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We have shown that the two-dimensional complex Ginzburg-Landau equation exhibits supertransient chaos
in a certain parameter range. Using numerical methods this behavior is found near the transition line separating
frozen spiral solutions from turbulence. Supertransient chaos seems to be a common phenomenon in extended
spatiotemporal systems. These supertransients are characterized by an average transient lifetime which depends
exponentially on the size of the system and are due to an underlying nonattracting chaotic set.@S1063-
651X~96!08806-X#

PACS number~s!: 05.45.1b, 47.521j

I. INTRODUCTION

The dynamics of physical, chemical, and biological sys-
tems is often described by complicated, nonlinear partial dif-
ferential equations~e.g., Navier-Stokes equations!, and the
general treatment of these equations, analytically and nu-
merically, turns out to be only possible under special restric-
tions. A common approach to this systems uses the fact that
near the threshold of an instability the nonlinearities are
weak, and the modulations of a basic pattern can be de-
scribed by an envelope function. For this function a differ-
ential equation can be derived~amplitude equation!, which is
easier to treat than the general equations, but with the disad-
vantage of being restricted to the vicinity of the threshold.
The number of universal forms of these equations is limited
by the classification of different linear instabilities@1#. This
envelope formalism plays an important role in a variety of
physical systems, such as oscillatory chemical reactions,
Rayleigh-Bénard convection, or plasma waves. In this paper
we consider the amplitude equation derived for an oscillatory
uniform instability describing a system in the vicinity of a
Hopf bifurcation in two spatial dimensions, which is com-
monly known as the 2D complex Ginzburg-Landau equation.
For the complex amplitude function in the rescaled form it is

At5RA1~11 ia!DA2~11 ib!uAu2A, ~1!

whereR, a, andb are real parameters. In the following we
impose periodic boundary conditions

A~x,y,t !5A~x1L,y,t !5A~x,y1L,t !

and by means of the scaling transformation
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we can restrict our investigation to the domainV
5@0,2p#3@0,2p#. Since for the parameterR in Eq. ~1! holds
R;L2 applying the rescaling transformation the parameterR
represents a measure for the spatial extension of the medium
and has a meaning comparable to the Reynolds number in
the Navier-Stokes equations.

The 2D Ginzburg-Landau equation exhibits, analogously
to its 1D version, a class of traveling plane waves

A~r ,t !5a~k!exp@ i ~k•r2vt !#, ~2!

whereua~k!u25R2k2 andv5~a2b!k21Rb. The spatial ho-
mogenous solution~Stokes solution! with k50 becomes un-
stable at the Benjamin-Feir line 11ab50 ~see Fig. 1!; all
other waves are losing their stability below@2#.

Another type of solution is the spiral wave which has the
form

A~r ,f,t !5F~r !exp$ i @2vt2mf1c~r !#%; ~3!

written in polar coordinates (r ,f),m561 is the topological
charge. The functionsF andc can be expressed in analytical
form only for r50 and r→`, whereF(0)5c(0)50 and
limr→`F(r )5A12q2, q5limr→`c8(r ) is the asymptotic
wave number, which is a unique function ofa and b @3#.
Investigations about the stability of this solution can be
found in @4#.

Besides this regular behavior, the Ginzburg-Landau equa-
tion shows a variety of phenomena known from other dy-
namical systems such as spatiotemporal chaos@5#, intermit-
tency@6#, and transient chaos@7,8#. We focus our interest in
this paper on the latter.

Dynamical systems show deterministic chaotic motion not
only as an asymptotic long-term behavior but also as a tran-
sient state before reaching a nonchaotic or chaotic attractor
@9,10#. This transient chaos is caused by the existence of a
nonattracting chaotic set~chaotic saddle! in phase space.
Nearly every trajectory starting from random initial condi-
tions wanders to this chaotic set and stays for some time in
its vicinity, displaying chaotic motion. Then the trajectory
leaves the saddle and settles down to an attractor, usually a
periodic or quasiperiodic orbit.

