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Multicanonical Monte Carlo study of solid-solid phase coexistence in a model colloid
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We describe a Monte Carlo approach to the determination of the relative stability of two phases, which is
conceptually direct, potentially rather general, and particularly well suited to parallel computers. The approach
exploits the information contained in the frequencies of the transitions between the macrostates of the order
parameter distinguishing the two phases. The transition frequencies are observed in simulations initiated from
macrostates with order-parameter values intermediate between those of the two phases; they are used to
provide estimators of the macrostate transition probability matrix and thence estimators of the sampling
distribution itself. The procedure allows one to construct a series of sampling distributions, weighted with
respect to the canonical distribution, which approach the multicanonical limit, flat across order-parameter
space. It entails only simulations that are short compared téntiéticanonical relaxation time of the order
parameter. Reweighting the transition-probability estimator of the multicanonical sampling distribution pro-
vides a good estimate of the canonical distribution of the order parameter for any value of the conjugate field,
permitting the identification of the coexistence field in particular. The method is developed in the context of a
system of hard spheres with short-range attractive interactions, described by a square potential well, which
provides a simple model of the intercolloid depletion potential in colloid-polymer mixtures. In particular we
explore the phase diagram in the region in which studies by others, based on free energy evaluation by
thermodynamic integration, have shown the coexistence of two fcc solid phases of different d¢Ggi668-
651X(96)08705-3

PACS numbegps): 02.70.Lqg, 05.70.Ce

[. INTRODUCTION mann form. In principle this standard MC framework allows
one to address the problem of phase structure immediately
The problem of determining the phase behavior of a sysand transparently, without the need to appeal explicitly to the
tem is arguablythe generic task of equilibrium statistical concept of a free energy at all: the favored phase should be
physics. The problem is traditionally couched in the lan-identified simply, in the simulation as in nature, by the mac-
guage of thermodynamiddl]: one must calculate the free rostates that dominate once the initial transient process
energy of candidate phases, the phase of minimum free erni“equilibration”) is complete. In practice, however, this
ergy (for given thermodynamic coordinajebeing thermo-  simplistic approach founders because the MC procedure is
dynamically favored. Such calculations are not readily acplagued by long ergodic times near phase boundaries, so that
complished: the free energyessentially the partition the simulations remain trapped in the phégeup of mac-
function) can virtually never be determined exactly for sys-rostateg favored by the choice of initial state. This problem
tems with interesting phase behavior. A variety of alternatives actually a reflection of the very faithfulness with which the
strategies exist. Variational approximatidi3, series expan- standard MC procedure realizes the canonical distribution:
sions [3], and quasiharmonic approximatiofid] provide paths linking the groups of macrostates associated with the
varying degrees of insight and reliability. However, it is cleartwo phases have Boltzmann weights that are exponentially
that if one desires a technique that is both generally applismall in the system size, implying exponentially large
cable and reliablé¢that is, has quantifiable uncertainfiese interphase-crossing times. If, then, one wishes to operate
must look to the Monte CarléMC) method, the standard within the BS framework one is forced to des¢parately
computational tool for dealing with many-body systeff§  with the two phasegand to resort to the language of free
In its most commonly implemented forfBoltzmann im-  energies Even then, the problem remains awkwéd. BS
portance samplingBS)] the MC method allows one to gen- methods yield good estimators of canonical expectation val-
erate a sequencg®arkov chair) of microstates of the chosen ues such as the energy as simple averages over the sampled
system, with the assurance that, far enough along the saiates; however, while the free energy can be expressed in
quence(at MC times large compared to the ergodic timeterms of a canonical expectation value, this expectation value
over which the memory of the initial microstate is pre-is estimated unacceptably poorly by BSee, for example,
served, microstates will appear in the sequence with thethe discussion if7]). If one is to use BS techniques one
equilibrium probabilities prescribed by the canonical Boltz-must perform a series of independent simulations to measure
the energy (or some component thergpfalong some
path—in either thermodynamic coordinate space or in the
*Present address: Laboratory of Molecular Biophysics, Rex Richspace of model parameters—which links the system of inter-
ards Building, The University of Oxford, South Parks Rd., est to some reference system, whose free energy is known
Oxford OX13QU, United Kingdom. Electronic address: analytically or has been estimated in some prior calculation.
graham@biop.ox.ac.uk The free energy of the system can then be determined by
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integrating the energy along the simulation path. These inteaonical averages are then determined by reweigtifidgthe
gration methodgIM’s) are commendably simple to imple- measured multicanonical averages to compensate for the bias
ment and have become the standard basis for MC measuritroduced by the multicanonical weights. The utilization
ment of free energies. Nevertheless, perhaps because stage encounters a further problem: although the ergodic
certain practical limitations of the methdavhich we shall time for the multicanonical distribution is not exponentially
touch on in Sec. Vjlor more probably because of the generallarge in the system size, it remains typically power law large,
conviction that such an important problem merits a somereflecting the fact that the MC dynamics through space is
what more direct solution, there have been many attempts tessentially diffusive, in the multicanonical limit. In some in-
develop an alternative MC approach. stances this problem is acute: in the case of the particular
The recurring idea in such studies is that the solutionphase boundary studied here it appears in such an extreme
should be sought in some form of extended sampling, that iform that sampling over periods long compared to the er-
a MC procedure designed to sample from a distribution othegodic time is altogether impractical. However, we shall show
than the canonical form. The seminal contributions are probthat the TP estimator of the multicanonical distribution can
ably those of Torrie and Valled®8]; the most recent variants pe determined, to the accuracy required to deal with the in-
are themulticanonical ensemble methad Berg and Neu-  terphase problem, on the basis of simulatishsrtcompared
haus[9,10] and the relateexpanded ensemble meth@t 4 the ergodic timethey require equilibration only in a less-
“smulated tgmpenng”} of Lyuba(tsevet al.[11] and Man-_ exacting senseand this problem is skirted.
nari and Paris[12]. These techniques can be deployed in @ 15 gate, multicanonical methods have been utilized in

variety of ways. As described elsewhdd], they can be_ studies of phase coexistence in ferromagh®}sfluids [15],
dgveloped to y|eld' the absolutg value of the free ENergy N &g Jattice gauge theori¢$6]. In the present study we focus
single phase region. AIternaUvero_ur focus of Interest ien a problem ofstructural phase behavior. We consider a
ES rc?f, ttvf\;gyc?na% eti?n ; sper:j ats(:as slsnez?tr(]j érreggé/; Tre] erilg;[)\ilzgzt: bIr:nodel system of hard spheres with attractive interactions de-
) scribed by a square potential well. This model is believed to

fact, if resolved fully, theonly issug is how to constructa : o : " .
sampling distribution tuned to the problem in hand. In par_prOVIde a qualitatively authentic description of the behavior

