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A phenomenological theory for the cholesteric phase induced by a chiral solute in a nematic solvent is
derived from (i) the continuum representation of twist deformation of the nematic solvent, and (ii) the
surface anchoring energy approximation for the interactions between the solvent and a solute of given
shape. This allows a simple explanation of the stabilization of the solvent twist deformation by the in-
teractions with chiral solute. A straightforward statistical elaboration leads to the well known inverse
proportionality between the pitch of the cholesteric phase and the solute concentration. The corre-
sponding proportionality coefficient, i.e., the twisting power of the solute, is then related to the asym-
metry of the solute shape through a chirality order parameter.

PACS number(s): 61.30.—v
I. INTRODUCTION

The addition of a chiral solute to a thermotropic liquid
crystal in its nematic phase often induces a cholesteric
phase with a measurable pitch p [1]. For dilute enough
solutions, an inverse proportionality is found between the
pitch and the solute concentration ¢ expressed as the ra-
tio between solute and solvent numbers of molecules:

1/p=Pc .

The proportionality parameter 8 measures the twisting
power of the solute, for a given solvent and temperature.
On a general ground one expects a correlation between
the twisting power and the chirality of the solute and this
has motivated the large number of investigations about
the dependence of B on the type of solute (see Ref. [1] for
a review on experimental works on this subject). A
variety of systems have been analyzed in order to eluci-
date the role of the molecular structure in determining
both the size and the sign (i.e., the handedness of the in-
duced cholesteric phase) of the twisting power [1,2]. In
spite of the effects attributed to specific solute-solvent in-
teractions, these studies suggest that a major role is
played by the molecular shape of the solute.

The comparative analysis of the behavior of different
solute molecules is hampered by the lack of a theory able
to correlate the cholesteric twist with solute chirality.
Some efforts have been dedicated to the generalization of
the mean-field theory of nematic to cholesteric phases
and induced cholesteric phases by using parameterized
forms of two-particle interaction potential [3]. Molecular
dynamics simulations have been recently done on model
systems of cholesteric phases [4]. Of course one would
like to recover the cholesteric pitch from an accurate rep-
resentation of molecular interactions, but this objective is
actually far from being reached.

(L.1)
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We shall follow a more phenomenological approach
with the aim of correlating in simple terms the twisting
power B with the asymmetry of the molecular shape of
the solute. It can be done by introducing the following
approximations: (i) a continuum representation of the
twist distortions of the nematic solvent, and (ii) a repre-
sentation of solute interactions with the nematic solvent
of the type of anchoring energy for macroscopic surfaces.
Certainly this oversimplifies the molecular interactions
responsible for the cholesteric pitch but, on the other
hand, it leads to a straightforward correlation between
the twisting power 8 and the solute shape. The methodo-
logical analogy with the Stokes-Einstein theory of
diffusion coefficients can be invoked in order to clarify
the character of our procedure. Also in this case the
physical picture beyond the model is that of a macroscop-
ic solute interacting with the solvent represented like a
continuum. In principle such a theory can supply only
estimates of diffusion coefficients when solute and solvent
have a comparable size, albeit these estimates are surpris-
ingly accurate [5] in the absence of specific interactions
like association. Moreover, this method rationalizes in
simple terms the influence of the molecular shape on the
diffusion coefficient [6].

Our treatment has a similar purpose, even if in a quite
different context. The relation between solute shape and
twisting power will be the final result of our analysis. In
this framework specific solute-solvent interactions will be
completely neglected. On the other hand, it seems to us
that their influence on the cholesteric pitch can be clearly
understood only if a reliable theory about the intrinsic
effects of the solute shape is available.

The main features of the model have been anticipated
in a short communication [7]. Here we shall present the
complete treatment with a detailed discussion of its phys-
ical basis.

