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Renormalization group calculation of anomalous exponents for nonlinear diffusion
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We consider the heat equation with nonlinearity, u, =u„„+ef (x,u, u„,u„„),where e is a small param-
eter. Using a renormalization group approach, we calculate that for large space and time, the solution is
characterized by u(x, t)-t ' u (xt ', 1), where a is a simple function of the powers of x, u, u„,
and u„„ in f. The same approach can be used to calculate the exponent and coefficient for finite time
blow-up of equations such as u, =u„„+u ", where r ) 1. In both cases the calculations can be performed
within the standards of asymptotic analysis.

PACS number(s): 64.60.Ak, 02.90.+p, 02.70.—c

I. INTRODUCTION

u(x, t)-t " + '
(ultx, 1), (1.2)

where a=( —l)t'+'1X3XS X(p —1)eB for the non-
linearity eBx u "u„ in f. A somewhat more complicated
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The renormalization group (RG) methods of Wilson
and Kogut [1],and Wilson and Fisher [2] that were very
successful in determining critical exponents of statistical
mechanics have been broadened in recent years to include
a spectrum of problems such as fractals and difference
equations (see Creswick, Farach, and Poole [3] for an ex-
cellent survey). In particular, applications to nonlinear
differential equations have been considered by Glimm,
Zhang, and Sharp [4] for chaotic mixing of interfaces,
Zhang [5] for random velocity fields, Avallaneda and
Majda [6] for stochastics and turbulent transport, and
Goldenfeld, Martin, Oono, and Liu [7,8], which we
denote (GMOL), in the case of the porous medium equa-
tion. An anomalous scaling exponent of the form
u(x, t) —t ' is determined using RG methods in
GMOL. Bricmont, Kupianen, and Lin [9,0] have also
obtained some existence proofs for nonlinear parabolic
equations using renormalization group techniques.

In this paper we consider the heat equation with a
broad class of nonlinearities and calculate a set of anoma-
lous exponents using methods similar to GMOL. An ad-
ditional objective is to develop the calculations along the
lines of standard applied analysis without relying upon
analogies from other physical applications or the intro-
duction of different length scales. Within this frame-
work, the steps necessary for making the calculation
mathematically rigorous are evident.

The class of equations we consider is of the form

u, =u„„+f(x, u, u„,u„„),
where f is a polynomial of its arguments and is restricted
by dimensional analysis considerations as discussed in
Sec. II. We conclude that the long time and large scale
evolution of Eq. (1.1) with a thin Gaussian of characteris-
tic length l as an initial condition is governed by

formula is derived for nonlinear terms involving u
terms. The nonlinearities we consider are those which
arise without the introduction of other dimensional pa-
rameters, so that the exponent p characterizes the non-
hnearity. As noted in GMOL, standard dimensional
analysis cannot be used to calculate the exponent a. In
many cases such exponents arise as a result of a limit of
vanishing length (or other) scale that is a singular rather
than a regular perturbation (as discussed in Barenblatt
[11]). In this case the dimensionless small number e ap-
pears to provide the correction to the classical exponent.

Equations of the form of (1.1) arise in a broad range of
diffusion problems in which the detailed physics is taken
into account (see, for example, Ozisik [12], and Gebhart
[13]). Prigogine [14],pp. 55 —68, discusses the limitations
of the linear theory of diffusion and derives a number of
the key nonlinearities of the form of (1.1) from basic ther-
modynamics. From a macroscopic perspective, a basic
source of nonlinearities involves inhomogeneities in the
difFusion coefficient in the flux (Shewmon [1S], p. 6) or
variable dependent potentials ([1S],p. 25) in Fick's laws.
Particular examples involve (i) temperature dependent
heat conduction, (ii) compressible fiuid flow equations
McComb [16], (iii) phase transitions involving alloys [17],
(iv) seepage flow in which the permeability is dependent
on the absolute value of the flow velocity Muscat [18], (v)
magnetic fields with permeability depending upon field
strength Jackson [19], Chap. 6, (vi) heat diffusion and
phase transition problems in which (temperature)
dependence is considered [14,20], and many other appli-
cations [21].

The methodology presented in this paper is useful not
only for the exact calculation of large time profiles, but
also in establishing equivalence classes in nonlinearities,
since the exponents are determined by a simple formula.
This also makes possible additional criteria for deciding
on models that agree with experiment.