ticular, to address the competing-phase problem it is clea?f Polymer-colloid mixtureg17]. The hard spheres represent
that one requires a sampling distribution that is weightedhe colloid particles; the square well models the depletion
(with respect to the canonical foynso as to enhance the potential of interaction between the colloid particles, medi-
likelihood of macrostates lying on the interphase path, thafted by the polymer molecules; the range and strength of this
is, values of the order parameter”, say intermediate be- “depletion potential” reflect, respectively, the polymer
tween those associated with the two phases. In the multicdength and concentration. Extensive MC studi&8], sup-
nonical ideal9,10] the sampling distribution is flat along the ported by mean field calculatio49], have shown that, as
interphase path. the interaction range is reduced, the conventional liquid-gas
Notwithstanding much recent activity, it seems fair to saycritical point moves in towards the triple point and the line of
that existing techniques for evolving appropriate samplindiquid-vapor coexistence shrinks to zero, consistent with the
distributions are less than satisfactory. The typical strategy ibehavior observed in experimental studies of colloid-
to make an initial guess for the weights required to secure polymer mixtureq20,21]. For still smaller ranges of poten-
multicanonical distribution and then to refine the guess. Tdial (in a regime that has as yet proved inaccessible to ex-
refine it one needs to estimate the implied sampling distribuperimental work the existing theoretical worl{18,19
tion, to determine the extent to which it fails to be multica- predicts the appearance of a new line of phase coexistence,
nonical; it is customary to form that estimator, in the obviousstretching out from a triple point and again terminating in a
way, simply on the basis of a histogram of the macrostatesritical point, but now separating tweolid phases, with the
visited when one MC samples from it. Thidsited-states same symmetryboth are fcg, but different lattice spacings;
(VS) strategy provides only a somewhat crude and ponderthis line of phase coexistence is the object of the present
ous basis for refining the weights to be attached to regionstudy.
that the sampling procedure has failed to visit. We have re- The motivation for this choice has three strands. First, the
cently introduced7] an alternative strategy for the construc- system itself is clearly of sufficient intrinsic interest to war-
tion of multicanonical sampling distributions, which esti- rant studies extending and corroborating existing work: the
mates the sampling distribution on the basis of a histogransquare-well model provides the simplest context in which to
of the transitions made between macrostates, in simulationsxplore important general issues such as the conditions that
launched from macrostates chosen to ensure thatdhe  the interaction range has to satisfy if a liquid phase is to exist
pleterange of the macrostate space of interest is probed frorat all[22]. Second, tackling the solid-solid phase boundary in
the outset. In this papdia short account of which has ap- this system offers a sensible way to progress multicanonical
peared elsewhefd 3]) we show that thisransition probabil-  studies: while going somewhat beyond the problems pre-
ity (TP) method can be applied effectively to the determina-sented by liquid-vapor coexistence, it skirts the distinctive
tion of a sampling distribution that is multicanonical along difficulties associated with melting and with solid-solid
an interphase path. phase boundaries involving a change in symmetry. Third, it
It has been customary to distinguish between two aspecisrovides an appropriate context for comparing the muilti-
of the multicanonical program: theonstructionstage(just  canonical approach with established methods: the existing
discussedlis followed by autilization stage entailing further MC studies exploit integration methods to relate the free
sampling from the putative multicanonical distribution; ca- energy(the Helmholtz functiopto that of a system of non-
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pendently calculatef3]. Z(N,T,p exd —BpV—=pBP({r}H].

The layout of the paper is as follows. Section Il defines (4)
the model, establishes the notation, and identifies the objec-
tives of the calculations that follow. Section Il describes the The two solid structures coexisting at the phase boundary
principles of our procedure for establishing a multicanonicalof interest are believed to differ simply by a homogeneous
sampling distribution. MC implementation details are de-dilatation. One may therefore choose as the order parameter
scribed in Sec. IV. Section V presents the results of our MC / the density or, equivalentiiand our preferengethe spe-
studies, designed to explore both the general principles of thgific volume v and—the true content of this “choice’”—

method and the particular physics of our model system, witfocus on the canonical probability density functidtDF) for
emphasis on the solid-solid phase boundary. Section VI conyolume macrostates
dr;
J. o

tains discussion and conclusions.
This probability density constitutes the natural microscopic
We consider a system ™ particles with spatial coordi- finite-sized counterpart of the Helmholtz free energy. Spe-

interacting hard spheres, whose free energy has been inde- o -
)= f dv]] f dr,
0 j \%

Pe(wIN,T,p)=]1 PS({r},uIN,T,p). (5

i

II. MODEL, NOTATION, AND OBJECTIVES

nates{r} and configurational energy cifically, combining Eqs(3)—(5) we find
N —InP¢(v|N,T,p)=BpV+ BF(N,v,T)+InZ(N,T,p),
erh= 2 (lr-r. &y ©
where
The pairwise interaction potential has a hard-core square-
well form F(N,U,T)=—3—1|n[1"j[ Uvdr] exp[—,B(I)({F})]J

®, Osr<o is the Helmholtz free energy for a system Nf particles,

p(r)=4 —€ osr<(l+do (2)  whose thermodynamic limit identifies the free energy density
0, r=(1+9d)o. 1
f(v,T)=lim NF(N,U,T). (7)
The parameteid controls the range of the potential. The N—o
existing MC studie$18] indicate that the liquid-vapor coex-
istence curve disappears f6=0.25 andhat a line of solid-
solid phase coexistence appears #6£0.06. Here we shall
focus on the behavior for the single valde 0.01, for which

From a thermodynamic perspective the conditions for the
coexistence of two phases, with specific volumegs and
vg, are, first, the requirement of a common pressure

the existing data suggesits8] that the phase boundary ter- 9t (v,T) ot (v,T)
minates at a critical temperatufe=1.6[24]. p= —( : ) = —( ' ) (8)
Our simulation envisages particles confined imagiable v A v vg

cubic volumeV, with periodic boundary conditions. Each

particle is associated with the site of a fcc lattice: by this weand, second, the equality of the Gibbs free energy densities
mean that simulations are always initiated from fcc arrangeg=pv +f,

ments and that studies of the pair correlation functionbe

reported below confirm that crystalline order is preserved [pv+f(U'T)]vA:[pv+f(v'T)]Us' ©
under all the conditions studied. The crystallinity constraint o .
restricts the choice of particle number to the Bet4m?, Microscopic, finite-sized counterparts of these conditions can

with m integral; we have studied systems with=32, 108, be realized. i_n either of twolprincipal ways._First one may
and 256 particles, to provide the basis for a finite-size scaling®€K conditions under which the PGF displays two
analysis. The IM studiefL8] were performed in a constant- Maxima, atv, andvg, of equal height$25]. The condition

V ensemble, for systems oi=108 particles, over a wide thatva andvg locate maxima gives, on appeal (),

range of values of, V, andé.

