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Computational model for coupled electron-photon transport in two dimensions
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We have developed a method to perform coupled electron-photon calculations in two spatial dimensions
using a partial coupling scheme in which electrons produce photons but photons do not produce electrons. A
spatial characteristic scheme is used in conjunction with a second order differencing scheme in energy. The
multigroup Legendre cross sections are calculated using the cross section generaticepggdehich models
a large number of electron interactions including elastic scattering from nuclei, inelastic scattering from
collisions with atomic electrons, and radiative scattering from nuclei, and photon interactions such as Compton
incoherent scattering, photoelectric absorption, and pair interaction. A two-dimensional calculation performed
to simulate results from an experiment in which energy deposition depends only on the depth inside the
medium compares very favorably with experimental data. Energy deposition profiles are also obtained for
monoenergetic electron sources isotropically incident on aluminum and are compared with TIGER Monte
Carlo calculations. Agreement between the two sets of calculations is found to be excellent. In summary, we
conclude that our computational model is capable of providing very good results for energy deposition due to
an incident source of electrons in two-dimensional rectangular geomg&tt963-651X96)10006-4

PACS numbd(s): 02.70—c, 95.30.Jx

I. INTRODUCTION energy deposition in slab targgfdane parallel geometyyn
two spatial dimensions.
Electron transport in metals and semiconductors has been The method of discrete ordinateS,() has been used suc-

of considerable interest for a long tinj¢—3]. Theoretical cessfully in neutral particle application$7-19. However,
studies have usually concentrated on analytical and compuirect application to charged particle transport is difficult due
tational solutions of the Boltzmann transport equafiéyb). to nonlocal Coulomb interaction. The electron Boltzmann
The computational methods can be classified principally intdransport equatio(BTE) is not amenable to a standard mul-
two categories, namely the Monte Carlo methd@s-11] tigroup approximation in energy. This is because an accurate
which are statistical in nature and deterministic methods ofnultigroup representation of the collisional cross section for
which the method of discrete ordinatgs2—15 has been €lectrons is impractical. Since the inelastic cross section in-
most widely used. The standard numerical technique for percreases rapidly as energy loss becomes small, an accurate
forming coupled electron photon transport calculations is thénultigroup representation would require a rather large num-
condensed history Monte Carlo method originally developed®r of narrow width groups which would make such a dis-
by Berger{6] and has been used in codes I&eraN [8] and crete ordinates calculation very expensive. This is particu-

the ITS(integrated Tiger seri¢$16]. These codes have been larly true in _multidimensioqal calculations. Small mean free
used to carry out a variety of calculations for a number Ofpaths and highly anisotropic scattering have also contributed

quantities of physical interest such as transmission coeffit-0 the problem of efficient studies of charged particle trans-

) . ort. Despite such problems, many authors have studied the
cients for slab targets, energy spectra transmitted throug ; S . .
9 . roblem of electron transport in one spatial dimension using
slab targets, angular distribution of electrons transmitte

h h slab flecti ffici : infini he method of discrete ordinates. The multigroup diffusion
through slab targets, reflection coefficients for semi-infinite\ oihod of Cormaret al. [20], the moments technique of

targets, energy deposition as a function of depth, and deteff_]amy and Ligaoy21], the LSN method of Antal and Lee
tor response functions, and good agreement between calc; 2], and the integral tracking technique of Mod@8] are
lated values and experimental data has been obtained. Whilgyme well-known methods of one-dimensional electron
Monte Carlo treatments of electron transport are certainlfyansport. Melhorn and Duderstad@4] modified theTIMEX
widespread and well suited in complex geometries, they caps] code to provide time-dependent solutions in one-
be time consuming and expensive. An efficient and alternadimensional slab and spherical geometries. M[26] devel-
tive deterministic method such as discrete ordinates wouldped a method for using standard discrete ordinates neutron
be very beneficial in simple geometries. In this paper weransport codes to perform Fokker-Planck calculations in
concentrate on the method of discrete ordinates to obtain thene-dimensional slab and spherical geometries. It is shown
that energy-angle integrated quantities such as energy and
charge deposition profiles can be accurately and efficiently
“Permanent address: S. N. Bose National Center for Basic Sciealculated for electrons. WienK&7-29 has developed a
ences, Salt Lake, Calcutta, 700064, India. semianalytical technique of inverting the Boltzmann trans-
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port equation using exponential differencing techniques. Irtions, a discrete transport correction, and the method of nu-
two dimensions, Filipponeet al. [30] have solved the merical shoves and countershoves. A characteristic line in
Spencer-Lewis equation using finite differencing of the spathe SR model lies in the-s plane, wherex is the spatial