II. THE MODEL FOR THE FREE ENERGY
OF INDUCED CHOLESTERIC PHASES

In a recent work a phenomenological treatment has
been proposed for the orientational order of a solute in
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nematic phases [8]. The basic hypothesis was that the
orientational order derives from the cumulative effects of
interactions between the nematic field and each surface
element of the solute. A surface S enclosing the excluded
volume to be determined, for example, from atomic van
der Waals radii, is assigned to each solute. Then, for
each orientation Q of the solute, a pseudopotential U({)
is derived by integrating on the surface S the elementary
contributions given by the second Legendre polynomial
P,(d-s) for the cosine of the angle between the nematic
director d and the unit vector s orthogonal to a surface
element dS:

U(m=emfst[3(d.s)2—1]/2, 2.1)
with the proportionality coefficient €,, characterizing the
strength of the order induced by the nematic solvent (in
Ref. [8] the scaled coefficient e=¢,,/ky T was employed).
An explicit angular dependence is found for U({), unless
a spherical solute is considered, because the contribution
P,(d-s) of a given surface element depends on the orien-
tation Q of the solute. The corresponding distribution

P(Q)=exp{—U(Q)/kyT}/ [dQexp{—U(Q)/k,T)
(2.2)

allows the determination of the complete order matrix of
the solute by performing the proper orientational aver-
ages. The only required information, besides parameter
€. 18 the profile of the solute surface, with the implicit
assumption that specific interactions between nematic
solvent and any functional group of the solute are absent,
otherwise the pseudopotential would not scale with the
area of surface elements. The application of this phe-
nomenological model to a variety of solute molecules in
calamitic nematic phases has demonstrated that the ex-
perimental order parameters are satisfactorily repro-
duced with the strength parameter €,, in the range 4
nm~2<e¢,,/ kzT<7 nm~? at about room temperature
(8].

In order to give a physical interpretation to this phe-
nomenological model, let us consider a macroscopic
solute. Then the solute-solvent interactions can be de-
scribed in terms of anchoring (Helmholtz) free energy A4
by using for instance the Rapini-Papoular equation [9,10]

A(0)=sin((6—8,) , 2.3)

where 0 is the tilt angle formed by the director d with
respect to the planar surface, and 6; is the preferred
orientation. In the presence of unstructured surfaces
which interact with the nematic solvent because of ex-
cluded volume effects, it should be natural to choose
0, =0 (planar degenerate anchoring) in the case of calam-
itic nematics, and 6,=w/2 (homeotropic anchoring) in
the case of discotic liquid crystals. Then the anchoring
free energy for a planar surface of area S can be written
as

A(8)=¢,,S(3sin%0—1)/2 , 2.4)

where the Rapini-Papoular Eq. (2.3) has been modified by
including a constant additive term. Notice that the free

energy has been scaled according to the surface area S.
The absolute value of €,, determines the anchoring
strength of the nematic solvent, defined as the change of
the free energy for a unitary planar surface by operating a
90° shift of the tilt angle. On the other hand, the sign of
€,, differentiates the calamitic nematics (positive €,,)
from discotic nematics (negative €,,). The overall free
energy of a solute of given shape is derived by integrating
on the surface the infinitesimal contributions calculated
according to Eq. (2.4). By noting that sin6==*d-s, Eq.
(2.1) is recovered so supplying an interpretation of the
phenomenological model in terms of surface anchoring.
Moreover this implies that pseudopotential U({) of Eq.
(2.1) should be more correctly understood as the
Helmbholtz free energy for solute-solvent interactions. On
the other hand, Eq. (2.2) represents the distribution on
the fluctuations of solute orientations in the presence of a
uniformly aligned director d (and fixed temperature and
volume of the solution), and one can identify
U(Q)= A(Q) with the free energy change required by
these fluctuations [11]. It might appear surprising that
such a treatment for macroscopic objects can be applied
also to a molecular solute. However, analogous macro-
scopic models of the solute, with the solvent treated as a
continuum, have often been employed to derive molecu-
lar parameters, as in the Stokes-Einstein theory of
diffusion coefficients or the calculation of solvation free
energies [12].