The canonical weight associated with tieparticle coor- 0=|p+ E M = [ p+ E M ,
dinates{r} in volume V=Nuv, at temperaturd, and pres- N, N,
surep is prescribed by the probability density (10

which gives the finite-sized counterpart of the common pres-

PC({;},U|N’T,D):/N;exr[_lgpv_gq)({ﬁ})], sure condition(8). Similarly the “equal heights” require-
Z(N,T,p) @ ment itself gives

1 1
where3=1/kT and the partition functionZ(N,T,p) is pre- pv+ NF(N,U,T) =|pv+ NF(N,U,T)

scribed by

UA ]
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which realizes the conditio(®), in the thermodynamic limit.  distribution. Second, one must devise a scheme by which it

Alternatively one may establish the conditions under whichmay be constructed. Third, one must exploit it.

the PDK5) displays two peaks ofqual weightd26]. The In the approach to the phase-coexistence problem devel-

saddle-point equations for the locations of the pgakymp- oped by Berg and Neuha(i8] the target sampling distribu-

totically sharp give Eq.(10) again. Equating the weights of tion is chosen to benulticanonical (i.e., flat [29]) across

the peaks gives macrostate space. This choice is cleadasonablesince it
addresses the core of the problem presented by the canonical

J°F(N,v,T) distribution, namely, the low probability of macrostates on
Pty F(N v, 1)+ 258N i 02 i the interphase path. While it is not clear that ibjstimal for
A the task in hand, we shall also adopt it here; we shall éind
1 92F(N,v,T) posteriori rationalization for this choic€30].
=|pv+ NF(N,U,T)‘F 28N Ini 702 ii , The construction process itself has two aspects. One must
vg choose a method farstimatingthe “current” sampling dis-

tribution, that is, the sampling distribution associated with
which again yields the equal Gibbs densities condit®nin  one’s current “guess” at a multicanonical set of weights.
the thermodynamic limit. Both equal-heights and equal-One must also choose an algorithm fefining the distribu-
WEightS conditions thus provide a valid basis for the identi-tion, that is, refining the set of Weights to bring the Sampiing
fication of a phase boundary in a finite system, in the sensgjstribution closer to the multicanonical ideal. We consider
that the results obtained will approach the correct limit forthese two aspects in turn.
largeN. In [9] the sampling distribution is estimated by counting
Deferring (until Sec. V Q the question of which of these the visits to each macrostate in a MC exploration of that
criteria is optimal, we see that the information required todjstribution [the “visited states”(VS) strategy. Here we
determine the relative stability of the two phasat®ng with  adopt a different strategjthe “transition probability” (TP)
all properties that can be written as canonical averages ghethod, designed to use the information contained in mea-
functions of v only) is contained within the PDF syrements of the frequencies of transitions between the dif-
PS(v|N,T,p). While thestructureof this PDF, in the vicin-  ferent macrostates. The idea is explored in general terms
ity of its peaks, is readily determined by standard constanglsewherd7]; we present it here in outline form and in the
N-p-T MC techniquedq27], the relativescale of the peaks specific context of the current problem.
(essential to both equal-heights _and eqpal—weights criteria Let QE[{;}'U] label themicrostates of the system; the
not, because of the low canonical weighte shall subse- icrostates form a continuous set but, for simplicity, we

quently explore how “low’) of v macrostates lying between g, adopt a discrete and abbreviated notation in wHigh

them. In principle, the solution to this problem is to construct
princip P represents the probabilitP3({r},v|N,T;{7})d"rdv. Let

a non-Boltzmann sampling distribution for microstates, of.
the form([cf. Eq. (3)] i=1, m label themacrostatesassociated with a set of

volumes{v} with membersv;, which span the region of
. 1 . potential interest, withP{=PS(v;|N,T;{#})dv the associ-
PS({r},u[N,T:{7})= z(N—T'{n})qu 7(v)=BP{rH].  ated macrostate probability. Denote Y (t) the transition
Y (11 probability from macrostateto macrostaté’, at timet after
the initiation of a MC process designed to generate the cho-
where{#} denotes a set of dimensionless “weights,” one sen sampling distribution. Then
associated with each of the volume macrostd&3. The
associated PDF for the volum@®(v|N,T;{#}) prescribes s _ s 1 s
the canonical PDF of interest, fanyc|jesire{d i})ressurp, by p“’(t)_;;‘i azi, PXali) ()P,
appeal to the reweightindlL4] -

(13

. s _ Wherepfw, is the transition rate betweenicrostatesBy the
(0N, T,p)P*(v[N, T:{n})exf — BpV—n(v)] defining property of the MC procedure this microstate tran-

(12) sition rate must satisfy the detailed balance condition
with the overall proportionality constant determined by nor- PS
malization. The task, then, is to construct an appropriate oS =0, e (14)
sampling distribution(in effect, a set of weighjs The hall- aa’ Ta'a ps

mark of such a distribution is simply that it can be estimated _ _ -
accurately by MC simulation, so that the canonical distribu-We shallimposethe further requirement that the conditional
tion (for the pressures of interéstan itself be determined to probability in Eq.(13) has its stationary limiting form

the required accuracy, by the reweighti(i@).
| e onieig P(ali)(t)=P¥ali). (15)

This condition presupposes that the microstates from which
macrostate transitions are attempted are selected with the
true sampling probabilityfor the given macrostateThe

one must define more explicitly the attributes of the samplmghe position coordlnate{sr} are always given time to equili-

Ill. ESTIMATING, REFINING, AND EXPLOITING
THE SAMPLING DISTRIBUTION
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brate for the giverv [indeed, equilibrate to theitanonical ~ construction stage; from it there emerges an approximately
distribution, sincePS(a|i)=P(ali), because the weights Multicanonical set of weight§»"} associated with an ap-
depend only on the macrostate coordinateHowever, it is  Proximately multicanonical distribution with elemerfe =~
helpful to note a less obvious alternative. const. We now proceed to consider héand why we use

(i) the initial macrostate is chosen to beith probability  this distribution. In principle Eq(12) allows us to reweight

P$ and (i) the initial microstate is chosen to kewith the ~ an estimate oény sampling distribution, to provide an esti-
conditional probabilityPS(a|i) [so that Eq(15) is satisfied mate of the canonical distribution. In the abbreviated nota-

at t=0], then it is easily seen that EL5) is satisfied at tion of this section we write the elements of the estimator,
t=1, and subsequently. In effect conditiofis and (ii) to-  derived from the estimator of theth sampling distribution

gether ensure that the initial microstate is chosen with thd? the form
equilibrium sampling distribution and the detailed-balance
condition ensures that this remains so for subsequent mi-
crostates too. As we shall discuss in Sec. V A, it is growingly

easy to fulfill these conditions the closer the sampling distri-lmn ﬂgacgcﬁiwfcﬁﬁ?ﬁﬁto ﬁﬁﬁ Ltjisi otjoturrriisrt]li?ate Orf trhe
bution comes to the multicanonical limit. utticanonica g distribution, -dete g our re-

Now, returning to the main argument, we substitute Equelght6d estimator by

(14) and(15) into (12) and appeal to the identity

PreP{Mexd — ANpu; — 7], (18

PSPrexd — BNpu;— 7} 1. (19
PS5, PLP(a’li")

a

L To rationalize this choice we note the identity
P,  PPali)

nt=n"—InP{" + const (20)
to find that
. relating the true multicanonical weights to the true elements
s s < Pir of the nth sampling distribution. Combining this result with
Pii'(t):Pii':Pi'iE- (16) Eq. (17) gives
|
. . B _ (n)_ *___(n+1)
This result shows that a MC estimate of the macrostate TP NP —InP{™ =7 — 7" (21)

matrix provides an alternative route to the sampling prob- ] ] -
ability distribution. The potential advantages that this strat-The faithfulness of the estimatd™ (its closeness to the
egy has with respect to the VS method reside in the fact théfue nth level d|Str|bUt|O|) is thus reflected in the closeness
it does not presuppose equ”ibrium over the Space of macpf the (n+1)th IeVel WelghtS to the multicanonical ||m|t
rostates. Thus one may make use of simulations that arEhus evidence that a given set of weights needs further re-
targetedthrough the choice of the initial macrosthm‘] spe- finement isa pOSteriori evidence of deviations of the esti-
cific regions of macrostate space, thereby allowing rapidnate of the sampling distributiofused to establish those
gathering of information even in the region of low canonicalWeights from the true sampling distribution. The iterative
weight. Moreover, one can bypass the ergodic problems thdtrocess may thus be seen as producing a sequence of sam-
persist through to the multicanonical limit: we do not needpling distributions, which are more reliably estimated the
simulations that extend for periods long compared to thecloser they come to the multicanonical limit.
ergodic time. This point is crucial to the present studies; we
shall return to it.