tial variable. The first application of the discrete ordinatesvariable ands is a path length variable directly related to the
method to coupled electron-photon transport calculationgnergy variable. This is in contrast to the multigro8p

was made by Bartinet al.[31]. However, their results were model where electron transport takes place at fixed energy
not particularly encouraging as a large number of groups ha@nd energy loss is modeled through discrete jumps to lower
to be used to obtain accurate results and difficulties wer@oups. The model used in our two-dimensional electron
encountered in problems with high-materials. In recent transport wor37-39, is basically a multigrouiSy model
years Lorenceet al. [32] has applied theSy method to @S opposed to the SR model in which the electron loses en-

coupled electron photon transport in one dimension. In par—e.rgy cpntmuously. A .characterlst|c line in our two-
ticular, they have shown that the®; method is as accurate d|menS|on§I modgl lies in the-y plane wher'e bothx and

as the condensed-history Monte Carlo method. The reductioh &€ Spatial variables and none of them is related to the
in computing times of from one to two orders of magnitudeenergy‘ . .

is possible. In their calculations, quantities integrated over The purpose of this paper is to study_ the problem of
energy and angle, such as energy and charge deposition pr%qqplgd electron photon transport in two dimensions due to
files, converged as a function of the number of energy groupgn incident source of electrons. Specifically, we have devel-

at a much faster rate than the differential spectra. This aoned a technique that can be considered a two-dimensional

joint coupled-electron-photon method is capable of performgfferal'zat'?n|°f4g'i ong-dlme_nsmmft%xs’oyELE;] meéhod ¢
ing calculations, which are not possible with continuous en?' Lorencee al.[40,41]. Our main consideration has been to

ergy Monte Carlo codes. Specifically, in connection with thisdevelop a two-dimensional technique compatible with the

work, Lorenceet al. [32] developed the coupled electron- _CEszmuIUgroup cross-section data generation CaziERxs

photon multigroup cross-section generation cogexsand includes all of the coupled electron-photon interaction phys-

a one-dimensional coupled electron-photon discrete orgilcs treated in production Monte Carlo codes such as those in

nates code packagsveLD [33—35. CEPXSs a cross-section the ITS systeniil6]. It is advantageous to use therxsdata

generating code. The cross-section data it produces are ght only because we obtain the most complete and accurate
multigroup-Legendre expansion coefficients of coupled'mer‘."‘c.t'qn phys.|cs, bu_t also because comparisons of our de-
electron-photon cross sectionsneLD is a general Boltz- terministic solutions with Monte Carlo solutions will reflect
mann discrete ordinates transport code. We will return to é)nly dn_‘ference_s In nu_merlcal accuracy as opposed to differ-
discussion ofcEPXs later in this manuscript. Finally, a one- ences in both interaction physics and numerical accuracy. In

dimensional electron transport solver, based on a streamirgfee thdHOIZN:Fg sgcglon, thlcta out(ljlnes Olf t_he theosry a:ﬁ pre-
ray (SR) solution to the Spencer-Lewis equation, has bee nted, foflowed by results and conclusions in sec. 1il.
developed by Filipponet al. [36]. The solver includes sev-