Relation (2.1) interpreted as anchoring free energy of a
generic solute in the presence of a nematic solvent, is the
fundamental ingredient of our model of an induced
cholesteric phase. Let us consider a sample of volume V
at temperature T containing N, molecules of nematic
solvent and N molecules of a chiral solute. The overall
free energy A is decomposed into a term A, ., due to
bulk interactions of the solvent and the contribution A4
of surface interactions between the molecules of chiral
solute and the solvent. A continuum representation is
used for the solvent by considering explicitly only the
twist elastic modes which could be stabilized by surface
interactions with chiral solute. Afterwards the equilibri-
um pitch of the induced cholesteric phase will be derived
as the free energy minimum with respect to the possible
twist deformation. As often done in this type of stability
analysis [13], we will employ for 4 ., a single mode pa-
rametrization in correspondence of wave number g of a
coherent twist deformation (the corresponding pitch be-
ing p=27w/q)

Anem:Nnemkz,zqz/z ’ (2.5)

where N, is the number of solvent molecules in the
sample, and K, , is the twist force constant for molecule
of the solvent (it is given by the relation

22K 2U5em /N 4, where K, , is the conventional force
constant for unit volume, v,.,, is the molar volume of the
solvent, and N 4 is the Avogadro number).

For g0, the director field d=d(r) depends explicitly
on the position r within the sample. It is convenient to
use the following representation with the pitch axis along

the y axis u’ of the laboratory frame (u%,uf,uf):
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d(r)=ukcosqy +ulsingy , (2.6)

where y =r-u].

Let us now consider the solute contributions to the free
energy. After introducing a molecular frame (u?, ui,”, uM)
for the solute, the configuration of the ith solute molecule
is specified by its position R’ and its orientation Q' with
respect to the laboratory frame. Equation (2.1) will be
used for the contribution of each solute molecule to the
overall free energy. In the presence of a twist deforma-
tion, each contribution depends on the solute displace-
ment R, besides its orientation Q', because of the posi-
tion dependence of the director field d(r). Moreover, it
depends also on the wave number g of the twist distor-
tion, which determines the magnitude of the changes in
direction of d at different surface locations. The contri-
bution of the ith solute should then be specified as
U(gq,R},Q), and the overall free energy of the chiral

P(q,E)=exp{—A(q,E)/kBT}/qu dZexp{— Alq,

These fluctuations can be differentiated on the basis of
their time scale. Fast processes like rotational and
translational diffusion of single solute molecules deter-
mine the relaxation of = variables, while much longer
times are expected for large scale rearrangements re-
quired to modify g. In a coarse grained picture the distri-
bution of twist deformation fluctuations becomes mean-
ingful, and it can be derived by integrating Eq. (2.9) on
the solute degrees of freedom

P(q)= [dEP(g,E) ,
_ I(q)Nexp{_Anem(q)/kBT}
J da 1(q)Yexp{ — A e (q) /K5 T}

, (2.10)

where the g-dependent integral
I(@)=(1/V) [ dQdRexp{—U(q,R,Q)/ksT} (2.11)

derives from the independent contributions of each solute
molecule, V being the volume of the sample. The re-
duced distribution can be recast as

P(q)=exp{——Ad(q)/kBT}/qu exp{ — A4(q)/ksT} ,
(2.12)

with the following definition for the free energy A4,(q) of
twist deformation of the overall sample

A4(q)= A n(q)—NkzTlnl(q) , (2.13)

with the second term at the right hand side taking into
account the contribution of the chiral solute. This is an
effective free energy for fluctuations of twist deformation,
since the dependence on the solute degrees of freedom

2)/kyT} .

solute is written as

N
Au(g,E)=T U(g,R,Q)),
i=1
where ==(R!,Q',R%,Q2,...,RY Q%) denotes the en-
semble of variables required to specify the configurations
of the solute molecules. Notice that contributions for in-
teractions amongst solute molecules are neglected.
Therefore this relation can be applied only to dilute
enough solutions of the chiral compound, so that an ideal
behavior can be assumed.
In conclusion, one can write the following equation for
the overall free energy:

(2.7)

A(g,E)= A, (q)+ A 4(q,E) , (2.8)

which allows the calculation of the distribution function
for fluctuations on (g, =) variables:

(2.9)

has been averaged out. The equilibrium state of the sys-
tem can be obtained from the minimum of A4,(q), that is,
the most probable system configuration with respect to
the fluctuations. A finite pitch is recovered for chiral
solute molecules since for them I(—gq)71(q), so breaking
the even symmetry of the solvent component 4, ...(q).

