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Zeros of the partition function for a continuum system at first-order transitions
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We extend the circle theorem on the zeros of the partition function to a continuum system. We also calculate
the exact zeros of the partition function for a finite system where the probability distribution for the order
parameter is given by two asymmetric Gaussian peaks. For the temperature-driven first-order transition in the
thermodynamic limit, the locus and the angular density of zeros are givenr g% and
2mwg(60)=I[1+3/2(Ac/)26%], respectively, in the complex=re'?) plane wherd is the reduced latent heat,

Ac is the discontinuity in the reduced specific heat, ardexp(1-T,/T). [S1063-651X96)10506-7

PACS numbe(s): 64.60.Fr, 02.30.Dk, 02.50.Cw, 05.70.Fh

One of the fascinating subjects of equilibrium statistical We first note that the canonical partition function can be
mechanics is to understand how an analytic partition funcregarded as a moment generating function of a probability
tion acquires a singularity when the system undergoes distribution function. Take, for example, a canonical parti-
phase transition. For the last three decades, the main focti®n function Z(8) defined byz(8)=J”.e PEQ(E)dE,
has been on the second-order transition. Only recently haswhere ()(E) is the density of states &, B is the inverse
renewed interest in the first-order phase transition begun ttemperature kT, andky is the Boltzmann constant. We
emerge/1]. can identify this partition function as a moment-generating

Since Yang and Le¢2] first published their celebrated function M(t),
papers on the theory of phase transitions and the circle theo-
rem on the zeros of the partition function, there have been
many attempts to generalize the theorg8h Fisher[4] ini-
tiated the study of zeros of the partition function in the com-
plex temperature plane and JoB$proposed a scenario for where the probability density function is given by
the first-order transition for a continuum system. However,
very little is known about the distribution of zeros for the 7X 0 7X
continuum case. This is because the partition function for the f(x)=Q(x/Bo)e jﬁxQ(X/,Bo)e dx. 2
continuum system is not a polynomial, in general, and the
original prqof of the circle '.[h.eorem relied heavily on particu- | the abovet=1-B/B,, x=E, and B, is a reference
lar properties of the coefficients of a polynomial. Recently,inyerse temperature around which the system fluctuates.

we have been able to prove the theorem in a quite different The characteristic functiofil1] for a probability density
approach 6] and this approach allows us to generalize thérunction f(x) is defined by
theorem further to the continuum case.

We found that the circle theorem follows from a certain w
mathematical relation that exists between a probability den- ¢(w)=j e'*f(x)dx, (€
sity function and the zeros of its characteristic function. In o
this paper, we prove that the ZEros of the pgrti'gion funCti.or(Nherei is the imaginary unit. If¢(w) can be analytically
can be expressed in terms of the discontinuities in the derlvac—Ontinued into the complew plane, M(t) = (—it) is the

tives of the f.ree energy across the phase boundgry .'f there I%oment—generating function. Since the characteristic func-
a nonvanishing discontinuity in the first-order derivative, and

that the zeros lie on the unit circle if the transition is sym-tIon always exists and its properties are well knqwf], we

. . : will consider zeros of the characteristic function.
metric. We further show that there are no zeros in the single- . .
The logarithm ofé(w) is known as the second character-

phase region where the probability distribution is given by a .. d . :
. : istic function or cumulant generating function and denoted

single Gaussian peak. We also calculate the zeros of the That i
partition function exactly at the two phase coexistence poin y #(@). That is,

where the probability distribution is given by two asymmet- %

fic Gaussian peaks. o - ) =In[$(w)]= 2, 75

Furthermore, we find the finite-size scaling very similarly $=1

to that of the discrete systefd]. Therefore, this result can

again be used, for a continuum systefh) to resolve the The expansion coefficienty, are knownsth cumulants or
recent controversy over equal weight versus equal height giemi-invariants and are calculable by the formula,

the probability distribution functions7—9] and(2) to distin-  ¥s= (@) (i ®)%i,=0-

guish the first-order transition from the secdi®,6], just as Sincei w is the temperature and y=X=_, yst%s! is the

we have done for the discrete system in Ré}. free energy— BF(t) in the above exampley; = B(E) and

