PHYSICAL REVIEW E VOLUME 53, NUMBER 6 JUNE 1996

Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation
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We have shown that the two-dimensional complex Ginzburg-Landau equation exhibits supertransient chaos
in a certain parameter range. Using numerical methods this behavior is found near the transition line separating
frozen spiral solutions from turbulence. Supertransient chaos seems to be a common phenomenon in extended
spatiotemporal systems. These supertransients are characterized by an average transient lifetime which depends
exponentially on the size of the system and are due to an underlying nonattracting chaof&1668-
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we can restrict our investigation to the domaifl
=[0,27]X[0,27]. Since for the parametét in Eq. (1) holds

R~ L2 applying the rescaling transformation the paramBter
represents a measure for the spatial extension of the medium

) ) ) ] ) and has a meaning comparable to the Reynolds number in
The dynamics of physical, chemical, and biological sys-ihe Navier-Stokes equations.

tems is often described by complicated, nonlinear partial dif- he 2p Ginzburg-Landau equation exhibits, analogously

ferential equationge.g., Navier—Stqkes equatic)_nsand the  (0its 1D version, a class of traveling plane waves
general treatment of these equations, analytically and nu-

merically, turns out to be only possible under special restric- A(r,t)=a(k)exdi(k-r—wt)], 2
tions. A common approach to this systems uses the fact that

near the threshold of an instability the nonlinearities arewherela(k)’=R—k? andw=(a—B)k*+Rp. The spatial ho-
weak, and the modulations of a basic pattern can be dehogenous solutiolStokes solutiopwith k=0 becomes un-
scribed by an envelope function. For this function a differ-stable at the Benjamin-Feir linetla3=0 (see Fig. 1 all
ential equation can be derivéamplitude equationwhich is ~ other waves are losing their stability beld&].

easier to treat than the general equations, but with the disad- Another type of solution is the spiral wave which has the
vantage of being restricted to the vicinity of the threshold.form

The number of universal forms of these equations is limited .

by the classification of different linear instabilitis]. This A(r, ¢, ) =F(r)exgil —ot—m¢+(r)]}; 3
envelope formalism plays an important role in a variety of
physu?al systems, SUCh_ as oscillatory chemical r.eaCt'on%harge. The functions and can be expressed in analytical
Rayleigh-B@ard convection, or plasma waves. In this pape

r = = =
we consider the amplitude equation derived for an oscillator){i?]:m OE'{r)fir\;l_To?nd r;;]o whe/r(er)F(i(;) thl/(;((;)s r?1 ?Stcijc
uniform instability describing a system in the vicinity of a wa\r/:cnumber thilcr’] |qs a urﬁﬁ;/e/ function afan()j/,Bp[s]
Hopf bifurcation in two spatial d|men3|ons, which is com- Investigations about the stability of this solution can be
monly known as the 2D complex Ginzburg-Landau equation

; L ... found in[4].
For the complex amplitude function in the rescaled form it is Besides this regular behavior, the Ginzburg-Landau equa-

tion shows a variety of phenomena known from other dy-
namical systems such as spatiotemporal cti&gsntermit-
tency[6], and transient chadg,8]. We focus our interest in
this paper on the latter.

Dynamical systems show deterministic chaotic motion not
only as an asymptotic long-term behavior but also as a tran-

I. INTRODUCTION

written in polar coordinates(¢), m= *1 is the topological

A=RA+(1+ia)AA—(1+iB)|A|?A, (1)

whereR, «, and 8 are real parameters. In the following we
impose periodic boundary conditions

AX Y, t)=AX+LYy ) =AXYy+L,t) sient state before reaching a nonchaotic or chaotic attractor
[9,10]. This transient chaos is caused by the existence of a
and by means of the scaling transformation nonattracting chaotic sefchaotic saddlein phase space.
Nearly every trajectory starting from random initial condi-
2 2 27\ 2 tions wanders to this chaotic set and stays for some time in
(X,y)—><T X1 Y), t_)(T) t, its vicinity, displaying chaotic motion. Then the trajectory

leaves the saddle and settles down to an attractor, usually a
) periodic or quasiperiodic orbit.
A—>LA R—>( L ) R The typical timer (lifetime) of a trajectory in the vicinity