As a self-consistency test of our treatment, one can
show that cholesteric phases cannot be induced by
achiral solute. Let us consider, for example, a solute
which is symmetric with respect to a given mirror plane,
and the change of U(q,R, ) after the application of such
a symmetry operation. The elementary surface contribu-
tions P,(d-s) in Eq. (2.1) do not change by considering
the mirror image of the solute and of the surrounding sol-
vent, while the pitch of director field changes the sign.
However, one should take into account that the direction
of the pitch is modified by such a reflection, so that a new
set (R',Q’) of coordinates have to be assigned to the
solute if the representation Eq. (2.6) of the director field
must be preserved. This implies that a correspondence
exists between coordinates (R,Q) and (R',€)’) such that
U(q,R,Q)=U(—¢q,R',Q’). In the integration on the
solute degrees of freedom in Eq. (2.11), one can change
the variables from (R,Q) to (R’,Q’), so that
I(q)=I(—gq). The distortion free energy A4,(q) is then a
symmetric function with the minimum at ¢ =0 which
corresponds to an ordinary nematic phase. The same
kind of considerations can be applied to a solute possess-
ing an inversion center or any improper axis of rotation.
In the same way one justifies the change of sign of the
pitch when a chiral solution is substituted by its mirror
image, since in this case I(q) should be replaced by
I(—q).

To conclude this section we emphasize that I(q) is in-
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dependent of the choice of the molecular frame. In fact,
according to definition Eq. (2.11), I(g) is obtained by
averaging over all solute configurations the Boltzmann
factor for the pseudopotential U which, according to Eq.
(2.1), is determined only by the relative orientation be-
tween surface elements and the local director field d(r).
Thus, a change of the molecular frame for a given
configuration of the solute with respect to the director
field, would not change the integrand of Eq. (2.11). The
choice of a molecular frame is required only in the sam-
pling of solute configurations according to variables R
and Q. In this framework we notice that the integration
of solute position R in Eq. (2.11) can be avoided. In fact,
for a given position R, all the orientations of the solute
with respect to the local director field are sampled by in-
tegrating on (. Therefore an identical contribution
would result by changing the solute position, and Eq.
(2.11) can be simplified as

I(@)= [dQexp{—U(q,0,0)/ks T} , (2.14)

having chosen for convenience R=0 as the arbitrary
value for the solute position.

III. TWISTING POWER OF A SOLUTE

All the ingredients of the model have been specified in
Sec. II, and now the equilibrium state of the system has
to be derived by considering the wave number g, of the
twist deformation which minimizes the distortion free en-

ergy:
4)(g.)=0,

where the prime denotes the derivatives of g functions.
From the previous result Eq. (2.13), the following equa-
tion is derived:

1__ kBT ll(qeq)
pc  27R,, I(gy)

(3.1)

) (3.2)

where p =2m/q., is the equilibrium pitch, c =N /N, is
the solute concentration as a ratio of molecule numbers
with respect to the solvent. Let us consider the limit of
Eq. (3.2) for g,q—0, in correspondence of decreasing con-
centrations of the solute. The right hand side becomes a
constant

(3.3)

and in this limit the inverse proportionality between
cholesteric pitch and concentration is recovered from the
left hand side of Eq. (3.2)

1/p=Bc .

Correspondingly, Eq. (3.3) provides a microscopic rela-
tion for the twisting power B in terms of the solute shape.

