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Oblique anchoring at a free nematic surface
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We generalize earlier density functional theories of the interface between an ordered nematic
liquid crystal and its vapor to consider oblique anchoring. This is achieved by including a term with
the symmetry of the electrostatic quadrupole in the model molecular interaction potential. As the
bulk triple point of the liquid crystal is approached, the model exhibits the second-order oblique-to-
homeotropic anchoring transition observed experimentally by Chiarelli et al. The result constitutes
a thermodynamically consistent demonstration of this phenomenon using a microscopic theory. We
plot the relevant anchoring phase diagrams, and compare them with constrained treatments of the
density functional. By means of this comparison we assess to what extent the commonly adopted
strategy of decoupling interfacial structure from anchoring is justified.

PACS number(s): 61.30.Cz, 61.30.Gd, 64.70.Md, 68.10.Cr

I. INTRODUCTION

The phenomenon of anchoring in liquid crystals has
stimulated a great deal of experimental research over the
last few decades, greatly motivated by the importance
of the Geld to the development of liquid-crystal display
devices. Anchoring is a generic term for the orientation
of liquid crystals by a surface, dividing naturally into
two categories: orientation of liquid-crystal molecules at
a surface by a substrate potential, and spontaneous ori-
entation of the molecules due to the bond-breaking sym-
metry of the surface. The &ee surface is particularly
interesting in that anchoring properties may be regarded
as exclusively driven by the latter mechanism.

The main focus in anchoring discussions is on the iden-
tification of an anchoring angle, de6ned as the nematic
director orientation at the surface. An anchoring angle
normal to the surface is known as homeotropic anchor-
ing, while planar describes anchoring in the plane of the
surface, and all intermediate anchoring orientations are
classed as oblique. Terminology also exists for degener-
ate sets of anchoring angles, but is not needed for the
present purpose. The reader is referred to Jerome [1] for
a full review of anchoring.

This paper consists in applying density functional the-
ory to anchoring at the Bee surface. The relevant
statistical mechanical system is that of the difFuse in-
terface formed by the nematic phase of a liquid crys-
tal in equilibrium with its vapor; a system that has
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been extensively studied using density functional the-
ory. Initial work was carried out by Telo da Gama
and co-workers [2,3] whose model predicted homeotropic
and planar anchoring but was not suKciently gen-
eral to cover the oblique case. This corresponds well
to experimental results for the cyano-biphenyls nCB
(n = 5, 7, 8), which exhibit homeotropic align. ment
[4,5], and PAA (parazoxyanysole), which exhibits pla-
nar alignment [6]. However, more subtle anchoring be-
havior is observed in N-(4'-methoxybenzylidene)-4-(n-
butyl)aniline (MBBA) and K-(4'-ethoxybenzylidene)-4-
(n-butyl)aniline (EBBA). Chiarelli, Faetti, and Fronzoni
[7] find a second-order oblique-to-homeotropic transition
in both these cases, occurring close to the respective
clearing points. While phenomenological studies exist
to explain this effect [8,9], calculations have not yet been
performed at the microscopic level within a thermody-
namically consistent framework such as the density func-
tional method.

The preseDt study will begin in Sec. II with a descrip-
tion of the model based on that of Telo da Gama, dis-
cussing how this formalism may be generalized to allow
obliquely tilted director configurations. In Sec. III we
present numerical calculations that focus on the nature of
the oblique-to-homeotropic anchoring transition. One of
the advantages of the density functional model over phe-
nomenological approaches is that it allows an appraisal
of the role in determining the anchoring angle of other
structural features at the surface, such as wetting prop-
erties and interfacial characteristic widths. In this spirit,
the emphasis in discussing the calculated anchoring phase
diagram will be on contrasting the equilibrium results
with results obtained &om two approximations designed
to help elucidate this interplay. It is hoped that in doing
so we provide an assessment of the validity of existing
phenomenological studies [10,11] which implicitly decou-
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pie the anchoring angle Rom other aspects of interfacial
structure.

