). Thus near the critical
point (t„r,)

results Rom the expansion of G (q) around the critical
point. Thus I(q) at fixed q is linear in (y) for small

(rp). As a function of t and e near the critical point, it
should look like the curves of Figs. 2 or 3. Indeed, ex-
periments of Becker and Collings [20] show a qualitative
agreement with Fig. 3. Note, however, that the magni-
tude of the deviation in I(q) from its value at the critical
point depends on q, i.e., on the wavelength and angle of
scattered light. It would be interesting to investigate this
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efFect experimentally. The quantity (trQ ) = P G (q)
is also linear in (p) near the critical point, indicating, as
discussed earlier, that we could have used it rather than
(@) as an order parameter.

The rotary power p for light can be related to an in-
tegral over the correlation functions G . In the long-
wavelength limit (k « r) only the modes with helicity
m = 1 and —1 contribute [28]. However, in the pre-
transitional region from the isotropic to the cholesteric
or blue phases the m = +2 modes also contribute signifi-
cantly through the next higher order in the wave number
of light, as was shown by Filev [29] theoretically and
confirmed by Collings et aL [30,31] experimentally. We
follow the derivation given by Bensimon et aL [28] and
obtain, in units of (~,

k~T r, + 2AQ 1 —s(l + 2) —",

12vreo (1+ 2~)'~' (t, —ti, )'~2

16 (1+2) i k

3 (t, —t2, )'&2 t, (34)

and the deviation

where

k~T A t. ——,'(1+ $)k'
v6~co (1+ -')s&' (t. —t,.)s&2

16 (1+ -')'~'
( k + O((y), Ar. , Dt), (35)3

1

12' 6o
d«[Gi(~) —G-i(~)]

[r, + 2AQ, ]2

4(1+ —,') t2, ——[r., + 2A@,]2 . (36)

k 1
d~ [Gi(~-) —G-i(v)]18~2so o q

dq —[G2(q) —G 2(q)],9~2~o o q

(29)

k~T r. + 2A(g, + (p)) 1. —s(l+ 2)—",
127reo (1 + 2~)'~' (t —ti)'~' (30)

16 (1+ -', )'~' k'
3 (t —t )i~2 t

t ) [r + 2A(g, + ( p))]',

where

[K+»(@.+ (~))]'
4(1 + $)

t2 ——[r. + 2A(g + (y))]' (32)

are, respectively, the critical temperatures of the m = +1
and m = +2 modes. They are both less than t since the
BP-III—isotropic critical point is assumed to be far from
any ordered BP structure. Finally, near the critical point

with the optical activity at the critical point,

where eo is the dielectric constant of the system and k
the wave number of light in units of 1/(~. Here A should
be the original upper wave number cutofI' before coarse
graining. Our theory provides directly an expression for
Ggi and Gg2 for q & A'. Thus, to obtain the complete
expression for p, we would have to calculate G~q and
Gg2 for q ) A' in the presence of a nonzero (&p), us-
ing the original Hamiltonian R~[Q(x)] rather than the
coarse-grained Hamiltoiuan 'R[Q+, g]. Fortunately, p is
not very sensitive to the upper cutofF and indeed in stan-
dard treatments [28] A is set to oo in Eq. (29). After
integration with A = oo one 6nds that

In the experiments by Becker and Collings [20] the optical
activity changes its sign close to the phase transition. In
Eq. (34), for example, this can be achieved only when
t is close to the critical temperature t2 of the m =
+2 modes, since k && t, oc e . Furthermore, like AI,
Ap should also scale as (rp), which is well confirmed by
the measurements [20]. Note, however, that though both
AI and Zp are linear in (rp) at small (p), they have a
difFerent nonlinear dependence on (p). Away from the
critical point, the curves for AI and Lp may look quite
different.