Our analysis also establishes a close link between the
large time asymptotics and the blow-up problems (in
which u diverges) by using renormalization group metho-
dology. A classical blow-up problem that has been stud-
ied extensively is Eq. (1.1) with f defined as u" for r ) l.
Berger and Kohn [22] have used rescaling arguments as
part of a numerical scheme to determine the singularity.
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II. ASYMPTOTICS OF THE HEAT EQUATION
WITH SMALL NONLINEARITY

Let e be a small dimensionless number. We consider
the heat equation with nonlinearity in the form

C u, .=K[u„„+eN[x,u, u„,u„]I, (2.1)

where C and K are constants (with D:=K/Cz) and N is
a sum of terms of its arguments of the form

x u "u~u~ (2.2)

Recently, Bricmont and Kupiainen [10] have provided
rigorous proofs of the existence of infinitely many profiles
around the blow-up point.

continuity, we postpone discussion of the error terms un-
til Sec. IV. Using Green's function

G(x, t):=(2n.t) '/ exp
x 2

2t
(2.5)

XN[y, u(y, s), . . . ] . (2.6)

We solve this using an asymptotic expansion for small e
and write the formal sum,

and treating the nonlinearity as a source term we can ex-
press the solution to (2.1') as

u(x, t)= f dy G(x —y, t)g(y)

+e s yox —y t —s

where m, n, p, q are integers that satisfy u(x, t;e, l ) =up(x, t;1)+eu, (x, t;1)+ (2.7)

n+p+q = 1

p+2q m =2
(2.2a)

(2.2b)

(u '), =D(u ')„„oru, =D(u —2u /u ) . (2.3)

so that (2.1) is dimensionally correct without the intro-
duction of a new time or space scale. We also assume
that u is dimensional (e.g. , temperature) so that (2.2a) is
required. Examples are (i) u 'u, (ii) x 'u„, (iii)
xu u„, (iv) x u u„u„„. Note that (i) arises from the
inverse temperature diffusion,

Qp x
up(x, t)=

[2~(t+1 )]' 2(t+1 )
exp (2.8)

where we have suppressed the parameter 1. The deriva-
tives of up are given by

Bup

Bx

28 up
up, =(t+1 )

t +12 '
BX2

x —1 up,t+l

so that l is not yet treated as a small number in compar-
ison with e. Formally solving (2.6) by substituting (2.7)
and retaining only O(1) terms leads to the expression

r

In general, diffusion processes obtained in the manner
of (2.3) that do not involve additional physical constants
will lead to these types of nonlinearities.

To simplify notation and maintain correspondence
with GMOL we define t:=2Dt' (units length ) and use
(2.1) in the form

so that one has the relation

8 up Bup= —(t+1 )
' up+x

x ax

(2.9)

(2.10)

u) =
2 u~x +EN[x, u, u~, u~x ] (2.1')

subject to the initial condition

Qp x
u(x, 0;1):=g(x;1):= 2 &/2 exp

(2nl )'/ 21
(2.4)

where Qp..= TpQ, with Tp having temperature units and

Q& length units. We will be interested in a sharply
peaked Gaussian so that l will be small. One of the
subtleties in the asymptotics, however, is that the scale of
l compared with e must be controlled. For the sake of

The last identity will estabhsh a simple relation between
the effects of nonlinearities involving the second order
derivatives and the lower order in terms of the anomalous
exponents. We proceed by using up in the expression
(2.6) to generate the next term of (2.7), namely, u &. Since
N consists of a linear sum of the form (2.2), it suffices to
consider the nonlinear term x u "u~u~„subject to (2.2).
For convenience, we consider the case q =0 first, so that
the nonlinearity will be completely specified by p, as
n = 1 —p and m =p —2. We then have

—I/2
u, (x, t;1)=f ds f dy, /2 exp

)1/2

—(x —y)
2(t —s)

2
m(s +12)—I/2 ( y) ex y

(2~)'/ (s+1 P 2(s+1 )

2
t ' e " 'f 'ds(s+1 ) ~ '/

( —1@f"dyy~+ exp2' 0 oo 2(s+1 )

+(terms that are smaller in 1) . (2.11)
—1/2 —x /2gThe approximations involve replacing t —s by s, and x —y by x to obtain the t ' e ' term. The justification,
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which is discussed in detail in Sec. IV, is based on Laplace s method for integrals (Erdelyi [23], p. 36), since the main
contribution to the integral must arise from the regions near y =0 and s =0 for small I. Note that the entire term is of
the same order in e so that the smaller terms in I cannot cancel the higher order. Let I, denote the integrand of the s
integral and use w:=y /(s+l )' to obtain (for p & 1)

I&=(s+l ) '( —1) f w ' "e " dw

2~ '"
[1X3X . X(2( —1) ll] .