An estimate of the sampling distribution provides the ba-  Iv. IMPLEMENTATION OF THE MC PROCEDURE
sis for refining its parametershe second stage of the con-
struction procegsto bring it closer to the multi-canonical

limit, The simplest schgm@] ta.kes. ann)est|mat?| of Fhe sition and primitive parallelism to allowl,=O(10% inde-
elements of the samplln%n()jls;tnk%%tu_ﬂf associated with a pendent replicas to be run in parallel. The simulations com-
particular set of weightpr }zfil) i=1...Np,andgen- se two kinds of update procedures: updates of the particle
erates a new set of weights } by coordinates, for a given system volume, and updates of the
system volume itself. We discuss these in turn.

The particle coordinate’} are updated using a standard

The constant is arbitrafjthe sampling probabilitie€l1) are Metropolis ?'99““”‘[5]- Trial “new” coordinates are cho-.
invariant against a uniform increment of the weightse fix sen' from within a sphere center.ed on the curreth particle
its value by the conventiom; =0 for i=N,,. The iterative POSition; an update from coordinatds} to coordinates
schemg17) is by no means ideal: in particular it provides no {r'} is accepted with probability
way of taking account of confidence levels in the existing set R _
of weights and in the estimator of the current sampling dis- Pa({r}—{r’'} =min[1,exg —AE)], (22
tribution. We have examined these issues elsewléte
however, here we shall use this basic scheme. where

Iterating the two-component process we have described
(estimationof { P(M} andrefinemenbf { 7{}) completes the AE=BAD=B[D({r'} —d({r})].

Our simulations have been performed on the Connection
Machine CM-200, using a mixture of geometrical decompo-

7" Y= 5™ —InP" + const, (17)
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To maintain the acceptance probability at appropriate levelfowed by a furtherN., updates of the spatial coordinates
(~0.5) requires a value for the radius of the particle dis-alone to allow equilibration within the new volume mac-
placement sphere of ordé¥2, wheres is the width of the rostate. The proceduneolume update followed by coordi-
potential well Eq.(2). nate equilibratiopis repeated\, times for each RS, pooling
We now turn to the volume updates. We found it conve-the records of all volume transitions from &l| replicas in a
nient to restrict the values af explored to a discrete set histogram. We denote the elements of the histogram gathered
{v}=v;,i=1,... N,, extending across the range of valuesat sampling stage (i.e., that associated with a MC proce-
of potential interest(We shall discuss the spacing betweendure with sampling distribution characterized by weights
the members of this set belowChanges in volume are most {7(M}) by Ci(j”). The elements of this histogram provide es-
conveniently realized as homogeneous dilatations that preimatorsp {[ for the elements of the associated macrostate

serve the scaled coordinates TP matrixp(™ [33]:
1) "
s=L~r with L=(Nv)*, (23) i
ST =
In a volume transition a candidate “new” volumsg is cho- P SiCP+1) (29

sen with equal likelihood from the two members of the set
{v} adjacent to the current volumg ; the acceptance prob- ggtimatorsP(™ of the macrostate probabilitig™ can then
ability is computed according to the Metropolis algorithm o qetermined by appeal to E@6). Since the TP matrix is
[31] tridiagonal, this equation is readily solved by a simple itera-
a — mi tive scheme. In the first one or two iterations the samplin
PAvi—v) =minLexp—AB)], @49 probabilities span many orders of magnitude and it is ngceg-
where sary to work with the logarithm dP i(”) to prevent arithmetic
. overflow. To limit the buildup of rounding errors it is neces-
AE=BAD—Anp—NAlnv, (25  sary to use Eq(16). to generate the probabilitieB(™ in
increasingorder. If one attempts to generate the macrostate
probabilities indecreasingorder, the uncertainties in the re-
sulting estimates become unacceptably large once one has
traversed six or seven orders of magnitypdestponed to 14
with double precision arithmetic
The precision of the estimator that emerges is controlled,

The final term in Eq(25) reflects the Jacobian of the trans- Predominantly, by the numbé¥ of the transitions recorded.

. = = . : . It is illuminating to have soma priori estimate of the value
formation from{r rdin in th rtition func- . .
ormation from{r} to {s} coordinates in the parition func to be assigned to this parameter. To that end, let

with
d=d({s},v)=d (LS,

An=n(v))—nv)=n—7.

tion (4).

The acceptance probability for volume transitions is s
strongly dependent on the volume step size: since a trial QEE 27)
volume change resulting in even a single hard-core overlap Py

will be rejected, only “small” volume changes have a rea-

sonable chance of being accepted. The step sizgenote the ratio of the probabilities of two macrostates

Av=v;—v; must therefore be correspondingly small. Sincei=a andi=b, at the extremes ofv} space(lying close to

the extent of the problem varies with the dengityis most  the modes associated with the two phasésr some sam-

acute at high densitigsso must the step size in order to keep pling distributionPS. Our objective, in this problem of phase

the acceptance probability roughly constant over the rangeoexistence, requires that we determine the r@tim within

covered by the sefv} [32]. We constructed suitable sets a fractional uncertainty of order unity:

(maintaining acceptance probabilities close to 0.5) guided

partly by experiment and partly by simple statistical argu- 5Q

ments. ForN=256, for example, the chosen det} com- a’vo(l)- (28)

prised N,E~3>< 10° members with spacings ran49ing from

sz_lo (near v,=0.7171 [24)) to Av=10"" (near Given Egs.(6) and (7), this condition is equivalent to the

va_O'81.8)' As we shall see, f‘he need to handle large Valfequirement that the difference between the Helmholtz free

ues ofNp, is a key feature of this problem. energydensitiesof the two phases is determined to within
The two update procedures we have described are congprrectionsO(1/N), which are comparable with the finite-

bined to give the following MC program, allowing one 10 gjze corrections we must generally expect to contend with.
estimate the macrostate probabilities associated with a giveqow, appealing to Eq(16) we may write

sampling distribution. Each replica simulatidRS) is initial-

ized with the particles assigned to the sites of a fcc lattice, Npy—1 ~s

with volume chosen randomly from the det}. Each RS is Q= [I q where qi:p i+l (29)
equilibrated using the constant-volume updating scheme for i D iilj

the spatial coordinate’} specified in Eq(22). Each RS is

then allowed to undergo “volume” transition@ilatations If we neglect correlations among the variables we may
following the algorithm(24). Each volume transition is fol- then implement the requireme(®8) in the form
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is the mean number of visits per macrosf&4]. Combining
these two results, we conclude that the precision demanded
in EQ. (28) requires that 20.0 |
N2
N~ N—m (30) |
f 0.0 : : "
0.70 0.75 0.80 0.85