27 of the chaotic saddle can be defined by the nunib@) of
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[ — saddle below'(«) as a result of a crisigl0]. In the transient
Benjamin—Feir ] region the trajectory finally settles down to a periodic attrac-
I i tor which is in most cases not a simple plane w&ebut
1.5k - consists of a finite number of randomly distributed spirals.
I chaos\(turbulence) ] This final periodic state is often called a frozen state, because
|A] becomes time independent. Badtral. [7,8] investigated
the scaling behavior of the transient lifetime in dependence
of the parametelB for a fixed value of the parametér.

transient chaos Approachingl'(«) from below, they discovered an exponen-

0.5 tial dependence of the formrexp{[T(ap)—B]"% for
ag=—1. In contrast our aim is to examine the scaling behav-
I 1 ior for fixed values ofe and 8 to determine the dependence
0.0 ' : ‘ : on the parameteR. As noted aboveR can be interpreted as
0.0 0.5 1.0 15 —a 20

a length scale for the system.

FIG. 1. Phase diagram of the 2D complex Ginzburg-Landau
equation. The calculations presented here were carried oui=for [l. NUMERICAL RESULTS

~0.5 andp=1.07 (filled circle). For the numerical simulation of the Ginzburg-Landau

equation a pseudospectral method has been used applying a
Fourier decomposition for the complex functiéifx,y,t) of
the form

trajectories, which still display chaotic motion at tirnerhen
starting att=0 with N, different initial conditions

N(t) =N, exg —t/7]. (4)

For extended spatiotemporal systems it seems to be com-  A(X,y,t)= > a (1) & w  k=(k, k),

mon that the lifetimes of the chaotic state can be extremely K ky?

long. In these systems it was also found that the lifetime

increases quickly with increasing system size, which willleading to a system of ordinary differential equations for the

make it impossible to observe the nonchaotic attractor in aeal and imaginary parts of the Fourier modg$t).

large system in practice, and such systems cannot be distin- All computations were performed on a CRAY Y-MP EL

guished from systems containing a real chaotic attractor. leomputer. Depending on the parameRrin the equation

the lifetime depends exponentially on the system size thelifferent resolutions consisting of 12828, 64x64, or

dynamics is also called supertransient chaos. This supertraB2x32 gridpoints were chosen and the time integration was

sient behavior is still not fully understood, and there are stillcarried out by a fourth-order Runge-Kutta scheme.

only a few results available. We restrict ourselves to the parameter set—0.5,
Investigations of the scaling of average transient lifetimeg=1.07 (see filled circle in Fig. L and varyR within the

7in a 1D coupled map lattic€CML) were carried out in interval 16<sR<100. In this range oR the final periodic

[11]. Depending on the coupling strengththree different  attractor is for nearly all chosen initial conditions a single

scaling behaviors were found. For weak couplingeems to  spiral[15].

be independent from the siteof the system. An increase of In order to characterize the scaling of the transient life-

the coupling strength leads to a polynomial power law of thetime with the system size it is necessary to perform calcula-

form 7~L7” up to a critical valued, . Further increase o6  tions with several different initial conditions. As remarked

yields supertransient chaos,

T~expaL?) N(f)_ I ’

with o=~1. Exponential scaling was also found in the inves-
tigation of the dynamics of complex interfadd®], modeled

by a 2D CML, with 0=3/2. A first example for supertran- 100
sient behavior of a partial differential equation has been I
found by Wackeretal. in [13] for a special reaction-
diffusion system. On the other hand, the system investigated
in [14] shows a nearly linear growth af depending on its
length.

The transient chaotic behavior in the Ginzburg-Landau
eqguation was investigated modeled by a coupled map lattice
in [7,8] in the parameter range2<a<0, 0<3<2. Figure 1
shows the schematic phase diagram. The lilie) is the
transition line between transient and permanent chaos.
Above I'(a) there exists a chaotic attractfin the region FIG. 2. Exponential decay of the number of trajectories display-
betweenI'(«) and the Benjamin-Feir line BF this attractor ing chaotic motion after timé. The graph was obtained by starting
coexists with periodic orbils which changes into a chaotic att=0 with Ny=200 different initial conditions.