[
—o0

MO)=Z(B)IZ(Bo) = f e (x)dx, @

(iw)®
sl

4
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¥2=BAX(E—(E))®=C, /ky, Where(E) is the internal en- 1 g5t io \°
ergy andC, is the heat capacity. The higher-order cumulants bs=s—I W — 11
are similarly related to the higher-order derivatives of the ' @ (o)

free ener -

We Wlﬁ]ycon&der zeros of the characteristic function in |t Should be noted that, sincg;'s are real, theby's are
the finite region only. If the density function is not a delta &S0 Zreal The first fewbs's are b;=1, bz— Y2 bs
function (in which case there are no zeros in the finite re-—23’2 V3, ba=— 5%3+5%2¥3— ¥a, bs=14y5 —21%5%;
gion) we can always divide the density function into two +3%5+6%2%2— ¥s, [13] whereys =754/, /s!.
parts, taking a poink, somewhere in the middle of the  Therefore, the zeros of the characteristic functipfw)

distribution. can be expressed by
That is, n(a)/2]
n(a)/2
F(0 =c[f1(x)+afy(x)], (5) o= 2 o (—yl ) ' 12
where f1(x)=f(x)/c and fy(x)=0 for x<x,, f;(x)=0  where theb's |, are given by(11) and(8).
and fy(x)=f(x)/ac for x=x,, c=[" f(x)dx, and Although the dividing pointx, is arbitrary and théyg's
a= [ f(x)dx/[** f(x)dx should not depend ox, , y¢'s have little meaning unless the
X* — o0 -

original probability density function has two separate distri-
butions over two distinct regions and. is taken at some
oint between the two regions.
d(w)=di(w) +ady(w). ©® P For a symmetric distrik?ution, it is convenient to shift the
origin to x, so thatf(x)=f(—x). Zeros are unaffected by
the shift since the cumulants are invariant exceptyfpf11]
and the zeros depend only on, the difference between
v1'S, which is also invariant.

Since ¢1(— ) = ¢,(w), we havey,=yP—yM=0 for
evens andys=y)=—y{" for odd's in addition toa=1.
This make&//(w) in Eq. £9) an odd function ofw. There-

— ~ fore, the function[iw/y(w)]®* on the right hand side
In the above, y(w)=[¢1(w)+P(0)]2 and Plw) Eq. (11) becon[1es {pe(ve)r?, making th?a odd-numbered

=[o(w) = 1 (w) /2. derivati . .
. erivatives vanish. This makes only the odd-numbered
It should be noted that because of the factorin coefficients by, , SuMvive. Thus we have

Us(w), ¥(0)=In(a). It should further be noted that the ze- 0=3% (—1)% (fp/i)zs“
; v e —~s=0\" 2s+1 .
ros of ¢(), in Eq.(6) are zeros of cogi(w)] only. Th's_ IS Finally, by substituting the solution for zerd8) in the
because any zeros ef cancel the poles of cop#(w)]. This, above, we have
in turn, can be understood because EJ).is nothing but

Consider the zeros of characteristic function

If ¥1(w) and ¥,(w), the cumulant generating functions of
¢1(w) andag,(w) exist except at isolated zeros, then we
can write Eq(6) in terms of these cumulant generating func-
tions as

b(w)=2e"cosh (). (7)

2(ap1¢2) " {p1+apo}2(addr) ). A st
Therefore, the zeros af(w) may be obtained by solving o= 2 (=1)%ps 11| =— : (13
71
Yw)=*i(L2+K) m=il,, )

provided that the series converges. Sibgs are real,w,’s

are real. We now have shown that the zeros of the charac-
teristic function of a symmetric distribution function lie on
the real axis provided that the series(Ir®) converges. This

wherek=0,1,2, ... .
__Now, using the cumulant expansia#) we can write

#(w) as means that in the complex=e~'“ plane, the Mellin trans-
formationP(z), defined byP(z) = ¢[ —iln(2)], [11] has ze-
(Iw In(a) ros only on the unit circle.
W)= 2 YsTgr T* ©) For some probability distributions it is possible to calcu-
late zeros explicitly. For example, the zeros of the character-
2)_ 1) istic function for the wuniform distribution, i.e.,
whereys=(7s )2 f(x)=1/(b—a) on [a,b] and f(x)=0 elsewhere, are