In order to specify in detail the relation between twist-
ing power 8 and solute shape, we introduce the orienting
potential Uy({)) acting on the solute in the nematic phase
(g =0). According to Eq. (2.1) it can be written as

(3.4)

Upg(@)=U(OR,Q)=¢, [ dS[3(s-ufP—1]/2, (3.5

since, from Eq. (2.6), d=uf for ¢ =0. The orientational
dependence can be isolated from the surface integral by
expressing the components of s in the molecular frame

Up(Q)=—V3/2€,3 E,  (QE,  (Q)T) o, (3.6)
k,k’

where the Euler matrix connecting the axes of the labora-
tory and molecular frames is denoted as

(Q)—u uy . (3.7

The traceless matrix 7T defined in the molecular frame as

Ty _V3/8f dS[8, —3(s-ul)(s-u}], (3.8)

correlates the orienting potential felt by the solute in the
nematic phase with the anisotropy of its shape [8]. By us-
ing Wigner matrices to express the orientational depen-
dence, potential U,({2) can be written as

Up(Q)=—¢,,3 D3 ,()T>™" (3.9)
m

where T'>™ are the second rank spherical components of
Cartesian tensor T. This allows the calculation of the
orientational distribution of the solute in the nematic
phase

Po(Q)
—exp{— UO(Q)/kBT}/fdQexp{ —Uy(Q)/kpT)
(3.10)

and the corresponding averages of functions f({) will be
denoted in the following as

F@)= [da f(Q)Py(Q) . (3.11)

We mention that distribution Eq. (3.10) can be used for
the calculation of solute orientational averages also in the
induced cholesteric. As long as the pitch is much larger
than molecular dimensions of the solute so that changes
of the director field in different positions of solute surface
are very small, then U,y(Q) of Eq. (3.9) well approximates
the mean-field potential acting on the solute. Of course,
in this case, one should take into account that the
cholesteric phase is characterized by a distribution of the
director in the plane orthogonal to the helical axis, and a
corresponding average has to be applied to the result of
Eq. (3.11) in order to reproduce the experimental order
parameters measured for instance in nuclear magnetic
resonance (NMR) experiments. Then one can determine
parameter €,, for the chiral solute by generalizing the
procedure of Ref. [8] for nematic phases.

By inserting Eq. (2.14) into Eq. (3.3) for the twisting
power, one obtains

B=—U,(Q)/27k,, , (3.12)

where U,(Q) describes the deviations of the solute pseu-
dopotential in the induced cholesteric phase with respect
to that of the nematic phase (g =0)
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U,(Q)=[3U(4,0,02)/3q],—o - (3.13)

By taking into account that the g dependence of pseudo-
potential Eq. (2.1) derives from the position dependence
of the director field Eq. (2.6), the following explicit form
is derived:

Ul(Q)=3eandeS(s-uf)(r~uyL)(s-uf) , (3.14)
where r is the position vector in the laboratory frame of a
given surface element (it should be recalled that by choos-
ing R=0 in Eq. (2.14), the origins of molecular and labo-
ratory frames coincide). As for the nematic potential Eq.
(3.5), one can specify the orientational dependence by ex-
pressing vector components of s and r in the molecular
frame:

U)=—€p 3 E i (QE, (Q)E,;(Q)
k,k' k"

ka,k',k" ’ (3.15)

with the matrix Q defined in the molecular frame by in-
tegration on the solute surface

Q= ——3deS(s-uf)(r-u’,g)(s-u%) . (3.16)
The final result for the twisting power is
B=¢,,Q/27K, , , (3.17)

where we have introduced the chirality order parameter

S E i (QE, (D)E, 1 (Q)Qp i -
k k' k"
The definition of Q of Ref. [7] has been modified by in-
serting a factor (—1) in order to deal with parameters 3
and @ having the same sign for positive €,,. By using the
spherical tensor notation, Eq. (3.18) is transformed into
the following convenient form:

Q=(i/2)3 D(Z),m(Q)Q(Z"")* ,

Q= (3.18)

(3.19)

where Dg,m(ﬂ) are the orientational order parameters
for the solute in the nematic field, and the second-rank
components Q'>™ of Q are given explicitly in Table I.
Notice that @ depends not only on the solute shape
through Q of Eq. (3.16), but also on the temperature and
the anchoring strength parameter €,, because of the pres-

TABLE I. The second-rank components of the Q matrix are
listed.