. : : e . IIl. THEORY
eral special numerical techniques such as an efficient routine
for simulating energy loss straggling, use of extended- We first write the coupled electron-photon Boltzmann
transport-corrected and Fokker-Planck equivalent cross setransport equation in two-dimensionely geometry as

ife  ofe
Mxmwwtefe:f fdE’dQ’fe(x,y,E’,Q’)ae_e(E’—>E,Q'Q)

+f fdE’dQ’fp(x,y,E’,Q’)ap_e(E’—>E,Q’Q)-i—Qe(x,y,E,Q), @

of of
“a_;+ na—ypmtpfp:f fdE’dQ’fp(x,y,E’,Q’)op_p(E’—>E,Q’Q)+f fdE’dQ’fe(x,y,E’,Q’)oe_p(E’HE,Q’Q)

+Qp(x,y,E, ), )

in which f is the particle flux(number density of particles is denoted byo. for electrons ando, for photons. The
times their spegddefined such thatdVdEd) is the flux of  cumulative electron to electron differential scattering cross
particles in the volume elemedi aboutr, in the element of section is denoted by ..., the cumulative photon to electron
solid angled() about() and in the energy rangeE about  differential scattering cross section is denoteddyy,, the

E. Similarly QdVdEd) is the number of particles in the cumulative photon to photon differential scattering cross sec-
same element of phase space emitted by sources independénh is denoted byr,,_,, and the cumulative electron to pho-
of f. The subscript® andp stand for electron and photon, ton differential scattering cross section is denotedoly, .
respectively. The macroscopic total interaction cross sectioAll of these cross sections may be dependent on the spatial
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variablesx andy but in our case we have assumed no spatialvhere
dependence of the total interaction cross section and the scat-
tering cross section.
Equations(1) and (2) describe the actual physical situa- xo=0QQ" =pup'+(1—u?)2+(1—u'?)Ycogp—¢')
tion in which electrons can give rise to photons and photons

can give rise to electrons. However, for certain types of proby 4 |ScT is the order of scattering.

lems, it is not necessary to consider full coupling between —sing cross-section expansion and the addition theorem
electrons and photons. We have thus implemented a partig Legendre polynomials, we now writd) as

coupling scheme in our computational model in which pho-

tons are produced from electrons but the production of elec-
trons from photons is not accounted for. Such a partial cou-
pling scheme has been used by Loreetal. [32] in one- s
dimensional applications and noted to be of particular 2
usefulness in shielding calculations such as those pertaining

of o -
+ n@wtf: ) dE’nZ,O (2n+1)os(E'—E)

n
to the shielding of spacecraft electronics from geomagneti- K K
cally trapped electrons. The partial coupling scheme as de- ngo Ro(,#)Tn+ Qe Xy, E, Q).
scribed above amounts to setting the photon to electron scat-
tering cross section, equal to zero. Then the electron flux (4)

in Eq. (1) f, can be solved without reference to the photon

flux f,. However, the photon cross interactions associatedhe functionsR¥ are defined by

with electron production can still contribute to the total pho-

ton cross section. The energy which would have gone into

the photon produced electrons is considered to be deposited « [ (2= ko) (n—K)! 172 ‘

where the photon interaction occurs. If the energy of the ”:[W} Pr(mo)cogke), 5
incident electron is greater than the critical energy given by '
800X in MeV [42], i.e., the energy below which collisional
losses predominate, the dominant physical interaction of thwhere P are the associated Legendre polynomials. If the
bremsstrahlung produced photons in pair interaction and thangular fluxf is expanded in a series of these functions, then
above approximation will not be valid. In the description thatthe f;; denote the expansion coefficients and are given by
follows we omit the subscripte and p to denote electrons

and photons. It is understood that quantities without a sub-

scripte or p can stand for either electrons or photons. The n [t g n

reduction of the Boltzmann transport equation to a dis- fk—Jfld“JO dpRyf/2. ©)
cretized form suitable for computation is similar for elec-

trons and photons. This has been presented before for eleghese coefficients are calculated by using the fully symmet-
trons[38], however, for the sake of completeness, we preseryic quadrature sets given in Lewis and Millg5] and Lath-

it again to discuss the full nature of coupling between elecyop and Carlsorj43]. At this point, we seQq(X,Y,E,Q)

trons and photons. _ N =0 implying the absence of external sources.