This result provides not only a practical guide to the pa-
rameterization of the MC procedure but also an immediate
insight into the advantages of the TP estimatelative to
the VS estimatorof the sampling distribution. Use of the VS | ...'\Z 35 T=1.1[24]; the arrows identify the bounding vol-
estimator presupposes a simulation that extends over times es in the Zse{v}. The’MC control parameters and,= 250,
that are at least comparable with the interphase-crossingm:2377 andN, =4096. The inset shows a detail of the high-
time. Even in the multi-canonical limit, where this evolution gensity region. The units are specified[24].
is diffusion limited rather than barrier limited, this implies a

number of stepdl; throughv space of ordeN7,. This con-  holtz function for a finite-sized system, a correspondence
straint applies teeachcontributing replica. Thus, while the that is implied by Eqs(6) and (12), in the multicanonical
large values ofN, falling within the compass of parallel |imit [37]. The same procedure is practicable on larger sys-
computers such as the CM-200 enhance the statistics gattems: forN=2108 anab initio determination of multicanoni-
ered over such a period, they do not allow us to reduce thigal weights(spanning 125decadesof probability) required
period itself, within the VS framework35]. Given the need some 2 h 0fCM-200 processing time. The procedure can be
to handle large values ®,,—as we have seen, an unavoid- streamlined by using a finite-size-scalifi§SS estimate of
able corollary of the hard-core potential—the VS strategy isan initial set of weight{38]; typically we found that this
then quite impractical herg86]. In contrast, Eq(30) shows  FSS estimate is quite close to the multicanonical lifttie
that in the TP method the simulation time required is reducediscrepancy gets larger with increasifigj, so only one or
by of order 1N, . In this approach, each replica simulation two iterations are required before it is possible to move to the
typically explores only a small region of macrostate spaceproduction-and-refinement stage.
the method provides a simple framework within which the  The results shown in Fig. 1 exploit the TP estimator of the
information that each simulation providéasbout the relative  sampling distribution. To illuminate the workings of the TP
probabilities of macrostates in the region it samplean be  method(and to contrast it with the VS approgcive show,
pooled to provide an estimator of the sampling distributionin Fig. 2, histograms of the counts of macrostate viéiis-
for the whole macrostate space. cumulated over alN, replica3 during (a) an early andb) a
late stage in the iterative weight-generation process. These
results arenot used in the weight update procedure. The
V. RESULTS purpose of showing Fig.(3) is to emphasize that the VS
histogram initially provides virtuallyno useful information
about most of the macrostate spditedoes pick up a local
We proceed to explore the results emerging from the proattractor in the lows regime. The structureless form of the
cedure described in the preceding section, focusing first on
the generation of the multicanonical sampling distribution.

\'

FIG. 1. Multicanonical weights;("(v) for various iterations

A. The multicanonical sampling distribution

Figure 1 shows the results of the weight-generation proce- @ ®

dure for a system ofN=32 particles, at a temperature 8.0

T=1.1 expected to lie below the critical temperature for 6o ' 300 WMAW\
solid-solid phase coexistend&8]. The first level weights ) .

{#M} are set to zerdthe initial sampling distribution is 2 40 2 200

canonical. The general structure of the multicanonical Izo £

weights over the entire region is apparent already after one

iteration; convergence to a form very close to a fixed point of 0 oo oss %S5 ovs  os  oss
Eq.(17) is achieved within seven or eight iterations requiring v v

only about 25 min of CM-200 processing time. Further con-

vergence is secured in the course of the final “production- FIG. 2. HistogramsH(™ of the volume macrostates visited at
and-refinement” iterations described below. The shape ofampling stage&) n=2 and(b) n=13 in the course of the weight
the weight functiory(v) is recognizable as that of the Helm- generation shown in Fig. 1. The units are specifief2u.
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FIG. 3. Convergence of the weights over iterations?2, . . . ,5, for different values dfl,. Other parameters are as in Fig. 1.

histogram simply reflects the fact that the various replicade made relatively freely since a dilation introduces no hard-
have evolved relatively little from their initial states in the core overlaps, but transitions that decreasae likely to be
course of the simulation. The “useful information” resides suppressed by the occurrence of such overlaps. Now suppose
in the flow through macrostate spacthe macrostate transi- that N, is reduced so that equilibration at eaghis incom-
tions), not its population Figure Zb) shows that a late-stage plete. While dilations are hardly affected, moves to lower
histogram isconsistentwith multicanonical behavior; but \,oJume becomenore probable: to the extent that equilibra-

this “consistency” is less than meets the eye. Again eachiop, js imperfect, the scaled particle coordinates., the set
replica has typically migrated across only a small part

(~1/30) ofuv space; the flatness of the histogram is thus aig}’ defined in Eq23)] are preserved through to the next
reflection of the initially uniform distribution of the replicas Y update and a lowes macrostate may be recovered by a

over this space. The relatively large fluctuations are also tedfansftion that reverses a preceding dilation and thereby ef-
timony to the strong correlations within each RS. fectlvelyl restores an earlier Tlcrostate. It .follows that-, in
Next, let us consider the MC control parameters associthese circumstances, the rafiof; . 1/p i+1; is underesti-
ated with the TP procedure. An indication of the interplaymated, as is then the sampling probability gradieft Eq.
between the parametel,, N, , andN, is provided by Eq.  (29)], and thence the change to be made to the weigtits
(30). In fact, the results for various test runs imply that theEq. (17)].
algorithm is robust down to a value bf. rather smaller even Of course, while increasindyl, decreases the number of
than this. Moreover, there are effed¢ishich Eq.(30) does iterations required to reach near-multicanonical behavior it
not capture; cf[34].] that actuallyreducethe efficiency of increases the time required for each iteration. We have not
the procedure abl. is increased. In the early stages of the sought to establish the optimal conditions, but we expect
procedurgwhen the sampling distribution is far from multi- efficiency gains from tunind\, to be relatively small.
canonical the lowv macrostates tend to empty relatively  Now let us turn to the later stages of the iterative proce-
rapidly. It is advantageous to sHf low enough to preempt dure. For large enough (n=8 in Fig. 1) we reach a situa-
this process in order to avoid the need to reinitialize andion where the noise in the TP estimator drowns any remain-
reequilibrate the replicas, prior to gathering information foring signal that the multicanonical limit has not been fully

the next iteration. realized and the weights undergo only random fluctuations
Consider now the role oN., the number of constant- between iterations. At this point we move into the second
volume coordinate-updating sweefpisrough all replicasal-  (production-and-refinemenstage of the procedure. In this
lowed between volume-update attempts. Figure 3 shows thstage the advantages of low valued\fnoted above do not
evolution of the weights for three different values N§, apply; accordingly it is reset to substantially higher values,