Q(2’0)=i( Qx,y,z _Qy,x,z ),

Q(z,n:Qtz,—n*
=(Quyy =Dy + Qons—0x,)/V6
+i(Qx,x,y - Qx,y,x +Qz,y,z —Qy,z,z )/‘/37

QY= _Q(z,—z)*
=(Qx,z,.x _Qx,x,z + Qy,y,z _Qy,z,y )_/‘/6
—i(Qry: =20y, + 0y x 2 )/ V6.

ence of the orientational order parameters. In Ref. [14] a
detailed analysis of the independent elements of Q%™
and of the orientational order dependence of the chirality
order parameter is presented for different molecular sys-
tems.

The chirality order parameter can be used to charac-
terize the asymmetry of the solute shape, since the
cholesteric pitch would be inversely proportional to @Q
when considering different solute at the same concentra-
tion in the same solvent [and temperature since
R 2.2 =K 2,2(T)]. We mention that the chirality order pa-
rameter is independent of the choice of the molecular
frame for the solute, in spite of the reference to such a
frame in definition (3.16) of matrix Q. In fact the twisting
power has been derived from the minimization of the dis-
tortion free energy A,(q) Eq. (2.13) which, as em-
phasized at the end of Sec. II, is invariant with respect to
the choice of the molecular frame and of its origin in par-
ticular. Therefore the minimum g, as well as all the re-
lated parameters 8 and @, are independent of this choice.
The use of a particular molecular frame is dictated only
by need of computing the surface integrals.

The chirality order parameter, and therefore also the
twisting power 8 once the twist elastic constant K 2,2 has
been determined for the nematic solvent, can be easily
calculated from the solute shape by means of a simple
surface integration. Only the anchoring strength €,
needs to be specified but, as found in Ref. [8], usually it is
confined in a limited range (cf. Sec. II). Moreover one
can determine it from the measure of orientational order
parameters of the solute, as mentioned previously.
Therefore the accuracy of our phenomenological model
in predicting the twisting power can be self-consistently
established by means of simultaneous measurements of
orientational order parameters of the solute and of the
pitch of the induced cholesteric phase.

To conclude this section, some simple generalizations
of the previous treatment will be presented. First we con-
sider the cholesteric phase induced by the simultaneous
presence of M different types of solute. As long as the in-
teractions amongst the solute molecules can be neglected,
the solute free energy is calculated by including the con-
tribution 4" of each species

M
Ag=3 A . (3.20)
=1

Then I(gq)" in Eq. (2.10) for the distribution P(q) should
be replaced by

M
H I(m)(q)Nm ,

m=1

(3.21)

where I™)(q) is the integral Eq. (2.11) for the mth species
and N,, the corresponding number of molecules in the
sample. By writing the free energy of twist distortions as

M
A4(q)= Aper(@)—ksT 3, N,,InI'"™(q) ,

m=1

(3.22)

one can easily generalize the previous analysis of this sec-
tion, so recovering a linear relationship between the in-
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verse pitch and the contribution of each species

M
1/p=3 ¢uBm >

m=1

(3.23)

where ¢, =N,, /N ., is the concentration of the mth
solute with a twisting power f3,, calculated according to
Eq. (3.17). An obvious consequence is the absence of the
cholesteric phase for a racemic mixture of solute, i.e., two
enantiomeric species ($;=—pf3,) at the same concentra-
tion ¢, =c,.