In our work, the scattering transfer probabilitglectrons The multigroup equations are now obtained by dividing
and photongis assumed to be represented by a Legendréne energy domain of interest into IGP intervélisferred to
polynomial expansion of the form as groupsof width AE4 and integrating Eq(4) over a par-

ISCT ticular energy group. The final form of the space, energy, and
E' SE, ug)= 2n+1)P E'SE), (3 angle discretized coupled electron-photon transport equa-
os(E"=E po) ngo ( JPolno)os(E'=E), (3) tions in the partial coupling approximation is given by
£7]ce 5fe IGP ISCT n MT
P Ty Toie= 2 2 (N1 ogT o3 Rin 2 WinRs( ) fGijm @
and

&fp &fp IGP ISCT n MT
94 9 PP p-p k k p
M X +7 ay +Utgfg_h§1 ngo (2n+1)a-snh—>gk20 anmzzl WmRn(va¢m)fgijm

IGP 1SCT N it
+hzl nZO (2n+1)aghph_’gk20 Rﬁmmzzl WmRﬁ(Mm"ﬁm)fSijm- (8
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We now describe the solution to the within group equations.

Once again we suppress the subscrg#ndp and note that

the procedure is analogous for electrons and photons. Omit-

ting the group subscrigg, the within group equation in the Slope <1 sl |
discrete ordinates form is | e

(i,j+1) (i+1,j+1)

afn(x,y) fn(x,y)
+ 75

Mn + o fn(X,Y) =a(X,Y, 70, 10),

X ay
C)
where q(X,y, 7, ,4n) iS the within group scattering source o Gelld)
for a mesh point X,y) and discrete ordinate direction () '/ )
(mn, 77r_1)- ) ) )
In simpler notation we write the above equation as Slope = 1
of,  of,
aW + bw +cf,=d(x,y), (10 FIG. 1. Interpolation scheme based on the slope of the charac-

teristics.

wherea= u,, b=n,, c=a(x,y), d(X,y)=ad(X,y,n, 7n),

and the cross section is assumed to be constant. We have

used the method of characteristi@3] and the final differ- ~

encing scheme is given by The value ofN is given by

fn(xi,f(xi))=exr<—§xi> éin d_(s,g(s))exp<23)ds N=pN(i,j)+(1-p)N(i,j+1), p<l (14

. @

C
f (X _ . —Xi _ —_
FInl-1, €0 1))exp(ax' 1) N=1pN(i.)+ (1= Up)NGi j+1), p>1. (15

Therefore given the angular flux at (x;_1,&(X;_1)) we can
calculatef , at (x;,£(X;)), wherey= &(x) is a characteristic,
i.e., particle trajectory.

The spatial interpolation scheme will depend on the direc
tion of particle travel which can be in four different direc-
tions given by the following casesa) Travel from left to
right and from bottom to topgb) Travel from left to right and
from top to bottom.(c) Travel from right to left and from

Thus, if the characteristic drawn through the right upper cor-
ner of the cell intersects the left vertical boundary, we inter-
polate between the left upper and the left lower corners. If
the same characteristic intersects the bottom horizontal
boundary, we interpolate between the left lower and the right
lower corners.
Now, the two-dimensional differencing scheme that we

: use must satisfy the conservation relation for particles enter-
bottom to top.(d) Travel from right to left and from top t0 4 4 eaving the mesh cell together with the sources in-

bottom. Here we only discuss briefly the first case. . side the cell. Fou, »>0, the two-dimensional linear Boltz-