over the early stages of the iterative procedure. It is clear thaypically of the order of a few thousand rather than a few
increasing the time devoted to equilibration betweenop-  hundred, per iteration. We continue to update the weights
dates increases the speed of convergence to the multicanomifter each iteration, using the TP estimator of the current
cal limit. The principle here is easy to identify: the larger sampling distribution, but we also use this TP estimator, in
N, is the closer one comes to satisfying the condition on theconjunction with the current set of weights, to provide an
macrostate transition probability matfikq. (15)] implicit in estimate of the canonical distributi¢for a pressure, or pres-
Eq. (16); the better the TP estimator of the current samplingsures, or interegt using the reweighting prescribed by Eq.
distribution is, and the closefcf. Eq. (21)] the implied (12). Thus we accumulate estimates of the canonical distri-
weights are to their multicanonical limit. To understand thebution from which, at the end of the simulation, we produce
behaviour in more detail, in particular, why it is that the TP a “best estimate” ofP€, together with its uncertaint}32].
estimator continualljunderestimateshe change in weights We have seen that the paramel&r controls the quality
required to reach the multicanonical limit, it is necessary toof the TP estimator of the sampling distributiéend thence
consider what is occurring physically in the simulations.the rate of convergence of the weighits the early stages of
Suppose first thall, is sufficiently large that equilibrium at the procedure. It is important to establish what effects it has
eachv is established and compare the transition probabilitie®n the quality of the later estimators. To do so we ran a series
of dilations and contractions. Transitions that increasan  of simulations employing a sampling distribution associated
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with a refined set of multicanonical weigh(is the particular On the face of it, the error bars on the PDFs in Figs. 4 and
caseN=32,T=1.1). These simulations each performed the5 are substantidthe fractional uncertainties in the PDFs are
same number of volume updates, but varied in the valu®©(1)]. However, the bulk of this uncertainty originates in
assigned td\.. TP estimators of the sampling distribution uncertainties in the relative weights of the two phases; the
were formed in each case and new values of weights conshapes of the peaks &€ are individually well outlined and
puted in the usual wajby appeal to Eq(17)]; the procedure single-phase averages.e., averages calculated over the
was repeatedvithout weight updatingto provide uncertain- peaks separatélyare substantially more precisely defined
ties on the predicted new weights. We found that the “new” than these error bars might suggest. Moreover, as we have
weights did not differ systematically from the “refined” es- discussedcf. remarks following Eq(28)] the O(1) uncer-
timate: the estimate of the sampling distribution is relativelytainties are, in fact, consistent with the determination of the
insensitive to the value assignedNgq, in the multicanonical free energy densityand thus the parameters of the coexist-
limit. To see why this should be so we need to recall theence curvito within O(1/N) corrections.
alternative way of securing the validity of Eql5), ex- The differences between the two phases, already visible in
pressed in the two conditions noted following that equationFigs. 4 and 5, are made more explicit in Fig. 6, which shows
While the second of these conditiofsquilibration within  the specific voluméFig. 6(@] and the compressibilitjfig.
the starting macrostatés always fulfilled, the first is not; it 6(b)] as functions of the pressure. Both quantities are evalu-
is, however, fulfiled more closely the closer the samplingated from the canonical averages the volume and its fluc-
distribution comes to the multicanonical limit, because, intuationg over the range of associated with the phase that is
this limit, our “random” set of initial v macrostatesloes favored at the pressure under consideration.
match the(flat) sampling distribution. Fullmulticanonical
equilibrium is secured initially and preserved; E45) is
satisfied without further intervention.

C. Finite-size scaling

B. The canonical distribution: Initial applications To establish(and optimizé the extent to which the MC

We now turn to the results for the canonical distributionprocedure captures the limitingargeN) behavior of ulti-
and the physical properties that it defines. In this section wenate interest requires a systematic analysis ofNhdepen-
present the results for one particular system side=(08);  dence of the results. Figure 7 shows the results for the vol-
the size dependendénite-size scalingof our results is ex- ume PDF, for various system sizes,Tat 1.0. In each case
amined separately in the following subsection. the PDF has been evaluated at the pres&messtimator for

Figure 4 shows the results for the canonical FEfv) at  p.,) that accords equal weights to the two phases. The sharp-
T=1.1, for a range of pressur@s Two ranges of pressures ening of the peaks with increasimy is apparent and is also
are clearly identified. Pressures in excespgf=29 support reflected in the behavior of the canonical average of the spe-
a dense structure, characterized by a relatively sharp pealific volumev, as the pressure is varied through the coexist-
aroundv =0.719; pressures belop, support an expanded ence region, shown in Fig(8. In contrast to Fig. @), these
structure, with a substantially broader pdalte the differ- averages were taken over the entire sampling distribution, at
ent scales in the two figureat higherv. The incipient dense a givenp, in order to display more clearly the growing pre-
structure is just discernible @t=29, in Fig. 4b) cision with which the coexistence pressure is defined.

Figure 5 provides an alternative perspective of the canoni- Now let us consider the merits of the different estimators
cal PDF, at three pressures, including a refined estimate aff the coexistence boundary, discussed in Sec. Il. Fig(be 8
the coexistence pressupg,, identified by the equal-weights shows theN dependence of the estimators fpg, (at
criterion(cf. Sec. l)), for reasons to be discussed in Sec. V C.T=1.0) based on both the equal-weigh8W) and the
below. The inset shows the low canonical weight of mac-equal-heights criteria. Although the limited rangeMfval-
rostates along the interphase path; in some applicatfons ues studied allows no definitive conclusions to be drawn, the
largerN and lowerT) we have used the TP method to evolve data suggest thdttoth estimators are subject ©(1/N) cor-
distributions surmounting probability differentials of 260 de- rections with respect to the thermodynarfiidinite-volume

cades. limit. The least-squares fits to both sets of datashed lines
(a) (]
800.0 .
—— P10 8001 FIG. 4. Canonical o =
______ hes0 . 4. Canonical PDRP¢(v) for N=108,
-~-- p=35 T=1.1, at various pressurgs. The PDF was
. jszgggs __ 400 smoothed using a moving average over a window
°E.>' 400.0 o p=30 f of 50v states; some typical error bars are shown.
* p=29.75 The two figures show, respectively, the peaks
Tpe295 200 corresponding tda) the dense phase arid) the
expanded phase. The units are specifiefPii.
0.0 i s 0.0 ‘ i
0.716 0.718 0.720 0722 0.724 0.70 0.75 0.80

v v
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are equally good and both have the same intercepts, within 800.0 . : K
error. The ordinate intercepts, which are the best estimates of ' :
the infinite-volume transition point, are both consistent with |
the assignmenp.,=22.786). 600.0 | 1oxig | |

The question of which of the two estimators is the more ° JF j

appropriatea priori has attracted considerable attention. Ar-
guments based on cluster expansif#8, supported by em-
pirical analysis of MC dat#39], have provided strong evi-
dence that, at least for lattice models with periodic boundary i ) , L
conditions, the EW estimator is to be preferred in that it is 200.0 - : : - 76 |
correct to within terms that arexponentiallysmall in the i
system size. It is not clear to us what these arguments imply k
(if indeed they are applicable at alio the off-latticeN-p- 00 EE .
T ensemble explored here. We choose to adopt the EW es- 070 072 074 076 078 0.80 0.82

timator, in part because it does appear to give the smaller v

corrections and in part because it seems to us to be the more

natural choice. FIG. 5. Canonical distribution functioP®(v) for N=108,

It is of interest to explore the system-size dependence of=1.1, at pressurep=70 (solid line), p=25 (dashed ling and

the canonical probability of macrostates lying on the inter-p=30.19+0.12=p,, (circles. The inset shows a detail in the re-
phase path. With this in mind, 1@*=P} ,/P§,, denote the gime of intermediate density. The units are specifief2ui.