If yl—{[d/d(|w)ﬂ(w)}iwzoaﬁo, we can invert

n _ =(2wk — h k==+1,+2,... .If th i
the above series. We first definey(w)={¢(o) o= (27k)/(b—a), where e the density

[n(a)/2]}/5 function of the Gaussian distribution i$(x)=exd—(x
- Y1- 2 2 e ; : ;
The local inverse function near the origin can be obtained . ) 1(20")l/y2ma, the cumulant generating function is

. given by y(w)= ,u(lw)+1/202(|w) [11]. Since the expo-
in the power series as, using the Lagrange formii, nential function of an arbitrary entire function cannot have

zeros in the finite regiofl2] and ¢(w) in the above is an
iw=" b (10  entire function,¢(w) =e*®) cannot have zeros in the finite
region.
On the other hand, if the density function of a double
where Gaussian peak is given byf(x)=exd—(x—u)¥
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(209127 o,+a exd — (x—up)¥(205))\27wo,, the cu- Im[t]
mulant generating functions for the two peaks are given

by  ¢1(w)=py(iw)+1/20%(iw)* and yo(w)=In(a) u

+,u2(iw)+1/2<r§(iw)2, respectively. Therefore, ¢/(w) .
=In(@)/2+ m(iw) +1/25%(iw)?, where m=(u,—uq)/2 17t R

and 2= (03— 0?)/2. By solving Eq.(8) using the above
W(w) we obtain zeros as

0.7} Ba— ———Re[t]
wk=)\k/|5|+i(m—|E|k/)\k|)/52, (14)
: T/T, S
where 0.0 1.0 N -t T

o m2 |n(a) 2 ) 1/2 m2 |n(a) 1/2
1252 2 k 252 2 (@) (b)
In the asymptotic limit whera— 1 ando—0, the zeros .

Im[e~]

are given by w,=I,/m/(1—e0?/m)+ie,, where e
=In(a)/2m—1/25°12/m®. If we puta=1 ando=0 in the
above, then we have,= 0, which makes the,’s real. This

is an explicit example of the unit circle theorem shown by
Eq. (13).

The above mathematical results can be readily applied to
the theory of the phase transition. Let us return to the ex-
ample considered in the beginning of the paper. Since the
cumulants off (x) of Eq. (2) are related to the derivatives of
the free energy, Eq12) implies that the zeros of the parti-
tion function can be expressed in terms of the discontinuities
in the derivatives of the free energy, provided that the first-
order derivative has a nonvanishing discontinuityf.(i) is a
symmetric function, then Eq13) indicates that the zeros of
the partition function lie on the unit circle in the complex
e' plane. Thus we have extended the Lee-Yang unit circle (c)
theorem to the continuum case.

From the general _prlnCIpIe of statlstlc_:al m_echanriisg) FIG. 1. (8 u as a function ofT/T,=1/(1-t). u;=0.7 and
of (2) can be approximated by a Gaussian distribufib#. ¢, =1.0 are taken arbitrarilyb) Zeros in the complex plane given
Let N be some integer representing an extensive thermodys, gq.(14). For Ac>0, the line of zeros arches toward the positive
namic quantity, say, the number of particles of the systemMeq| axis. Only zeros between the two dashed lines appear in the
Let us introduce the reduced internal eneugy SoU/N and  first Riemann sheet in the complek plane.(c) Zeros in the com-
the reduced specific heat=C,/Nk,. Then by redefining plex e! plane. The solid lines are the loci of the zeros in the ther-
x—xIN, the mean and the variance of the Gaussian fornimodynamic limit given by(15). For Ac>0, the locus lies outside
becomeu=u and o= \/W Here, By is the inverse tem- the unit circle, which corresponds to the symmetric cases0.
perature of a single phase. In this case, the partition function

cannot have zeros as long &) maintains the Gaussian  |n the thermodynamic limit wher&l—, a dependent

shape even if the system is finite so teatemains finite.  terms vanish, and the equation for the locus of zeros be-
On the other hand, if the system undergoes a first-ordeggmes