. Consider a_Ltypi_caI two-dime_nsional mesh c_eII as shown i,y equation written in a conservation form over a two-
Fig. 1. The direction of travel is from left to right and from dimensional rectangular mesh cell is

bottom to top characterized ly>0 and »>0. The angular
flux f,(x;,y;) is written asN(i,j) for a particular direction
(u,7) where we have omitted the subscript The source A(Ni-1—Ni) + 7(Nj 1= N;)
d(x,€) is assumed to be constant over the mesh cell and is Ax A
denoted byS. The exponential term inside the integral is

treated analytically and the angular flux at the point wherevhere N denotes the cell average flux over the two-
the characteristic drawn through the right top corner interdimensional mesh cell and the other quantities are defined as
sects the cell boundarfeft vertical if p is less than 1 and

bottom horizontal ifp is greater than )lis denoted byN and 2N;=N(i,j+1)+N(i,j), 17

p is defined as

+oN=S, (16)

2N; =N(i+1,j+1)+N(i+1)), (18
nAX
P= LAV (12 . o
may 2N;=N(i,j)+N(i+1,), (19
Equation(11) then can be written as o o
2Nj1=N(i,j+1)+N(i+1j+1). (20

S

gAX
l1—exp — —1|.
o | |
(13

s Substituting forN;, Nj,;, N

(20) into Eq.(16) we get

] ) ~ gAX
N(i+1, +1)=Nexr< Tl

i» andN;,, from Eqgs.(17)—
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NG+ 2+ D)+ NG+ L) NG+ D =NGL) NG+ L+ 1)+ NG+ 1) = NG+ 1) = NG
n

P iy 5Ay +oN=S. (21)

We now substitute foN(i +1,j + 1) from Eqg.(13) in Eq. (21) and solve folN which gives

) M N oAX Sl oAX NG 11— N+ 1) — N(P
= 20ax | NP T T TR )T (i+1,)=N(i,j+1)=N(,j)
7_IN p( oax) S p( TAX) NG+ D)~ N(L) N('+1')} 22)
——|Nexp — —|+—1—exg — — i, —N(i,j))=N@+1j)].
204y IR m ’ ’ ’
|
In this case sinceN(i,j), N(i,j+1), andN(i+1,j) are (iv) Radiative energy loss. The bremsstrahlung cross sec-

known, Eg. (13) can be used to calculate the flux tion is based on a formulation by Berger and Seltzt9],
N(i+1,j+1). After that we use Eq22) to calculate the cell involving Born approximation cross sections described by

average flux that satisfies the conservation relation for pafoch and Motz[50]. This cross section is used to describe
ticles entering and leaving the mesh cell together withthe sloyvlng down of an electron by radiative emission .th‘?‘t
results in large energy losses. For small energy loss radiative

sources inside the cell. Fluxes calculated using this dlffer-eventS the restricted CSD approximation is used, which

ence sch_eme will therefore conserve particles due to '.Sl.oat'@becifies the energy loss of the electron per path length due
differencing. We note th422] does not guarantee a positive 15 ragiative emission in which the energy loss is small. Once

cell average flux. However, in our calculations, negativeagain it is calculated as a difference between the total radia-
fluxes were not significant and no fixup of any kind wastive stopping powef48] tabulated at discrete energies for all
used. elements irATAPAC [8], and that portion of the total radia-
d I ts i 8 d that porti f the total radi
There are two ways to represent the restricted CSD apive stopping power that is due to large energy loss radiative
proximation[44] in discrete ordinates codes. The restrictedevents. o . S
CSD operator could be differenced directly into the code (v) Impact lonization. The impact ionizations aEpPxsare
[31]. The approach taken in our calculations is the approacROt correlgted with melas_tlc coII|5|ons._They are used solely
devised by More[26] in which “pseudo” multigroup Leg- to determine the production of relaxation radiation. The en-
endre cross sections are devised to represent the differe f9y of the relaxation particle is _Iegs t_han or equal to thg
form of the restricted CSD operator. These CSD cross se _|nd|_ng ener_gy_of Fhe shell that IS lonized. The Gryzinski
tions do not have a microscopic counterpart but they enabl 511]L|21pLa;t |03|'\z/|at|ﬁn”cross sections are used for khe
a standard multigroup code to obtain real physical solutions ™2 _~=" == an Shets. .
to the underlying Boltzmann-CSD equations. The multigroup The different photon cross sections generated by the code
cross sections used in our calculations are generated by tiEe as follows.