Finally, in Sec. IV we present some conclusions.

where is the hard sphere diameter.
On truncating the expansion of Eq. (3) at l = 2 and

using the addition theorem for spherical harmonics we
obtain

II. THE DENSITY FUNCTIONAL MODEL

B]p(r, m)] = f drf c(r) H— pf drdmp]r, m)

+— drdr'dwdw'p r, ~

x V t], (r —r', ~, ~'))o(r', cg'),

where p is the chemical potential. Repulsive interactions
in the model are incorporated by means of a hard core
reference fIuid, a hard sphere fluid, described in local-
density approximation by the &ee-energy density

fHC = fideai + &frep~

where the first term accounts for the &ee energy of the
ideal gas limit, and the second term represents the ex-
cess &ee energy due to repulsive interactions between
the molecules. We choose for the latter the Carnahan-
Starling expression for hard spheres in our calculations,
in line with [14,15].

The anisotropy of the attractive potential V qt is well
formulated by expanding in spherical harmonics with re-
spect to a laboratory-fixed frame of reference [3],

V~~t(r, w, w') = ) Vii, i (r) ) C(llil2, mim2m)
l l1 l g m1 m2 m

~ (~)+i.~.(~ )+i (3)

Following [14,15], we choose Lennard- Jones forms for
the components Vj, i, i(r), with the Weeks-Chandler-
Anderson modification at short distances:

Vlql !(T) 2= elylglv(r) )

Here we describe the main features of the density func-
tional model prescribed by Telo da Gama in the context
of the nematic-vapor interface, and introduce the nec-
essary modifications for the oblique anchoring case. A
number of recent, largely technical improvements, imple-
mented in [12,14,15] will also be incorporated.

The model may be regarded as a generalization of
the well-known Maier-Saupe theory [16] in that it is a
mean-field approach. The system is characterized by the
one-particle distribution function )o(r, w), where r is the
position of a point in the material and w the molecu-
lar orientation. In density functional theory (see, e.g. ,
Evans [17]), a grand potential functional 0 [p(r, w)] is
constructed, and the equilibrium distribution is taken as
that which minimizes the functional. We consider the
form

Vqt(r, w, w') = v(r)(A+ BP2(w w')

+C[P2(~. r) + P2(~' r)]
+DI (w, w', r))

where P2 denotes the second I egendre polynomial, and
we have used the following definitions

oooo

(47r) )'

v 5&22o

(4~)s&~ '

5&2o2

(4~)'~2 '
156224

~VO(4~) &&2
' (6)

I'(w, w', r) = 1 —5(w r) —5(w' r) + 2(w w')

+35(~ r) (~ r)'
—20(~ . r)(~' r)(~ ~') .

A. Order parameters and tait

An additional contribution V222 will not be considered in
this work.

The first three terms of Eq. (5), governed by A, B,
and C, are the basic ingredients in studies of planar and
homeotropic anchoring [3,12]. The B term is the usual
Maier-Saupe term, while the C term couples the molecu-
lar orientation to the intermolecular vector r, thus driv-
ing transitions between planar and homeotropic configu-
rations.

The focus of the present work is the last term gov-
erned by D. This term has the symmetry of an elec-
tric quadrupole, although an electric quadrupole inter-
action would have a long-range behavior proportional tor, and not r as here. For D negative, however, the
shape of this term more or less corresponds to an electric
quadrupolar interaction between molecules all of which
have electric quadrupoles of the same sign. For this rea-
son we confine our discussion to negative D. Barbero
and Durand [13] have connected tilted orientations at
liquid-crystal interfaces and in the smectic-C phase to
the phenomenon of order electricity, which is dependent
on the existence of a quadrupolar intermolecular poten-
tial. This idea has been confirmed in a simple mean-field
model by Tjipto-Margo and Sullivan [18] and by Teix-
eira and Sluckin [19]. We thus expect that coinpetition
between C and D will drive oblique anchoring efr'ects.

, —I/4,
(4)

Here we discuss how to obtain the relevant order pa-
rameters from the particle distribution function.