(s+ lz)

Combining this with (2.8) one has to leading order in e and to leading order in 1 within O(e) the solution
—1/2

—x /2tu(x, t;e, l)= e ' '[1+e(—1(i X3X . . X ~2p
—3~in(t/l )],

(2.12)

(2.13)

for p ~ 1 and q:=0.
Nonlinearities involving u„.The nonlinearity x u "u~u ~„(with q & 0) leads to

—in —«'r2~u&(x, t;l)=— t ' e " ~ ' ds I&(s,y;l),2~ 0

I:=(s+l') '( —1)Pf" w + (w —1) e dw .

Using the binomial theorem to evaluate I&, one obtains for

N[x, u, u„,u„„]= g B(m, n,p, q )x u "u&u q

m, n, p, q

the result

(2.14)

g t
—I/2

u(x, t;e, l)= e
(2m )'

X 1+e g B(m, n, p, q) g ( —1) + 1X3X X ~2p+4q —2j —3~in(t/l ) (2.15)
m, n, p, q j=0

In particular, for the special case in which
m =n =p =0 and q = 1 one obtains

1

g ( —1)'1X3X X ~4 —2j —3~in(t/l')=0,

indicating as expected that the addition of this linear
term u does not make a contribution and will not
change the exponent.

Porous medium equation. The porous medium equa-
tion considered by GMOL can be written as

f F((w —1)e )(w —1)e ~ dw =0 (2.17)

will vanish for F(x ):=1,the linear case, and for a set of
functions that represent a particular symmetry that
weights the function equally on either side of w = 1 with
respect to the particular symmetry that originates from
the second derivative of the gaussian.

III. THK RENORMALIZATION GROUP
FROM AN ANALYSIS PERSPECTIVE

E
2uxx= 2H( uxx)"xx ~ (2.16)

where H(z ):= 1, if z & 0 and vanishes otherwise. Hence,

H( —u )=H 1—
On s+l

—w /2and the integral J'" (w —l)e ~ dw=O is truncated
2

to f ', (w —1 )e ~ dwAO so a nontrivial contribution
to u

&
via (2.14) is possible. Thus it appears that all but a

small fraction of nonlinearities similar to (2.16) will result
in a nonzero contribution that will lead to an anomalous
exponent. In other words the integral

Given an asymptotic relation such as (2.15) one can
calculate the anomalous exponent explicitly and obtain
the precise similarity solution for large time and space.
The arguments are within the context of formal applied
analysis without reference to numerical procedures or
physical analogies, and are thus in a form that can pro-
vide a basis for attempting rigorous proofs and generali-
zations to a wide variety of nonlinear differential equa-
tions. The methodology is close in spirit to those of Gol-
denfeld, Martin, and Oono [8] and Creswick, Farach, and
Poole [3]. For the problem under consideration, the re-
sult can be stated as follows (using true dimensions):

Proposition 3.1. Suppose u can be expressed as
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—1/2
u (b" x, b "t') =-Z(b )"u '(x, t') . (3.10)

u(x, t', e, I ) =
Q2 /D

1/2 e
—x /(4Dt')

X [1+eA ln(2Dt'/I )], (3.1)

where A does not depend upon x, t', e or I, and
EA ln(2Dt'/I') «1. Then, to leading order in e, u can be
written as x:=b x t:=b t', (3.11)

Note that b & 1 was necessary for considering large time
and space, and in fact for the assumption of approximate
self-similarity that underlies the existence of the fixed
point u '. We rewrite the last equation by defining

u(x, t', e, l)=
t'

' —(1/2)+ eA

Qi/D
so that one has (for large k )

x Qi
2

(Dt/Q2 )i/2 ~ D
(3.2)

(3.3)

Veri+cation The d.erivation is divided into five stages
that can be implemented more generally on other prob-
lerns.