cross section generating coderxs[33—35. The different (i) Compton incoherent scattering. The Klein-Nishina

electron cross sections generated by the code are as foIIovxfs;OS; ?ectloﬂj_th] ItS us_ed IfortComp_It_cr)]p mcoherentt_scatterlndg
(i) Elastic scattering. The cross section data of Rédewl. of photons with atomic electrons. This cross section was de-

[45] are used at nonrelativistic energies. The Mott cross sec{-l'qved r:otr scattering from t;ree %r un??#nd tele.ctrcl;nsd..When
tion with Moliere screening is used at relativistic energies € photon energy 1S on the order of the alomic binding en-
[6,46]. The extended transport correctipd7] is applied to ergies t_hls assumption is not valid. Hovyever, photoelectr_lc

these elastic scattering cross sections to make them amena@i%s.c.’rpt'on dom'”?tes mcohgrent scattering at such energies.
to representation by a low-order Legendre expansion. (ii) Photoelectric absorption. An incident photon cannot
(i) Inelastic scattering. The Moller cross secti@tb] is pe totally absorbed by afree electroq. quyever, total "’?bsorp'
used for large energy loss collisions. For other collisions, th%?che}rnhetﬁli(gehﬁ)l/aggulrf\(;r]eeleilfgrgrsoﬂal\?el?rlltéaglghr/eg'?euslz?arlgbggil
restricted CSD(continuous slowing downapproximation is . ' : o
o g downapp ity of absorbing a photon. About 80% of the photoelectric

used. In this approximation, the restricted collisional stop b i tak | in #eshell if the incident
ping power specifies the energy loss of the electron per patﬂ SOrption process lakes place in M&nell 1T the inciden

L o hoton energy clearly exceeds tKeshell binding energy.
length due to small energy loss collisions only. This is cal-P . > ) )
culated as the difference between the total collisional stopl N€ Biggs-Lighthill[53] cross sections are used for photo-

- : o . electric absorption.
ping power and that portion of the total collisional stopping ™~ .. L : .
power that is due to large energy loss collisions. The total (iii) Pair interaction. The photon is completely absorbed

collisional stopping powel48] is tabulated at discrete ener- In _th|s process and in its place appears a posﬂron-_ele_ctron
gies for all elements in the set of electron data Ca”ed)alrwhose tOt‘.iI energy 1 equal to the energy of the incident
DATAPAC [8] photon. The Biggs-Lighthil[49] cross sections are used for

(iii ) Knock-on production. Knock-on electrons are definedthe absorption of photons by pair interaction.
Fo be the Iea}s_t energetic electrons that emerge following an IIl. COMPUTATIONAL DETAILS AND RESULTS
inelastic collision. The Moller cross secti¢a6] is used to
determine the production of knock-on electrons with ener- In this section we shall discuss the computational details
gies to the cutoff energy. and results of our calculations. The quantity of interest is the
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TABLE I. Comparison of calculated and experimentally mea-
sured dose behind aluminum slab shields irradiated by monoener-

rgon

%

Isotropic Electron
Beam

%

¢ getic, isotropic electron beams.
Incident energy Thickness Expt. dose Calculated dose
MeV mil MeV/gm MeV/gm
B
1 30 1.762 220.176 22 1.754
2 30 2.627 3 0.256 32 2.572
3 30 2.707 40.272 34 2931
4 30 2.387 @¢0.240 30 2.453
A 1 60 0.1251%0.12511 0.659
2 60 1.89040.192 24 1.954
A 3 60 2.483 ¥ 0.256 32 2.543
4 60 2.178 70.224 28 2.404
interactions of particles in a group per unit path length and
R has units of energy per distance. IGP is the total number of
groups. The total energy deposition is obtained as a sum of
the energy deposited due to electrons and photons.
The computations are performed on a two-dimensional
rectangle having 20 divisions in thedirection and 40 divi-
c sions in they direction as shown in Fig. 2. In the calculations