transition atBy= B;, thenf(x) is characterized by a double

Gaussian peak7,8] separated by the discontinuity of the 5

internal energy, or the latent heat in the thermodynamic r=elac2)e, (15
limit. Let us further assume that the ratio of the weight of the
two peaks isa and that there is also a discontinuity @n
Ac. Let us designate the reduced latent haat=u,—u,

by I. Then Eq.(14) now indicates that zeros of the partition
function for small values ofk may be written as
In(r)=Re(t,) = —In@/NI+1/2(Ac/l) (9 /1)?> and 6
=Im(t) =(9/D{1+21/2(Ac/l)In@/NI—1/2(Ac/1)?( 0/
1)?}. Here we have usedr?=AcN/2, m=IN/2, and
= (1+2k)7/N, with k=0,=1,+2,.... We sedhat the
dominant finite-size correction is the term dependent on the

asymmetric factoa. 27wg(0)=1{1+3(Ac/l)?6?}. (16)

Re[e®]
1.0

wherer, and 6, are replaced by the continuous variabies
and 6. In Fig. 1, we plotu as a functionT/T. and zeros in
the complex ande'planes!=1.0 andAc= +0.2,0 are used
in all three figures and the exact zeros given by @4) are
calculated usindgN=20 anda=1.

The angular density of zeros defined big(0)
=1/(6y.1— 6,) can be written for small values &f as
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If the transition is symmetricXc=0), the locus of zeros is valid in a continuum system. Because we have shown a
becomes the wunit circle with the uniform density formal relation between the discontinuities in the derivatives
2mg(6#)=1. One should note that the equation for the locusof the free energy and the distribution of zeros of the parti-
of zeros is valid only near the real axis. This is because termgon function, it can now be applied to any type of first-order
beyond the Gaussian approximation become important as tfghase transition. The results obtained in this paper include
argumenté grows, i.e., for large values df, as we have the discrete system considered in H&f as a special case.
shown with an example in Ref6]. Finally, it should be |n this case we merely write the density function as a sum of
remarked that the numbgr of zeros in this example is 'nf'n't%eighteda peaks as (x) =EE=ODK5(X— k). The character-
in the complext plane[Fig. 1(b)]. However, only a finite istic function is anNth-order polynomialé(z) = =}_ opz,
number of zeros closes the circle in the compexe' for a where we replaced by z asz= oio
finite system if we consider only the first Riemann sheet. In . . .

It can also be extended to a multiphase coexistence point.

fact, for the symmetric case whefec=0, there are exactly In this case, one only needs to consider the multidimensional
N zeros distributed uniformly on the unit circle if we scale ’ y . .
_ complex space, as we have done in R&f. The existence of
the energy of the system By so thatl =1.0. ; S
OEEe formal relation presented in this paper was suspected by
i

For finite-size systems a Gaussian approximation is n e original broponents of the theorem. Lee and Yand them-
sufficient. Although we do not have zeros in a closed form, 9 prop ' ang the
selves. In their 1952 papégR], they expressed their senti-

we can caIcuI_ate them from_ E(.qlz) by including _higher- ment in the concluding remark by saying, : . distribution

order terms withs>2. For periodic boundary conditions, the (of zeros should exhibit such simple regularities One

discontinuity in the third-order derivatives of the free energy . ; L .
can not escape the feeling that there is a very simple basis

. . 71 . 72
lissp\:\?ep%rg\?gaslﬁg\\}vn iﬁng;g]e '?ﬁg:gogrghtﬁ;deﬁedbgfﬁém underlying the theorem, with much wider application, which
> . : . predo till has to be discovered.” We believe we have discovered
finite-size corrections to the Gaussian approximation apaty .o o .
. . is simple basis.

from the unequal weight factor, la{2. For nonperiodic
boundary conditions, the finite-size corrections will include This work was supported in part by the Ministry of Edu-
surface terms proportional td~ Y% in addition to the bulk cation, Republic of Korea through a grant to the Research
terms in the free energy and their derivatiyé$]. The de- Institute for Basic Sciences, Seoul National University, in
tails will be published in a separate paper. part by the Korea Science Foundation through Research

In conclusion, we have shown that the scenario for theGrant to the Center for Theoretical Physics, Seoul National
first-order phase transition put forward by Yang and [  University, and in part by S.N.U. Daewoo Research Fund.
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