Stage 1. One needs to obtain an identity [up through
O(e) j of the form

so that the anomalous exponent is given by e A. The fixed
point function u * is given by

r

2Du'(g, ~, )= )/zexp. — 1+eA ln
2~1/2 4D ~1 12

u (x, t ) =Z(b —)"u '(xb k/z, tb ") . (3.12)

This means that for any large t we can determine the u
profile by setting b":=t/(Q) /D), so that the second ar-
gument remains unchanged as we examine different
values of t, and we can then write (3.12) as

u(X, )t= Z
Qi/D

1/k k

u

2x Qi
(Dt /Q z

)
i/2 ' D

(3.13)

Note that if we chose to ignore the units we would set the
second argument of u * at unity.

Stage 3. The scaling exponent will be determined by
the limit

u(b~x, bt')=Z(b)u(x, t'), (3.4) 1/k k

—1/2

u(b' x,bt')= To 2t'
(2~)' Qi /D

X [1+eA ln(t/I )] [1+A lnb],

g
—1/2 —x /4Dt'e

(3.5)

that is, valid for a particular choice of Z and P and all
b &1. For the problem under consideration, clearly the
exponential term in (3.1) forces /=1/2. Rewriting (3.1)
to O(e) one has

lim ~ Z
k~ oo Q2 /D

1+ lnt1
eA
k

(3.14)

if it exists. To calculate this we let t, :=Dt/Q, and sub-
stitute directly into (3.6) and utilize the asymptotic ex-
pansion

so that (3.4) is satisfied with P = 1/2 and

Z(b):=b ' (1+eA lnb) . (3.6)
to obtain

'k

Note that Z does not depend upon I.
Following Creswick, Farach, and Poole [3] we define

the operator

[Z(t 1/k )]k t
—i/2 1+ lnt t( —)/2)+e

k

yielding the result

Rb &u(x, t'):= u(b' x, bt') .1
(3.7)

' 1/k k
Dt

lim Z
k~ m Q2)

—(Dt /Q2 )
—(i/2)+EH (3.15)

u(b "/ x,bt')=Z(b)"u(x, t') .

A fixed point of this iteration will exist only if

(3.&)

Stage 2. By iteration we have [again suppressing e and
I and ignoring O(e ) terms],

x 2

(Dt /Q2 ))/2 ' D
tI ) (Dti/Q2 )

—()/2)+@Au e

Stage 4. Using (3.15) in (3.13), and dropping the over-
bar since (3.13) is valid for arbitrary large t, one obtains

r

u *(x,t'):= lim Z(b ) "u (b" x, b "t')
k~ oo

(3.9) (3.16)

is well defined. We assume the existence of a fixed point
in this formal derivation and rewrite (3.9) for large but
finite k as

so that the anomalous exponent or "dimension" is
a= —eA.

Stage 5. Explicit evaluation of u is possible by writ-
ing (3.1) as
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u(x, t';e, 1 ) =

—1/2

Q, /D
1/2 e

—K /(4Dt')

X f 1+eA ln(Dt'/Q, ) I

' —(1/2)+ eA

Xe ' ' ' '1+eA ln

Tp Dt'
tt(x, t, e, l ) 1/2 22m. Q,

2Q2

l2
(3.17)

2Q 2

X 1+@A ln
I2

and utilizing (3.14) again to obtain
Comparison of (3.17) with (3.16) leads to the evaluation
of u* as

2x Qi
(Dt ~/Q2 )1/2 '

To . (Dt'/Q i
)'

277 / 4D(Q /D )

2Qi D'1+@A ln (3.18)

which is (3.3) so Proposition 3.1 has been verified.
The results of Sec. II then imply the following result.
Proposition 3.2. The general nonlinearity X[x,u, u„,u„„jdefined in (2.15) has the anomalous exponent

qa= —e g B(m, n, p, q) g ( —1)J ~1X3X X ~2p+4q —2j —3~ . (3.19)
m, n, p, q j=0

While the calculation has used the idea of small e, the
expectation of universality would imply that the ex-
ponent varies continuously as e is made larger provided a
singularity does not occur due to the nonlinearity.