Up to now we have implicitly considered rigid solute.
Also this constraint can be easily removed by taking into
account the dependence of the solute surface and, there-
fore, also of the anchoring energy Eq. (2.1), on a suitable
set X of internal coordinates describing the
configurations of a flexible molecule. The effective poten-
tial acting on a given solute should then be modified as

U(g,R,Q,X)=U,, (¢,R,Q,X)+ U, (X), (3.24)

where U, is the surface anchoring energy defined by Eq.
(2.1), and U,, the intramolecular potential, i.e., the
mean-field potential for the internal degrees of freedom
when the molecule is in the isotropic phase. Now the
state variables = for the solute should include also the
internal coordinates X!, X2,...,X", and I(q) function
in the distortion free energy A,(g) of Eq. (2.13) is gen-
eralized to the following form:

I(@=(1/V) [dQdRdX exp{—U(q,R,Q,X)/ksT} .
(3.25)

The treatment of this section can also be applied to this
case, once one takes into account the dependence of the
surface integrals Eq. (3.5) and Eq. (3.16) on the internal
coordinates X whose distribution in the nematic phase is
given as

[dQexp{—U(O,R,Q,X)/ky T}
P(X)=

= (3.26)
[dQaXexp{—UO,R,Q,X)/ky T}

By considering the solute in a particular configuration X,
Eq. (3.18) or Eq. (3.19) can be used to derive the X-
dependent chirality order parameter @(X) by inserting
the orientational order parameters Dé’m(ﬂ) specific for
such a configuration. Then the average on the internal
coordinates is required in order to calculate its mean
value

Q= [dX @X)P(X), (3.27)

to be inserted in relation (3.17) for the effective twisting
power .

IV. AN EXAMPLE: THE BINAPHTHYL MOLECULE

In order to illustrate an application of the proposed
method, we consider the 1,1’-binaphthyl molecule which
is drawn in Fig. 1. The calculations have been done for
different values of the torsional angle 6 between the two
naphthyl rings (see Fig. 1). As in Ref. [8], the solute sur-

FIG. 1. The binaphthyl molecule. The direction of the tor-
sional angle 0 towards positive values is shown in the figure.

face was derived from superposition of van der Waals
spheres [15] with standard values for bond lengths and
bond angles [16]. By using an anchoring strength
€/kgT=5 nm™2 at T=300 K, which should be ap-
propriate for nematic liquid crystals in their intermediate
range of the orientational order parameter, we obtain the
chirality order parameter @Q(6) shown in Fig. 2 as a func-
tion of the torsional angle. Only the data for the range
0°=6=180° are reported because of the symmetry rela-
tion Q(—6)=—@(0). In fact the change of sign of 9 is
recovered by performing a reflection through a molecular
plane, so changing also the sign of the chirality order pa-
rameter.

Notice that for 0°< 6 < 180°, the chirality order param-
eter is positive for the cisoid configuration (6 ~45°), and
negative in the transoid configuration (6~135°). Since
@Q(0) is a continuous function of 6, it must vanish at an
intermediate value of the torsional angle (6~93°),
without requiring a particular symmetry of the molecular
system. On the contrary, the vanishing of @ at 6=0° and
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FIG. 2. Chirality order parameter @ as function of the tor-
sional angle 6 for the binaphthyl molecule. An anchoring
strength €,,/kp T=5 nm 2 at T=300 K was employed.
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6=180° is due to the presence of a symmetry plane in the
molecule in these configurations.

In ordinary solutions of binaphthyl, all the torsional
angle configurations are allowed with an even distribu-
tion on the torsional angle 6. Therefore, the average Eq.
(3.27) of the chirality order parameter over the torsional
angle (X=0 in this case) vanishes together with the
twisting power B. In order to observe an induced
cholesteric phase, the torsional angle should be con-
strained. This has been done by linking the 2 and 2’ posi-
tions of the naphthyl rings with an ethylenic or a disulfide
bridge [2,17]. For the binaphthyl with the ethylenic
bridge, Gottarelli and Spada have measured a twisting
power =37 um~! in N-(4'-methoxybenzylidene-4-(n-
butyl)aniline (MBBA) when the twist force constant of
the pure liquid crystal is K,,=3.2X 1072 N
(22,2 =1.6X1073% N m? by estimating the molar volume
of MBBA as v,,,~0.30X10"% m?). Given the rough
similarity between ethylenic and disulfide bridges, one
can use the value 6=56° measured in the latter com-
pound [18]. From Fig. 2 we estimate the order parameter
as @=0.021 nm>, and from Eq. (3.16) the twisting power
B~43 um~! which is in agreement with the experimental
result. A more precise comparison with our theoretical
model would require detailed information about the
molecular geometry (i.e., the torsional angle, but given
the maximum of @Q(6) near 6~50°, it should not deeply
modify the previous result), and the anchoring strength
€,, through determinations of the orientational order pa-
rameters of the solute.