10 L .
0 1x10% 2x10% ¢ 3xi0t




6564 BRIEF REPORTS 53

10 l ' ' 3x10%F ‘
T [ T
1053* E [

2x10%k
1045— E

. 1x10H]
10%: 3 [
102 I | I L ;‘

2 4 s] 8 10 0.0

L R1/2

FIG. 3. Scaling of the average transient lifetime with the system

size FIG. 4. Transient lifetimes on a 1D line segment in phase space.

above, the lifetimer, of a transient chaotic trajectory gener- with fa.wl' .bl.Jt _due to .the small n_umbeNélO) of initial
ated by an initial conditio{al®} shows a strong depen- conditions it is impossible to specify the value @in order
dence on this initial condition kTo ensure that the initial con-t0 compare it {o other resulte=1 in[11] or 0=3/2 in [12)).
ditions are in the vicinity of‘ the chaotic sadd[a6] we Nevertheless it can be stated that in the considered parameter
. . ) range ofR the 2D complex Ginzburg-Landau equation de-
fl:]r?giveef:gfrizg tc?uet S\tilaottﬁisaitrgrifilglt%roizﬁiv:rz’ fgilgﬁﬁil velops transient chaotic trajectories with lifetimes that scale
belowI'(@). To let the computation stop automatically if the expoqentially .With the size c_)f the system, a behavior that this
motion has become periodic we use that for a frozen statequat'.on has. in common with the spatlal!y extended gystems
ﬁwestlgated if11-13. It should be mentioned that this ex-

.‘9t|A|.:0' Itis easy to see th_at the same h(_)lds also ffr eVer¥)onential dependence on the system size may not hold for
individual mode of the Fourier decompositiof|ay(t)] =0. much greater values d®, when the final frozen state can

We choose a time series of a nonzero maf;loe(heret isthe . 1sist of a larger number of spird].

discrete timet=0,At,2At, ..., with time stepAt) of a trajec- The geometric properties of the chaotic saddle responsible
tory and a time intervall, which is short compared to the for supertransient chaos in a CML were investigatefiify.
lifetime of the chaotic part of this trajectory, but large com- |t was found that in these systems the fractal dimension of
pared to the period of the final spiral solution. Then the conthe set of intersecting points of a one-dimensional line with

dition v, =0 for the quantity the stable manifold of the chaotic saddle is close to 1. In
order to get some information about the phase space struc-
TIAt—1 ture of the Ginzburg-Landau system we use the sprinkle
b= 2 Fin=Tieanl Tin= |aiAt+nT| method described i8], in which the stable manifold of the
n . i,n i+1nl» i,n k . . . e ..
i=0 0 chaotic saddle is approximated by a set of initial conditions

still displaying chaotic motion after a large time. Due to the

can be used to identify the time interak [n.T,(n_+1)T], high-dimensional phase space we restrict ourselves to a one-

in which only periodic motion is displayed for the first time. @mensmnal set of initial conditions distributed on a straight

As an approximation of the transient time we then have useHr?e' In practice we used againa point on the chaotic attractor
nT slightly abovel'(«) and varied only the real part of the zero

modea ¢ between 0 and 1 in steps of 0.005. In Fig. 4 the

Figure 2 shows the numbel(t) of trajectories which still i o
9 Bi(t) ] transient lifetimesr are plotted versus the zero modg¢.

display chaotic motion at time [see Eq.(4)], obtained for L | & indicate that the initial i |
R=30 and 200 different initial conditions. The exponential arge vaiues ofrindicate that € initial condition was close

decay is clearly recognizable, the slope of the straight lind® the stat_)le m'anlfolq. The mtermmglmg appearance sug-
gives the lifetimer of the transient state. gests a high-dimensional stable manifold of the chaotic

For higher values of the parameRr(larger systemsthe saddle i_n analogy to the results qbtained for the CM[iA),
transient times turns out to be very large, and their determia"d Which seems to be responsible for the occurrence of the
nation using Eq.4) fails because of the costly numerical supertransients in the Ginzburg-Landau equation.
calculations. For that reason we have estimatedy the
simple average=1/NX IL’\:Tﬂ , using for every value oR ten
different initial conditions.

The results are shown in Fig. 3. The average lifetime ACKNOWLEDGMENTS
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