It is convenient to define the orientational distribution
function, f(r, w), as
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~(r ~) —= C(r)f(r ~)

where p(r) denotes the one-particle density. In addi-
tion we define the z direction along the surface normal,
and suppose spatial uniformity in the plane of the sur-
face. The surface is in principle azimuthally symmetric.
A tilted director breaks this symmetry. We shall sup-
pose that the director remains in the x-z plane. The
laboratory-Axed frame of reference is fixed by the usual
Cartesian coordinate system. Thus, we write p(r) = p(z)
and f(r, ~) = f(z, ~).

The ideal gas contribution to the free-energy density
of the reference Huid Eq. (2) may now be divided into
translational and rotational parts

Pf;g,~i(z) = d~)p(r, (u) [ln p(ri ~) —1]

= ~(z) [in ~(z) —11 —~(z)~-i(z)

where the local rotational entropy per particle is

S, s(z) = —f ddf(z, ds)l d snf(zz), to,

and p = 1/kI3T.
Nematic order may be characterized by moments of

the orientational distribution f (z, w), which has the ad-
vantage of yielding a set of scalar profiles in z. Allowing
for biaxiality, the symmetry of our system gives rise to
three such order parameters [2]:

laboratory-fixed kame of reference. For the case of
obliquely tilted director configurations, these three pro-
files are not directly identifiable with uniaxial and biax-
ial order. We must first consider the tilt profile @(z),
defined as the z dependence of the director kame of ref-
erence with respect to the laboratory-fixed kame. A sim-
ple relation between the tilt and (q(z), o(z), v(z)) may
be derived from the following rotation identities [20,21]:

='I 2 30 . 2 3P
g~ = —(3 cos g —1) + —sin @ + —sin g cos @,

2 4 2

« = csin g+ —(1+cos @) —v sin@ cosvP,
2

v~ = 2@s—in icos@ + 0 sin icos/+ (2 cos Q —1)v

=0, (12)

where the subscript d denotes the director frame of refer-
ence and gd and ug correspond, respectively, to uniaxial
and biaxial order. Solving Eq. (12) for the tilt g, we
obtain

1 2v
g = —arctan

2 2' —0

Thus we have a choice between the two equiva-
lent sets of orientational profiles (g(z), (r(z), v(z) ) or
(~~(z) «(z) &(z)).

ci(z) = f dszPz(cos 8)f(z ds), ,

o(z)= f ddssin d(2cdo)sf(z, ), dz

o(z) = f dds sin28 cos(d) f(z, ds),

where 0 and P are the Euler coordinates in the

B. Numerical method

Either of the two sets of profiles discussed above
may be used in solving the density functional problem.
Choosing the laboratory-fixed order parameters, the &ee-
energy density &om attractive interactions per unit area
of the interface may be written

f ti(z) = P(z) dz'P(z') Avppp(z —z ) + Bv22p(z —z')
~

g(z)q(z') + —(r(z)o(z') + —v(z)v(z')
~4

+CV2pz(Z —z') [p(z) + rI(z')] + DV224(z —z')
~

6&(z)rl(z') + 0(z)0 (z—') .—3v(z) v(z')

where vi, i, i(z) denotes the projection of the r depen-
dence v(r) of the respective spherical harmonic compo-
nents along the z direction,

vi, i, i(z) = dRv(r)Ii(z/r),

with r = (R, z).
This form is amenable to a multidimensional minimiza-

tion technique such as the method of conjugate gradients

[22] in which p(z), g(z), o (z), and v(z) are discretized
onto an N-point lattice along the z axis, i.e. , p; = p(z, ),
q, = g(z;), etc. , z = hi. In all our calculations we set
N = 300, h, = 0.20. The conjugate gradient tolerance
level was between 10 and 10 . Equilibrium struc-
ture and thermodynamical properties are then obtained
by minimizing the grand potential functional of Eq. (1)
with respect to the resulting 4N variables. To this end
it is necessary to express local rotational entropy of the
molecules [Eq. (10)] in terms of the orientational order
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parameters. The reader is referred elsewhere [14,15] for
a discussion of this point. Expressions for the gradients
dO/dp;, dO/drl;, etc. , which are required by the conju-
gate gradient technique, are relatively straightforward to
obtain.