ratio of the canonical probabilities of two macrostates, one

coinciding with a maximum oP“(v) (in practice we chose pt g1s0 to absorb the additional straifislatively signifi-

the maximum associated with the expanded phasel the  ant for small systemsmposed by the requirement that the
other associated with the minimum Bf(v), lying between 0 a1 structure can be accommodated in a cubic sampling
the two maxima. This ratio measures the probability d'ﬁer'volume.

ential (“free energy barrier) that the multicanonical

weights are designed to offset. Figure 9 shows its behavior as .

a function of system size=V3 for temperaturél =1.0. D. Phase diagram

The result is somewhat unexpected. One might anticipate We now turn to consider the solid-solid phase boundary
that the macrostates along the interphase path would be more detail. We have used the techniques described in
dominated by mixed-phase arrangements, comprising macrg¥evious sections to evolve multicanonical sampling distri-
scopic regions of each of the two phases, separated by dntions, and thence TP estimators for the canonical volume
interface, with an area of ordérd"'=L2. This viewpoint PDFS, over a range of temperatufé®m T=1.0 up to the
leads immediately to the predictionQi~L2. This prediction  vicinity of the critical point believed to lie aroundi=1.6

is certainly consistent with studies of lattice-based models,18]) and system sizesN=32, N=108, andN=256). Fig-

for which it has been exploited to provide a measurement ofire 10 shows some of the results, for systems of size
the interface tensiofi40,41. However, the behavior mea- N=108, at the coexistence pressifer the corresponding
sured here is much closer toQi~L3. The reason for this N and T) determined by the equal weights criterion. With
difference is that, at least in the systems we have studied, thacreasingT, the canonical probability of the region between
interphase states do not appear to be inhomogeneous in thee two modes increases and the modes merge together. For
way the above argument envisages: examination of the disN=108 the PDF becomes unimodal arouiieg=1.7; for
tribution of free volume along the interphase path shows thalN=32 the merger occurs at lower temperature. Clearly,
these states are no less homogeneous than those that domiplementation of the equal-weights criterion becomes pro-
nate the peaks in the PDF. In part this may simply be aressively harder as one moves into this regime. To identify
reflection of the relatively small system sizes we have beetthe equal-weights pressure we used an arbitrary division of
able to study: in this regime the “interfaces” separating thethe range ofv at or near the point wher®® is minimal,

two phases have not only to patch one structure to the otheajthough a fitting of two overlapping Gaussians is arguably

8
400.0 | 5.0x10 |

Pv)

(a) (b)

0.84 1.0x10°2 :
0.82 FIG. 6. Canonical expectation values for a
0.80 1 1ox10 system with parameterbl=108, T=1.1, as a
078 -xg& 0x10 function of the pressurp. (a) The specific vol-

v K umev=V/N; the two data points represent esti-
0.76 ] _4! mates of the specific volume of each phase, at

1.0x10 1 . : .
0.74 1 — ] coexistence(b) The isothermal compressibility
0.72 ——— «; note the logarithmic scale on the ordinate.
5
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FIG. 7. Canonical PDFP¢(v) for T=1.0 and
three different values oN, showing separately
(and on different scalg¢ghe regions correspond-
ing to (a) the dense phase arit) the expanded
phase. The units are specified[R¢].

more appropriate. To assign values to the specific volumes dfamework, along the lines of that applied to the study of
the two phases, in this region, we simply used the location ofiguid-vapor coexistencp43], which have been developed to
the modes to provide finite-size estimators. The finite-siz&//€!d results of remarkable precisi¢@5]. To do so would,

estimators ofp., and the specific volumes were then ex-

trapolated to give estimates of their thermodynamic limits.

The results are represented in Figs.(dlland 11b),
which show, respectively, the phase boundaries inpthie
and T-v planes. These figures also show the results estab-
lished independentl{18,42 using integration methods, on a

we believe, be relatively straightforward.

E. Coexisting phases: A comparison

Finally, we turn to a comparison of the two solid phases
and to consider the physical basis of their coexistence. First,
Sve present the evidence corroborating that the structure of

two estimates of the-T coexistence curve; discrepancies poth phases is indeed fcc. Figure 12 shows the measured pair
are at most of the order of 1% and are generally within thecorrelation function “(r), at coexistence(for N=108,

error bars on the multicanonical points. The agreement in thg =1.1). In both phase&{(r) exhibits well-defined peaks at
location of the phase boundary in theT plane is also fa|r|y positions(increasing as/ﬁ, with m the peak inde)(charac-
good, though there are more obvious differences over theeristic of a fcc lattice. The discontinuities i#i(r) (apparent
specific volume of the expanded solid—differences thajn the inset can readily be traced to corresponding disconti-
grow with increasing temperature. There are several possiblguities in the potential 2, at/oc=1 andr/c=1+4. The
origins for these discrepancies. In part they may reflect theneasured discontinuity at=(1+ 8)o=r, is consistent with
difference between the equal-heights and equal-weights crthe requirement that

teria: the double tangent construction used in the integration
method is, implicitly, an equal-heights estimator. Another
contributory factor is thé&l dependence of the canonical PDF
at coexistence, in particular the shift in the expanded-phase

mode to lowew asN increasegcf. Fig. 7). Third, one might

ff(ronLAr)_

m_—_———=
AHO+.Srf‘(ro—Ar)

1T

To illuminate the circumstances in which the two phases

expect that the appeal to a hard-sphere solid reference systemexist, we consider the elements of the Gibbs free energy
becomes more problematic the closer the physical system gensityg=f+ pv=e—Ts+ pv, wheree is the energy den-
to criticality: the typical configurations of the physical sys- sity ands the entropy density. The form of the Helmholtz
tem and the reference systémhich does not have a critical function f(v) can be deduced from the measured canonical
point) will become less well matched and the errors in thePDF forv, by appeal to Eq(6); the energy density is mea-
surable directly, as a canonical average; the entropy density
Taken at face value, our results suggest that the criticatan then be inferred. Figure 13 shows the three contributing
temperature is rather lower than that implied by the IM re-elements ¢, s, andp.w) for N=108 atT=1, together with
sults. However, to handle the critical region adequately it ishe Gibbs functional itself. The elemersisp., andg have
necessary to appeal to a more sophisticated finite-size scalitgen arbitrarily shifted vertically so that they equal zero at

integration method harder to control.
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FIG. 8. Finite-size behavior fof=1.0 The
IM data are taken fromi18]. (a) The behavior of
(v) as function of pressurp, nearp.,. (b) The
coexistence pressure determined by equal-
weights(EW) and equal-heightéEH) criteria, for
different values oN. The dashed lines represent
least-squares fits to the data and share the ordi-
nate intercepp=22.7§6).
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FIG. 10. Canonical PDFP¢(v) for N=108 and a range of
values, at the corresponding coexistence pressure. The inset shows

the dense phase on an expanded scale. The units are specified in

the lowestv studied. The differences between the values 0{24]'
each element of for the two phasesi.e., evaluated at the
estimators of the two specific volumes Bt 1) are repre-
sented by the arrows; to withi@(1/N) corrections they sat-

isfy the conditionAe—TAs+ p.Av=0.
The energy has a close-packedv €0.707) limit of