It should be mentioned that the twisting power has
been measured also in the derivative of the binaphthyl
with methyl groups in positions 2 and 2’, which prevent
the racemization by constraining the torsional angle in
the range 0°<60=<180° [2]. In this case one measures a
much smaller value of the twisting power 8~0.5 um ™!
when compared to the constrained binaphthyl. An obvi-
ous explanation is supplied by the profile of @(6) shown
in Fig. 2, because of the change of sign by going from
cisoid to transoid configurations. Detailed calculations
according to Eq. (3.27) would require a model for the dis-
tribution on the torsional angle. However, if we suppose
that, in analogy to the biphenyl molecule [19], the in-
tramolecular potential confines the angle 6 to narrow
ranges around 0~45° and 6~ 135° in correspondence of
two conformations with about the same population, small
values of the averaged chirality order parameter and of
the twisting power would be obtained like in the experi-
mental result.

V. CONCLUSIONS

By means of a continuum representation of the twist
deformation of the nematic solvent and by approximating
its interactions with a solute like the anchoring energy of
a macroscopic surface, a simple model for the induced
cholesteric phase has been derived. The straightforward

application of statistical methods allows the determina-
tion of the twisting power of a chiral solute in terms of an
order parameter related to the asymmetry of the solute
shape. As applications, the binaphthyl molecule and
parent compounds have been considered with a substan-
tial agreement with the experimental results. A more ac-
curate comparison of theoretical predictions with mea-
sured twisting powers would require an independent
determination of the anchoring strength ¢,, for a specific
system by means of the orientational order parameters of
the solute [8].

Given the simplifying assumptions invoked to describe
the nematic solvent and the solute-solvent interactions,
our theory has necessarily a phenomenological character,
the understanding of the influence of the solute shape on
the stabilization of the cholesteric twist deformation be-
ing its main purpose. Of course the real phenomena
might be more complicated because of specific interac-
tions between solute and solvent, which cannot be assimi-
lated to the simple model of the anchoring energy of a
surface. Certainly these specific interactions could play a
major role in the presence of a weak stabilization due to
the solute shape, i.e., when the chirality order parameter
@ of Eq. (3.18) is small in correspondence of a solute with
low twisting power. On the other hand the effects of
these specific interactions can be minimized by a judi-
cious choice of the molecular system.

Finally we would like to mention how our results can
be employed to quantify the molecular chirality. Much
work has been recently dedicated to the derivation of a
suitable parameter characterizing the chirality in the spa-
tial organization of a molecule. In particular, measures
of chirality have been introduced on the basis of
geometric concepts only [20,21]. As alternative one can
use a physical phenomenon produced by the molecular
chirality as a reference for its measure, as done by Osi-
pov, Pickup, and Dunmur on the basis of the optical ac-
tivity [22]. In this framework one can consider also the
pitch of induced cholesterics. Then a convenient measure
of the molecular chirality could be the order parameter @
of Eq. (3.18). However, one should take into account
that @ depends not only on the molecular shape, but also
on the temperature and the anchoring strength e,,
through the solute orientational order parameters. In or-
der to standardize such a chirality measure, one might fix
a reasonable value for the ratio €,,/ky T, or consider the
scaled parameter Q'=QkyT /€,, for hypothetical sol-
vents with a low anchoring strength. In fact @' depends
only on the molecular shape in the limit €,,—0, and it is
easily calculated by representing the molecule as an en-
semble of van der Waals spheres.
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