We have presented here a simple phenomenological
model of the BP-III—isotropic critical point in which
(@) = ((V x Q) Q) is viewed as the order parameter.
This model allows us to study both the critical order pa-
rameter (g) and its coupling to the observable alignment
tensor whose Buctuations can be measured via light scat-
tering and rotary power. It predicts that the isotropic-to-
BP-III transition is in the same universality class (Ising)
as the liquid-gas transition. It can easily be extended
to treat a variety of problems of potential experimental
interests, for example, the efFect of external field on the
critical point or dynamical critical properties. It can also
be used to study the whole phase diagram of the BPs in-
cluding the BP I and BP II provided cubic and quadratic
terms in Q are added to the Hamiltonian 'R[Q, rp]. Such
an approach was chosen by Longa and Trebin [13]. But
instead of a scalar they introduced a tensor order param-
eter. It would be interesting to see if the inclusion of ( @)
as an order parameter eliminates the 0 phase predicted
by mean-field theories without (g ). We should empha-
size, however, that our model was constructed to describe
the BP-III—isotropic transition in the vicinity of the crit-
ical point. It will not produce without further work the
detailed form of light scattering intensities (such as those
measured by Koistinen and Keyes [16]) and other quan-
tities in BP III away &om the critical point.
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schungsgemeinschaft under Grant No. Sta 352/2-1 and
by the National Science Foundation under Grant No.
DMR 91-20688. We wish to thank Peter Collings, Carl
Garland, and Zdravko Kutnjak for helpful discussions.



53 THEORY OF A CRITICAL POINT IN THE BLUE-PHASE-. . . 719

APPENDIX

The purpose of this appendix is to show how the
Hamiltonian 'R[Q+, vP] can be derived by coarse grain-

ing 'R~[Q]. We want to show only the principles of our
method; therefore, we restrict ourselves to the harmonic
part of 'R&[Q], skip detailed calculations, and use a sym-
bolic notation. We start with Eqs. (2) and (3), introduce
Q(x) = Q~(x) + Q~(x), and get (P = l)

Z=VVVexp ——

le%�'Txx
(

27r ( 2 )

lx exp
~

i d zA(x)(@(x) —Q~(x) . [V' x Q~(x)])
~

x exp
]

—— d zd y(Q~(x) B(x,y)Q~(y) + 2iA(x)(Q~(x) [V' x Q~(x)]+ Q~(x) - [V' x Q~(x)]j) [

where r(x) is the difFerential operator of the harmonic
part of 'R~[Q] and

B(x,y) = [v (x) + 2iA(x) V'„x]b(x —y) . (A2)

The functional integrals can be discretized; thus with the
help of

B = G [1+i2GpAVx] (A6)

and use

Here the determinant (det) and later the trace (tr) apply
to the tensor components as well as the coordinates w

and y. We rewrite B(x,y) in a symbolic notation as

h

OO

dz exp/ ——z Vz+s z
/) (A3) ~ - —1/2

det—
2K

= exp[—
2 trln(B/2')]

det—
2K

exp
(

—s. V s ), (A4)
(I
(2 )'

~ - —1/2
det-

27r
exp[. .] (AS)

the functional integral over Q+ gives

Go(q) = P G~(q)M (q) S M (q) [for G (q); see
Eq. (23)] is the autocorrelation function of Q jn the har
monic approximation. Since the functional integral was
restricted to functions with q ) A', Gp ——(Q+(x)
Q+(y)). After an expansion into A and some partial in-
tegrations the first factor of (A5) now becomes

~ - —1/2
det-

2m

1 - —1/2

det 2' exp
~

—— d zd yA(x)g~ (x, y)A(y) —i d zP (x, x)A(x) +2 (As)

&"'( y) =2(Q'( ) [V Q (y)]). ([V Q ( )]Q'(y))
(A9)

(AlO)

where both g~~l and g&2l can be expressed in terms of Go. We neglect the second factor of (AS): It can be shown
that it only contributes higher-order coupling terms between Q and Q and that it only renormalizes the coefficients
of 'R~[Q]. Then the partition function Z is

Z oc V V exp —— (E x 3c f' x Ã
VA

2' ( 2 )
x exp

~

—— d zd yA(x)g& l(x, y)A(y) +i d z(Q(x) —g (x, x) —Q~(x) . [V x Q~(x)])A(x) ~,
(

(All)
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and after an integration over A we have the anal result

with

(A13)

(A14)

A Taylor expansion of @(») around the space point y and an integration over» gives the lowest-order coupling term

@(y)Q((y) . [V x Q((y)] and a Hamiltonian in @ from which we constructed R[Q, io].
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