IV. ERROR TERMS
exp

2
=e ' "g A B (y /x )'(s/t )2(t —s)

the small s and y parts it is useful to write the first ex-
ponential of (4.2) as a double Taylor series

The analysis of Sec. II involves approximations along
the lines of (i) small e, (ii) small l, (iii) large t and x. The
RG calculation involves the additional approximation in-
volved in the fixed point in that (iv) large k is used to ap-
proximate Oo. The interactions between these approxi-
mations present a number of subtleties that require
clarification. While the derivation reduces the calcula-
tion of exponents to simple arithmetic, the actual ex-
istence of the fixed point u * is subtle and its existence is
contingent upon the boundedness of the nonlinear terms
that are small in terms of the formal analysis.

We now analyze the integrals of Sec. III in terms of the
error involved in the approximations beginning with the
first expression of (2.11}which we write as

These are convergent series for ~y /x
~

& 1 and ~s/t
~
&»n

which the first term (i =0, j=0) is 1. Using this expres-
sion in (4.2) we write

J,(t,s)=e ' "g /1;B (s/t)J

2

X f dy(y/x)'exp y
00 2(s+l )

(4.3)

1) Qo ~ (t —s)
u, ( tx)= fds, J, (t,s),+ l2P+1/2 (4.1)

Now define J11..=j ' as the small y part of the J,
integral. The di6'erence between the two is then

J,(t,s):=f dy exp
—(x —y )'
2(t —s)

2

—,'~J, —J„~ f dy exp 2 y
3'p 2 s+I (4.4)

2

Xexp y (4.2)
2(s+1 }

We will divide both integrals (ds and dy ) into two parts,
namely, the small s part, i.e., s ~sp and small y part,
~y~ &yo, and the remainder terms in the integrals. For

for t & s as a consequence of the inequality

exp
—(x —y)'
2(t —s )

Using the substitution w:=y/(s+l )'/ again, we will
obtain a bound on the difference (4.4) by defining
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G(z):=f dw w +~e
z

00 2 2
dw w + 'e we

Z
(4.5)

—,
'

~ J& —J» ~(t, s) ~(s+1 ) e if s ~so, (4.9)

a large constant c, and set yo:=c, l and so:=c,l.) Then
(4.7) implies

m+ —1 —ttl /4The bound, w +~ 'e ~C(m, p), where C(m, p)
is a constant depending only on m and p, then yields the
result,

for some integer P. Combining the bound (4.9) with the
expression (4.3), we obtain, by splitting the s integral into
two parts, the expression

G(z) ~2C(m, p)e

Using this in (4.4), one obtains the bound

(4.6)
( —1)'Qo " (t —s)-'"

u, (x, t)= ds 2, J»(t, s)
2n o (s+12)t'+'/2

—,
'

~ J, —J„~~ 2C(m, p )(s+1 )

—{s+I ) y0/4Xe (4.7)

$ . 1 1/2Sp.— (4.8)

(An alternative employing original units would be to use

Note that ~J&
—

J&& ~
is a function of t and s, and de-

pends upon the parameters 1 and yo. We choose yo and
so as suitable functions of 1 so that the bound (4.7) is ade-
quate to show that J» differs from J1 only by terms that
are exponentially small in I. One way of accomplishing
this is by choosing

(
—1)'Qo - (t —s) '"

+ f dS 2 +)/2 J))(t,S)p+ 1/2

+O(e-' '"'. (4.10)

(t S) 1/2 —t 1/2 y C (S/t)k
k

(4.11)

where the coefficient of the first term in the series is again
1. Now u, can be rewritten in the form

Focusing on the first integral, we note that t )&s &)sp
and we can expand part of the integrand in a Taylor
series as

( —1)"Qot e
—1/2 —x /(, 2t )

ui(x, t )

] j+k

y ~,a, C„f d. — (s+1') ' '"
l, J, k

2
I
—] /4y +pmexp y +O(te )+( ' ' ' ) f2(s+1 ) 0

(4.12)

Next, we need to extend the dy integral to ( —~, ~ ).
Using the same estimate as in (4.6) for G(z), we see that
the integral can be extended to the entire real line with an
exponentially small error in l.