The typical timet ~lifetime! of a trajectory in the vicinity
of the chaotic saddle can be defined by the numberN(t) of
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trajectories, which still display chaotic motion at timet when
starting att50 with N0 different initial conditions

N~ t !5N0 exp@2t/t#. ~4!

For extended spatiotemporal systems it seems to be com-
mon that the lifetimes of the chaotic state can be extremely
long. In these systems it was also found that the lifetimet
increases quickly with increasing system size, which will
make it impossible to observe the nonchaotic attractor in a
large system in practice, and such systems cannot be distin-
guished from systems containing a real chaotic attractor. If
the lifetime depends exponentially on the system size the
dynamics is also called supertransient chaos. This supertran-
sient behavior is still not fully understood, and there are still
only a few results available.

Investigations of the scaling of average transient lifetime
t in a 1D coupled map lattice~CML! were carried out in
@11#. Depending on the coupling strengthd three different
scaling behaviors were found. For weak couplingt seems to
be independent from the sizeL of the system. An increase of
the coupling strength leads to a polynomial power law of the
form t;Lg up to a critical valuedc . Further increase ofd
yields supertransient chaos,

t;exp~aLs!

with s'1. Exponential scaling was also found in the inves-
tigation of the dynamics of complex interfaces@12#, modeled
by a 2D CML, with s53/2. A first example for supertran-
sient behavior of a partial differential equation has been
found by Wackeret al. in @13# for a special reaction-
diffusion system. On the other hand, the system investigated
in @14# shows a nearly linear growth oft depending on its
length.

The transient chaotic behavior in the Ginzburg-Landau
equation was investigated modeled by a coupled map lattice
in @7,8# in the parameter range22,a,0, 0,b,2. Figure 1
shows the schematic phase diagram. The lineG~a! is the
transition line between transient and permanent chaos.
Above G~a! there exists a chaotic attractor@in the region
betweenG~a! and the Benjamin-Feir line BF this attractor
coexists with periodic orbits#, which changes into a chaotic

saddle belowG~a! as a result of a crisis@10#. In the transient
region the trajectory finally settles down to a periodic attrac-
tor which is in most cases not a simple plane wave~2! but
consists of a finite number of randomly distributed spirals.
This final periodic state is often called a frozen state, because
uAu becomes time independent. Bohret al. @7,8# investigated
the scaling behavior of the transient lifetime in dependence
of the parameterb for a fixed value of the parameterR.
ApproachingG~a! from below, they discovered an exponen-
tial dependence of the formt;exp$@G~a0!2b#22% for
a0521. In contrast our aim is to examine the scaling behav-
ior for fixed values ofa andb to determine the dependence
on the parameterR. As noted above,R can be interpreted as
a length scale for the system.

II. NUMERICAL RESULTS

For the numerical simulation of the Ginzburg-Landau
equation a pseudospectral method has been used applying a
Fourier decomposition for the complex functionA(x,y,t) of
the form

A~x,y,t !5 (
kx ,kyPZ

ak~ t !e
i ~kxx1kyy!, k5~kx ,ky!,

leading to a system of ordinary differential equations for the
real and imaginary parts of the Fourier modesak(t).

All computations were performed on a CRAY Y-MP EL
computer. Depending on the parameterR in the equation
different resolutions consisting of 1283128, 64364, or
32332 gridpoints were chosen and the time integration was
carried out by a fourth-order Runge-Kutta scheme.

We restrict ourselves to the parameter seta520.5,
b51.07 ~see filled circle in Fig. 1! and varyR within the
interval 10<R<100. In this range ofR the final periodic
attractor is for nearly all chosen initial conditions a single
spiral @15#.

In order to characterize the scaling of the transient life-
time with the system size it is necessary to perform calcula-
tions with several different initial conditions. As remarked

FIG. 2. Exponential decay of the number of trajectories display-
ing chaotic motion after timet. The graph was obtained by starting
at t50 with N05200 different initial conditions.