FIG. 2. Mesh cells for energy deposition calculation.

energy deposition which is calculated using the formula

Edegx,y>=g§1 Ng(X,y)3 g,

IGP

Cells

presented in this paper we choose théength of the rect-
angle to be half thg length in all cases. Thus the mesh cells
in our calculations are squares. However, it should be
pointed out that this method can be applied to rectangular
mesh cells as well. All calculations are performed using the
fully symmetric Galerkin quadrature sets given by Morel
[54]. As is known, proper treatment of the continuous-
slowing-down operator represented by thepxs data re-
quires an exact treatment of truncatédfunction cross-
section expansions. In one-dimensional calculations standard
Gauss quadratures properly treat such expansions, but there
exists no two-dimensionafor three-dimensionalquadra-
tures which do so. The special Galerkin quadrature method
always treats truncatedifunction scattering expansions cor-

whereEg.{x,y) is the energy deposited in a mesh cell whichrectly in all dimensions. We use Galerkin quadratures in all

has &,y) as its left lower corner poinf\y denotes the cell
average multigroup scalar flux for electrons or phot@is

of our calculations in order to ensure proper treatment of the
continuous-slowing-down term. To our knowledge, Galerkin

tained by summing the multigroup angular flux over all di- quadratures have not previously been used in multidimen-

rections for the same spatial mesh cell, akd is the energy

sional coupled electron-photon transport calculations. Also,

deposition cross section for electrons or photons, which igs pointed out in the Introduction, the number of energy
defined as the net energy deposited in the medium due tgroups can be rather large to accurately account for electrons

0.010

0.005

Energy deposition in Mev

0.000 T

2

Cells 3

—— DO(C)
—— MC(©)
—%— DO(B)
—— MC(B)
—_— DO(A)
—o— MC(A)

FIG. 3. Energy deposition for 1 MeV isotro-
pic electrons incident on an aluminum slab of di-
mension 0.X 0.4 cm.
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cm? is obtained by multiplying the conventional unit cm by
0.010 the density of the medium and is the factostandard in the
field of electron transport. As can be observed from Table I,
the calculated values indeed compare very well with the ex-
perimentally measured values over a wide range of incident
energies and slab thicknesses, our values lying within the

0.005 experimental uncertainties in all cases except one. The only
N exception is the case of 1 MeV electrons incident on a 60-
ﬁ\% ml-thick slab. However, the uncertainty in the experimental