Identifying the bulk nematic and vapor phases with
z ~ oo and z + —oo, respectively, the appropriate
boundary conditions and the chemical potential are ob-
tained by calculating bulk coexistence using the same
lattice. This does not, however, define the boundary con-
dition at the nematic side on the tilt, since the bulk free
energy is rotationally invariant. We may choose either
dQ/dz(oo) = 0 or Q(oo) =const. The former is not easy
to implement numerically, and so we must also minimize
with respect to @(oo).

It remains to specify the initial guess for the system
variables. The trial functions used in [3] are

=1 &z —zivl l
p(z) = (pN + pv) + —(piv —pv) tanh

~2 )'
+bulk

l~(z) =
1 + exp[(Az + z~l —z)/(z]

'

where p~ and p~ are the densities of the bulk nematic
and vapor phases, respectively, and. ~„~k is the uniaxial
order parameter in the bulk nematig phase. A d.ividing
surface at z~l pins the interface. Diffuseness of the in-
terface is governed by (~ and („,representing interfacial
widths associated with the p(z) and g~(z) profiles, re-
spectively. A depinning factor Lz defines the relative
shift between the two profiles, and may be regarded as
an indicator of wetting by the isotropic phase.

Biaxiality is neglected in the initial guess (i.e. , 0~ = 0),
but an initial tilt profile is clearly necessary, and so we
adopt the simplest option of uniform tilt commensurate
with the boundary condition. Note, however, that we
have specified the orientational profiles in the director
frame of reference. Recalling that we chose to work in
the laboratory-fixed frame, the gp profile must first be ro-
tated with respect to the tilt to obtain (iI(z), 0.(z), v(z))
before the functional can be evaluated.

Numerical efBciency can be enhanced by preced. ing
the 4N-dimensional minimization procedure with a con-
strained minimization with respect to the parameters
governing the initial profiles. This naturally leads us
to speculate that these parameters might in fact turn
out to be essentially sufhcient for an accurate descrip-
tion of the anchoring properties. If that were the case,
the cumbersome machinery needed for 4N-dimensional
minimization would be super8uous. The differences be-
tween the predictions of the two theories are small but
nevertheless noticeable, as we shall see in the results be-
low. The restricted parameter theory provides extremely
useful physical insight. The precise location of the inter-
face zNI is of course arbitrary since it describes a Gold-
stone mode. The remaining three free parameters (z,
(„,and Ez describe the interfacial structure rather well.
The difference between minimizing with respect to 4N as

opposed to three variables manifests itself in a number
of relatively minor details in the order parameter pro-
files. The incomplete minimization of the &ee energy has
relatively minor implications on the anchoring phase di-
agram.

III. THE OBLIQUE-HOMEOTROPIC
ANCHORING TRANSITION

This section begins by introducing appropriate rescal-
ings and setting system parameters. Calculated equilib-
rium profiles are then discussed before going on to discuss
th~ anchoring angle and surface tension in the vicinity of
the anchoring transition, and finally the associated an-
choring phase diagrams. We shall compare our results
with those of two approximation schemes that give use-
ful reference points. These are (a) the so-called Fowler
approximation, which is analytical, and (b) the approxi-
mation based on the numerical trial functions discussed
above.

A reduced temperature scale is set using the parameter
A in Eq. (14) according to T' = k~T/A, making it
convenient to also rescale B, C, and D with B = B/A,
C = C/A, D = D/A.

The thermodynamic quantity that will be of great-
est interest in the following is the surface kee energy
p = (0—Ai, „n,)/area, or the corresponding dimensionless
quantity p = po /Ic~T. We remark that this is probably
what is measured in surface tension experiments in these
Huids. The surface tension, properly defined, is a tensor
quantity.

Henceforth the bar and suKx notations used in all of
the above rescalings will be dropped, and the rescaling
assumed.

Following [2], B is fixed at 0.3, and consequently the
bulk phase diagram of the model is similar to that of the
original Telo da Gama model, i.e., independent of C and
D [3]. The bulk phase diagram exhibits the nematic,
isotropic, and vapor phases with a triple point at T =
0.2018 [14].