FIG. 1. Phase diagram of the 2D complex Ginzburg-Landau
equation. The calculations presented here were carried out fora5
20.5 andb51.07 ~filled circle!.
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above, the lifetimetm of a transient chaotic trajectory gener-
ated by an initial condition$ak

(m)% shows a strong depen-
dence on this initial condition. To ensure that the initial con-
ditions are in the vicinity of the chaotic saddle@16# we
choose points on the chaotic attractor aboveG~a!; the actual
runs were carried out with this initial condition forb slightly
belowG~a!. To let the computation stop automatically if the
motion has become periodic we use that for a frozen state
] tuAu50. It is easy to see that the same holds also for every
individual mode of the Fourier decomposition,] tuak(t)u50.
We choose a time series of a nonzero modeak0

t ~heret is the

discrete timet50,Dt,2Dt,..., with time stepDt! of a trajec-
tory and a time intervalT, which is short compared to the
lifetime of the chaotic part of this trajectory, but large com-
pared to the period of the final spiral solution. Then the con-
dition nnt

50 for the quantity

nn5 (
i50

T/Dt21

ur i ,n2r i11,nu, r i ,n5uak0
iDt1nTu

can be used to identify the time intervalI5[ntT,(nt11)T],
in which only periodic motion is displayed for the first time.
As an approximation of the transient time we then have used
ntT.

Figure 2 shows the numberN(t) of trajectories which still
display chaotic motion at timet @see Eq.~4!#, obtained for
R530 and 200 different initial conditions. The exponential
decay is clearly recognizable, the slope of the straight line
gives the lifetimet of the transient state.

For higher values of the parameterR ~larger systems! the
transient times turns out to be very large, and their determi-
nation using Eq.~4! fails because of the costly numerical
calculations. For that reason we have estimatedt by the
simple averaget51/N( m

Ntm , using for every value ofR ten
different initial conditions.

The results are shown in Fig. 3. The average lifetime
scales exponentially with the linear system sizeL

t;exp~aLs!

with a'1, but due to the small number (N510) of initial
conditions it is impossible to specify the value ofs in order
to compare it to other results~s51 in @11# or s53/2 in @12#!.
Nevertheless it can be stated that in the considered parameter
range ofR the 2D complex Ginzburg-Landau equation de-
velops transient chaotic trajectories with lifetimes that scale
exponentially with the size of the system, a behavior that this
equation has in common with the spatially extended systems
investigated in@11–13#. It should be mentioned that this ex-
ponential dependence on the system size may not hold for
much greater values ofR, when the final frozen state can
consist of a larger number of spirals@8#.

The geometric properties of the chaotic saddle responsible
for supertransient chaos in a CML were investigated in@17#.
It was found that in these systems the fractal dimension of
the set of intersecting points of a one-dimensional line with
the stable manifold of the chaotic saddle is close to 1. In
order to get some information about the phase space struc-
ture of the Ginzburg-Landau system we use the sprinkle
method described in@18#, in which the stable manifold of the
chaotic saddle is approximated by a set of initial conditions
still displaying chaotic motion after a large time. Due to the
high-dimensional phase space we restrict ourselves to a one-
dimensional set of initial conditions distributed on a straight
line. In practice we used again a point on the chaotic attractor
slightly aboveG~a! and varied only the real part of the zero
modea 00

Re between 0 and 1 in steps of 0.005. In Fig. 4 the
transient lifetimest are plotted versus the zero modea 00

Re.
Large values oft indicate that the initial condition was close
to the stable manifold. The intermingling appearance sug-
gests a high-dimensional stable manifold of the chaotic
saddle in analogy to the results obtained for the CML in@17#,
and which seems to be responsible for the occurrence of the
supertransients in the Ginzburg-Landau equation.
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FIG. 3. Scaling of the average transient lifetime with the system
size. FIG. 4. Transient lifetimes on a 1D line segment in phase space.
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