As the temperature is raised towards the critical point, the
functionss(v) ande(v) change relatively little; the evolu-
tion of the properties of the phases reflects, principally, the
temperature-induced shift in the balance between entropy
and energy: the low- dominance of the energy is reduced

e=—6; it begins to increase rapidly above this limit at @nd the highy dominance ofs enhanced, and the change-

v=0.717, where particles begin to lie outside the potentialVer between these regions occurs at lowefhis accounts
well of a significant fraction of their neighbors. It exhibits a O the key features observed: the dense phase becomes more

point of

inflection,

close to

the

poin

v=(1+68)%2~0.7285 at which the energy of a fully or-
dered T=0) crystal would step frone= —6 toe=0, under

a homogeneous dilation. Thentropy must display a loga-
rithmic singularity in the close-packed limit; it increases
steeply through the region characteristic of the dense soli
but its curvatureis less than that of the energy. By contrast,yhich we have not explored in this work.
in the rare-phase region the reverse is ta(@) exhibits the

dominant curvature. The results express quantitatively what

is qualitatively cleam priori: the dense phase owes its exist-

ence to, and its properties are dominated by, energetic con-

large enough thatcf. Sec. V Q InQ*~L2.
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t compressible, the expanded phase less so, and the two phases
coalesce as the specific volume of the rare phase falls.

For lower temperatures, on the other hand, the influence

of the energy persists to higher, pushing up the specific

volume of the expanded phase and eventually taking the sys-
em into the regionlbelow the triple point where the ex-
anded phase is unstable with respect to the liquid phase,

VI. DISCUSSION AND CONCLUSIONS

siderations; for the rare phase, entropic factors are dominant. Although the system we have chosen to study in this pa-
Note that the underlying Helmholtz function does not displayper js of considerable interest in its own right, this work has
the fully convex behavior required in the thermodynamicheen principally concerned witgenericissues arising in the

limit; the hump in the free energy functiongl straddling
the interphase region, must be attributed to finite-size effectsur final discussion, which we shall organize into two stages.
which will persist until one reaches the regimelofvalues

1.7
1.5
T 1.3t
1.1
0.9

0.7
0.70

0.75

MC study of phase behavior. These will remain the focus in

First we shall review the particulatransition-probability
implementation of the multicanonical method, developed and

FIG. 11. Solid-solid phase boundary i)
P-T and(b) T-v space. The data points are pro-
duced by extrapolatingd=32 andN=108 (and
for T=1, N=256) data against . The dashed
line shows thermodynamic integration results for
an N=108 systen{18,42. The units are speci-
fied in[24].
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FIG. 12. Pair correlation functiorg(r) for N=108, T=1.1. FIG. 13. C_ontributions to the free energy densityfat1.0. The
The inset shows detail at small Full line, dense phase; dashed entropy densitys, the Gibbs density, and the contributiorp.,v
line, expanded phase. have been translated by arbitrary constants so that they are zero at

the low end of the range af explored, shown by the dotted vertical

line. The dashed vertical lines identify estimators of the specific
applied here. Second, we shall compare the multicanonicafolumes of the coexisting phasesTat 1.0; the filled symbols iden-
approach to the study of phase boundaries with the traditify the values of the free energy contributions for these values of
tional MC method based on integration along a path. v. The units are specified {24].

The TP estimator of the sampling distribution provides a
tool that, we believe, should prove of rather general value in
multicanonical studies. It addresses two key problems. Firsapproach handles all of this transparently. Moreover, to al-
it allows one to begin to gather information about the wholelow full equilibration (in the VS senseover the range of
of a targeted range of macrostate space, virtually from thenacrostates in each section of the multistage sampling simu-
outset of the procedure; in this respect it offers significaniation would require that each section should contain sub-
advantages with respect to VS, which is slow to deal withstantially fewer macrostates even than are explored by one of
poorly sampled regions and vulnerable to inaccurate initiathe multicanonical replicas in the course of its run, thus re-
guesses at the values to be assigned to the weights. Secomdjring correspondingly more independent simulations.
it provides a way of addressing the residual ergodicity prob- As a final remark on the TP method, we note that the
lems posed by the task of estimating a near-multicanonicadame approach may also be applied to determine the weights
distribution. The TP method allows one to combine the in-associated with the subensembles that feature in the ex-
formation obtained through a number of simulations, eachpanded ensemble techniques developed by Lyubaeal/
exploring only a limited range of macrostate space and eacl1] and Marinari and Parigil2].
therefore requiring a simulation time much smaller than the Now let us turn to compare the multicanonical approach
ergodic time. The method thus allows one to capitalize orto the phase-boundary problem with the established integra-
computing architectures that allow many replicas to be run irion methods. It is undeniable that, as Frenkel has arféied
parallel. the IM approach is commendably simple, requiring little or
At this juncture we should note that the method we haveno extension beyond the framewotfor the evaluation of

described bears some resemblance to the method of muliganonical average¢sneeded for the basic MC procedure.
stage sampling44]. If implemented in the present context, Nevertheless, the principal obstacle to any extended-
this approach would also utilize a set of simulations; eaclsampling approach—the absence ofsystematicway of
simulation would be constrained to waflgossibly multica- building the desired sampling distribution—seems now to be
nonically) within a narrow section of the full range of mac- surmountable and the multicanonical strategy is correspond-
rostates, overlapping with its neighbors. From a VS histoingly more viable. It has some attractive features. First, in
gram, the PDF of the order parameter, within each sectiomur view, it provides a framework in which MC error bounds
would then be estimated, and by imposing continuity be-are more readily assessed and controlled. The error bounds
tween the sections, the PDF could be reconstructed for thimherent in IMs are clouded by uncertainties about the influ-
whole range of macrostates. Despite the similarities, the mulence of the integration-parameter spacing. Second, the
ticanonical approach retains several advantages. To use muiethod requires no appeal to a reference sygteraystems
tistage sampling, we must decidepriori how to divide up  and is thus free of the additional uncertainties that may arise
the range of macrostates: how wide each section should ke the IMs when the integration path has to connect systems
and how much it should overlap with its neighbors. We alsowith grossly different configurational structure, in particular
must decide how to match the results from the various hiswhen the path has to traverse a near-critical region. Third,
tograms, perhaps using just the overlapping states or perhapi®e multicanonical MC method surely provides the better
a function fitted to the whole histogram. The use of theframework for handling the subtle finite-size effects associ-
single pooled histogram of macrostate transitions in the TRited with critical points. Finally, it is couched in terms—
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probability distributions rather than free energy functions—ferent symmetriesthat involve more complex changes of
that relate most directly to what is actually measured in MCmicrostructure.
studies.

Ne\(ertheless, it rt_amains to be seen whether.the mL_JIti— ACKNOWLEDGMENTS
canonical strategy will prove as versatile as the integration
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