In examining interfacial properties, the parameters C,
D, and T define the relevant phase space. With D = 0,
negative C induces uniform zero tilt, i.e. , homeotropic
anchoring [3]. We shall consider here negative C, which
favors planar anchoring, and would forbid oblique to
homeotropic transitions. Positive D is not relevant as
discussed in the last section. Our analysis is thus re-
stricted to the domain of negative C and negative D.

A significant part of this domain is associated with
oblique anchoring. We show an example in Fig. 1 of the
solution of the density functional for a combination of t

and D, which exhibits an obliquely tilted director con-
figuration. A section of the equilibrium interface profiles
(in the director frame of reference) is plotted for T = 0.2,
D = —0.32, C = —0.1. The bulk tilt angle that corre-
sponds to the equilibrium solution is 22.53 .

The p(z) and gg(z) profiles show the expected similar-
ity with results obtained by Thurtell, Telo da Gama, and
Gubbins [3] for the homeotropic and planar anchoring
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The mean-field 1/2 exponent is clearly in evidence
in the limit T ~ TOH where T~H is the oblique-to-
homeotropic anchoring transition temperature. Thus our
results are consistent with the Landau form, but only
close to TOH, as indeed is the case experimentally [7].

Before discussing the surface tension, let us examine
the two approximation schemes with which we compare
the equilibrium results.

A. The Fowler approximation

FIG. 1. The interface pro6les at T = 0.2, C = —0.1,
D = —0.32 in the director frame of reference. The resolu-
tion of 0.2o (where o is the hard core radius) is slightly too
low to show all of the rjq(z) fine structure.

cases, notably the low-amplitude fine structure in ilg(z)
close to Z~I. We have not shown the biaxial fine struc-
ture, which is negligible. The new feature in our case is
the tilt profile g(z) which, by contrast with the planar
and homeotropic cases, is nonuniform at the interface.

An immediate concern now lies in how to define an
anchoring angle @~. The question is not a trivial one
(see, e.g. , [19]),but in the interests of avoiding numerical
complications we choose in the following to define it as
the bulk tilt. That is, the &ee surface anchoring angle in
the numerical calculations is interpreted as the boundary
condition on the tilt that minimizes the surface tension.

Using this definition, Fig. 2 shows an example of
the oblique to homeotropic transition, with g~ plot-
ted against temperature T for fixed D = —0.32 and

= —0.15. We see that as the transition temperature
is approached, g~ goes to zero continuously, defining
a second-order transition (note that, in the figure, the
dashed segment represents an extrapolation up to the
estimated critical temperature).

Parsons [8] long ago proposed a Landau form to
describe the MBBA anchoring transition, the relevant
scalar order parameter in the anchoring context being

This strategy [23] has been adopted in many phe-
nomenological studies of anchoring and wetting at ne-
matic surfaces (e.g. , [10,21]). We follow Refs. [18,19] in
considering it at the microscopic level where its strength
lies in the fact that it makes evaluation of the surface ten-
sion analytically tractable, yielding an explicit Landau-
type expression for its dependence on the model param-
eters. In e8'ect, the result constitutes a microscopically
derived phenomenology.

The approximation consists in simply constraining the
interfacial structure to a Heaviside step function, thus
neglecting interfacial width and structure (the vapor den-
sity is also neglected):

( )
PN, Z)ZNI
0) Z Q Zpfl)

@bulky Z + ZNI
'gg (Z) 0, Z (Z~l.

NI
dz(f „(z) —f „(oo)),

When this constraint is relaxed, as in the mean-field
treatment of density functional theory, the surface ten-
sion will of course be lower. However, a direct compar-
ison between the Fowler approximation and equilibrium
properties calculated from density functional theory, as
we propose to include here, has not yet been carried out
for our system of interest.

In the Fowler approximation, all contributions to the
functional of Eq. (1) cancel [19]except for the surface free
energy from attractive interactions. The surface tension
p is then obtained from Eq. (14) alone according to

0. 1
giving for uniform tilt g

.Q

& 005
L

O
Cl)

0

0.0
0.175 0.78 0. I85 0.19 0.195

Temperature
0.2

FIG. 2. Evolution of the anchoring orientation vs temper-
ature for 6xed C = —0.15, D = —0.32.