The term f,' is not negligible but contains terms that

are less singular than the corresponding terms in the f o

integral. Consequently the leading order term in f o'

cannot be canceled by the upper part of the integral.
Finally, the issue of the double expansion in e and l can

be addressed by expressing one in terms of the other and
obtaining an expansion in terms of a single parameter.
Since e is the magnitude of the nonlinearity and l a length
scale associated with the initial condition, it is reasonable
to choose I as a function of e. For proper dimensional
consistency, we would need to specify 1/to where to is the
minimum time of interest that we used above. Suppress-
ing the tp factor, one can write the basic expansion as

Q =Q p .+6'u
1 +

=uo+e[ln(t/1 )
&
uo+(1 /t)ln(t/1 )u»+

(4.13)

where u, p and u» represent the coefficients in the I ex-
pansion of u, . To obtain a single expansion, we need to
guarantee that

5:=eln(t/12) «1,
e(l'/t)ln(t/1') «O(5) . (4.14)

One can regard this approach (along the lines suggest-
ed in Sec. II) as first taking e to be a small parameter and
then reducing I to the size of e.

The anomalous exponent can be obtained directly from
(4.15). Our analysis of the approximations thus shows
that the RG procedure can be reduced to standard
asymptotic expansion in e.

Choosing I:=etp ensures these two conditions so that
the asymptotic series (4.13) has the form

Q —up+ GQ1+

=uo+e[[2 lne+ln(to/t)]u, o

+e(toIt)[21ne+ln(toIt)]u»+ .
I .

(4.15)
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V. RG CALCULATION OF BLOWUP

ut uxx+u (5.1)

with r &1. Note that a time scale ~ is needed as a
coefficient of u in (5.1) (provided that u is dimensionless,
e.g., u =concentration). If u is dimensional, e.g.,
u =temperature, then the coefficient ~ ' is replaced by

'T0 "+'. We suppress these units at this stage since
the issue is essentially the same as in Sec. III. One can re-
gard (5.1) as the natural units in which time is measured
by r and space by (Dr)'

Berger and Kohn [22], and references therein, consider
the interval —1&x &1 with Dirichlet boundary condi-
tions

The RG analysis of Sec. III extends easily to blowup of
solutions to differential equations. In particular, we con-
sider the equation

+$, i/2u(x r ro)=ui, (x, t ro)

=b' "+"'u(b' x, b(t to)) . (5.5)

u*(x, t to)=—lim b" "+"'u(b" x b "(t to))—.k~ oo
(5.6)

Letting x:=b x and t:=b "(t to) and—writing (5.6) as
an approximation for large k, one has (to leading order in
k-')

u(x, t)=b '"+"u "(b " x b t) . (5.7)

Defining Z(b ):=b ~"+"' one can write the transforma-
tion in the standard form as in Sec. III. A repeated appli-
cation of this transformation with b &1 will move the
solution closer to the singularity and closer to self-
similarity. In the limit one may expect the existence of a
fixed point function u * satisfying

u( —l, t')=Q(l, r')=0, (5.2)
For any (small) t we can evaluate u(x, t) by setting
b"= —t so that

and initial data, P(x ), such that

P)0, P(x)=P( —x), xP'(x)(0 for x%0, (5.3)

for which the solution to (5.1), (5.2) is known to be posi-
tive, symmetric, and decreasing in ~x ~. Furthermore, it is
known (Giga and Kohn [24], Galaktionov and Posashkov
[25]; see also references within) that the solution to
(5.1)—(5.3) exhibits a divergence at some time to) 0 so
that

u (x, t ) = ( r) 'i'"+ "—u *(x/+ t, 1), — (5.8)

f(g):=u "(x/+ t, 1), g:=—x/+to t, —(5.9)

for t near 0 and remains valid as an approximate solution
to (5.1) when t is replaced by t —to Hence . the exponent—I/(r +I) is thereby determined. One can proceed to
find the coefFicient by substituting this expression into the
original difFerential equation. Upon defining

u(x, t)— r+1

—1/(, r+ 1)

(5.4)

one can write the differential equation to leading order in
'as

is the leading order (in ~to
—t~ ) term in the solution.

Our analysis here is local and applies to any set of initial
and boundary conditions for which the solution has simi-
lar qualitative behavior.

We will derive (5.4) using the methods of Sec. III so
that the coefficient, in addition to the exponent of the
leading term, is obtained through a simple calculation.
The arguments are close to those of Berger and Kohn
[22], who based a numerical scheme on the identity (5.5)
below in order to calculate the singularity.