value of this case is 100%. The CSDA range for a 1-MeV
electron is 0.5542 gm/cfy which is very close to the thick-
ness 60 mk= 0.4116 gm/cm of the slab. Thus the discrep-
0.000 0 ) 2y colls 3 . p ancy can be attributed to the fact that the thickness is rather
close to the CSDA range for the particular energy.
FIG. 4. Energy deposition for 1 MeV isotropic electrons inci-  Having thus established the fact that our partial coupling
dent on an aluminum slab of dimension 8.Q.2 cm. scheme is a valid computational tool for calculating energy
deposition, we now focus our attention on an isotropic
slowing down. However, by dividing the energy loss pro-source incident on the left face of the slab. Once again the
cesses into large and small energy loss collisigastricted  x length of the slab is taken to be half of tlyelength, the
stopping power formalisin it is possible to account for the order of the discrete ordinates calculations is 12, and the
energy loss in a pseudomultigroup approach by using a coreross-section expansions are through order 12; there are 40
siderably lower number of energy groups. This approaclelectron groups and 40 photon groups, the cutoff energy be-
coupled with a second order difference scheme in energy hang 50 keV. Figures 3—5 present our results along with the
proved to be highly accurate in one-dimensional applicationsesults obtained from the ITS cod#&6] run at Sandia Na-
[32—-35. We, therefore, chose to apply the same technique itional Laboratory{57]. Figure 3 shows the energy deposition
our two-dimensional calculations. for rows A, B, and C for cells 1 through 5 for a 1-MeV
To further validate our results, we note that the experi-monoenergetic isotropic electron source incident on a slab of
mentally measured dose by Van Guy{&®%] behind alumi-  aluminum 0.2 by 0.4 cm in dimension. Figure 4 shows the
num slabs of different thicknesses irradiated by monoenerenergy deposition for the same case as in Fig. 3 but for a 0.1
getic isotropic electron beams of different energies wady 0.2 cm slab. The energy deposition due to 5-MeV elec-
reported by Seltzdi56]. To simulate this experimental setup trons on a 0.6 by 1.2 cm slab is shown in Fig. 5. From the
we consider an isotropic beam of electrons incident on thegraphs it is seen that our results compare very well with the
left boundary of the slatFig. 2). Table | gives the calculated Monte Carlo results. The dose for all the rows falls off as we
and experimentally measured doses for aluminum slabs aohove away from the source into the medium. However, this
different thicknesses for isotropically incident monoenergetiadrop is steeper when the dimension of the slab is comparable
electron sources. These calculations are performed using mevith the CSDA range of the particular incident energy. Also,
trix quadrature sets of order 12 with the cross-section exparthe agreement with Monte Carlo results is generally more
sion through order 12. The number of electron groups is 4@avorable when the dimension of the slab is less than the
and the number of photon groups is 40 with the cutoff energyCSDA range which is 0.2 cm for 1 MeV and 1.2 cm for 5
in each case being 50 keV. All the groups are chosen to bRleV. However, the general pattern of the dose profile is very
uniform implying that the group widths are constant. ®he clear. The energy deposited in row C, which denotes the
thickness of the slab is set at 30 ml and 60 ml, and theones at the upper and lower boundaries of the slab, are
corresponding thicknesses at 60 and 120 ml, respectively,significantly less than the energy deposited in rows A and B,
where 1 ml=0.006 86 gm/crA. The unit of length gm/ which are closer to the center. Although the depositions for
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row A and row B are very close, row B is lower than row A. transport calculations with Galerkin quadrature and the
Basically, this implies that with isotropic sources, energycepxscross-section data, the spatial differencing scheme that
deposition decreases as we move away from the center of thee use is not particularly important as long as it is reason-

slab. For thicker slabs, we expect finer meshes will be necaply effective. However, we do intend to pursue more accu-
essary to obtain reliable results. Finally, although®neLD  rate step-characteristic methdd8,59 in our future work.
transport code uses a linear-discontinuguB) spatial dis-
cretization for coupled electron-photon transport calcula-
tions, we have chosen to use a simpler step-characteristic
(SO method in our two-dimensional calculations. Step-
characteristic methods have been used previously by Filip- The authors gratefully acknowledge partial support from
poneet al. [36] in one-dimensional electron transport calcu- State of Texas Advanced Technology Progré@rant No.
lations. Our two-dimensional SC method has one unknow®03656-120 and Cray Research. The authors also wish to
per spatial cell per angle per group and is second-order athank Dr. L. Lorence and Dr. R. Kensek at Sandia National
curate, whereas the two-dimensional LD method has threkaboratory for making Monte Carlo results available to us to
unknowns per spatial cell per angle per group and is thirdeompare with our discrete ordinates calculations. Computa-
order accurate. Since the main thrust of our work is to detional support from the University of Texas Center for High
velop the first two-dimensional coupled electron-photonPerformance Computing is also gratefully acknowledged.
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