2

((1 + Brjb„)k)ko + Cgb„lkk2PZ (cos 7p)

+ Dqb, ~k4P4(cos it )), (19)

where P2 and P4 are the Legendre polymonials of orders
two and four, and to three significant figures, we calcu-
late ko ——0.701, k2 ——0.3'?8, k4 ———0.174. Except for
these model specific constants, Eq. (19) is identical to
the expression derived in [19].

For comparison with Parsons's theory, the correspond-
ing Landau form is
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Ap(sin@) = p(0) —p(sing)
(T)F —&o'""'(T D) j

+P(T, D) sin (2o)

where the Landau coef6cients are given by

3 2cr(T) = — k2p~rlb uk,2T

35D
P(»D) =

T k4~~nb 1k8T

and a surface of second order oblique to homeotropic
transitions is de6ned according to

stitute a noticable signature of the anchoring transition.
However, comparison with the PCM surface tension in
the bottom part of the Bgure reveals that the order of
magnitude of the anomaly is too smaH for it to be dis-
cernible in the general surface tension trend.

The depinning factor Lz is a measure of the width of
an isotropic Quid interfacial layer. The Fowler approx-
imation assumes Lz = 0, and may be expected to be
inaccurate if Az becomes large. For the value of C used
here, Az(T) diverges as the isotropic-nematic transition
is approached; this is known as wetting of the interface by
the isotropic phase. This hypothesis may thus be tested.
Comparison with the plotted surface tensions, however,
does not seem to show that the Fowler approximation is

CFowler PT Dq 4 Ibulk
(22)

For oblique anchoring (i.e. , D ( 0, C & CzH ") we
have &om Eqs. (20) —(22)

2 Favrler 4 6 ~2

7 35rl k4 D (23)

In the domain of negative C, the quadrupolar symmetry
of the V224 term enforces an upper limit,

0.15—
,0

0.1—

0
0.05—

Fowler

»m &„'"' = arcsmd4/7
D —+—oo 0.002—

i.e. , the minimum of P4(cos @).
In order to describe in more detail the interfacial struc-

ture we use the interfacial characteristic lengths (z, („,
and Lz introduced in the last section. Constraining the
density functional solution to these forms, we obtain an
approximation intermediate between the Fowler approx-
imation and the unconstrained equilibrium solution. %le
shall refer to these results as the "parameter constrained
minimization" (PCM) solution.

0.001—

45—
4.0—

PCM

B. Surface tension and anchoring phase diagram

Here we propose to compare the equilibrium anchoring
properties &om proper minimization of the density func-
tional (which we shall refer to as "equilibrium" ) with the
two approximation schemes introduced above.

Figure 3 illustrates the case C = —0.17, D = —0.32.
At the top, the calculated PCM and Fowler [from
Eq. (23)j anchoring angles are contrasted. The equi-
librium oblique-to-homeotropic transition temperature
is at T&H = 0.18, significantly removed &om the PCM
result ToH 0.1925. The Fowler approximation ex-
hibits no transition for these parameters, and evidently
considerably overestimates the anchoring angle.

Associated with the (T—ToH)o s dependence of the an-
choring angle near the transition, one expects from the
Landau form that Ap(@~) = p(0) —p(@~) will exhibit
(T —TOH) dependence. This is demonstrated in the
middle part of the figure, and might be expected to give
rise to an anomaly in the surface tension that would con-

3.0—
25—
2.0—
1.5—
1.0

0. 175 0.18 0.185 0.19 0.195 0.2
Temperature

FIG. 3. Surface tension and associated anchoring behav-
ior for C = —0.17, D = —0.32. The bottom part compares
the equilibrium surface tension with the PCM and Fowler
approximations. The oblique-to-homeotropic anchoring tran-
sition occurs at T = 0.18 in the equilibrium (Eq) case, and
T —0.1925 in the PCM approximation. The latter is marked
by the dotted line. The middle part indicates the order of
magnitude of the surface tension anomaly associated with the
anchoring transition, seen to have no appreciable effect on the
general trends of the lower part. The anchoring angle in the
Fowler and PCM approximations is shown at the top. Note
that the Fowler approximation predicts no transition for this
choice of parameters.
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