Geometrically, it is easy to see why the methods of Sec.
III should apply. In the asymptotic decay problems, the
fixed point of the RG methods amounted to a near self-
similarity as the solution decayed to zero as t approached

For the blow-up problems there is an analogous situ-
ation in that the solution is nearly self-similar as t ap-
proaches ao. To put it more simply, the picture in the
blow-up problems looks like the decay problems upon ro-
tating the graph counterclockwise by m /2.

To define the proper RG operator Rb &
one observes as

before that only P= —,
' will be possible since the leading

space derivative is second order, so that scaling time by a
factor b forces a scaling of space by b ' . Substitution of
u(b'~ x, bt) into the differential Eq. (5.1) leads immedi-
ately to the conclusion that u itself must be scaled by a
factor of b' "+"', so that if u(x, t to) solves (5.1) the—n
so does

f"(g)+ f'(g) f(g)+f(—g)"=0, (5.10)

with solution

f(g)=(l+r) —I/(r —1) . (5.11)

Substitution of (5.11) into (5.8) implies the formula (5.4),
which in more precise form ca:.be written as

u (x, t)
lim - —i/(r+ i) 1 ~

0

r+1

(5.12)

Remark 5.I. Similar conclusions about the nature of
blow-up can be drawn from guessing the form

u(x, t)=r 'f [x(r, —r) (5.13)

since substitution into the differential equation shows
that a solution can be attained with the exponent and
functional form off given by (5.4).

VI. CONCLUSION

We have shown that renormalization methods can be
used to calculate the anomalous exponent of the heat
equation with a class of nonlinearities. Furthermore, this
can be done within a systematic applied mathematical
setting of asymptotic analysis. The axiomatic set of steps
involved in the calculation thus has the potential for
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complete rigor and does not rely upon physical analogy
with other phenomena.

The renormalization group within this setting becomes
a simple computational tool that can be generalized to
other classes of partial differential equations whenever
there is basic solution upon which perturbations (e.g. ,
nonlinearities of order e) can be calculated using the usu-
al asymptotic analysis procedures.

The nonlinearities we have considered include the in-
verse temperature heat equation, (T '), =(T ')„„,as a
special case. This equation along with source terms has
been used in some phase transition problems. For tem-
peratures that are far from absolute zero, the difference
between this equation and the ordinary heat equation
amounts to a nonlinear source term as noted in Eq. (2.3).
The fact that the two equations differ in the large time ex-
ponent gives a clear criterion for the use of each in mod-
eling. In fact, this procedure of calculating the large time
behavior using these RG methods can be used in conjunc-
tion with experiment and statistical mechanics calcula-
tions in order to decide on the appropriate equations in a
particular problem.

Our analysis also unifies the methodology involved in
blowup problems with those of large time decay. The key
first step in both problems is to obtain a transformation
that leads to a fixed point, indicating that the solution
tends asymptotically to a self-similar graph. In the case
of the large time decay, the solution approaches self-
similarity as (u, t ) tends to (0, ao ). In the case of blowup
the situation is identical except for a m/2 rotation of the

axes so that self-similarity is approached as (u, t ) tends to
( ae, to). The second step in both cases involves extracting
functional relationships based on the existence of a fixed
point as the transformation is applied a large number, k,
times. Using a large but still finite k, one can obtain the
unique functional form that is compatible with the fixed
point. This procedure is philosphical1y similar to using
repeated rescaling of the numerical grid but allows a
direct and simple calculation of the exponent as well as
the coefficient of the singularity. Numerical computation
can be avoided in the blowup problems just as appeal to
physical analogy can be avoided in the asymptotic decay
problems, as the underlying mathematical structure is in
fact quite simple.

Throughout this analysis e has been a small parameter.
It has been noted in [7,8] that the results could be contin-
ued for large e in the spirit of the Wilson-Fisher e expan-
sion. The formalism of Sec. III may be used in conjunc-
tion with analytic continuation methods to prove the va-
lidity of the expansion beyond the usual rigorous asymp-
totics. In most cases asymptotic calculations are made
rigorous within an arbitrarily small neighborhood
e&(0,eo). The continuation methods may be useful in
extending the arbitrarily small E'p to a known finite num-
ber.
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