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We have developed a method to perform coupled electron-photon calculations in two spatial dimensions
using a partial coupling scheme in which electrons produce photons but photons do not produce electrons. A
spatial characteristic scheme is used in conjunction with a second order differencing scheme in energy. The
multigroup Legendre cross sections are calculated using the cross section generating codeCEPXS, which models
a large number of electron interactions including elastic scattering from nuclei, inelastic scattering from
collisions with atomic electrons, and radiative scattering from nuclei, and photon interactions such as Compton
incoherent scattering, photoelectric absorption, and pair interaction. A two-dimensional calculation performed
to simulate results from an experiment in which energy deposition depends only on the depth inside the
medium compares very favorably with experimental data. Energy deposition profiles are also obtained for
monoenergetic electron sources isotropically incident on aluminum and are compared with TIGER Monte
Carlo calculations. Agreement between the two sets of calculations is found to be excellent. In summary, we
conclude that our computational model is capable of providing very good results for energy deposition due to
an incident source of electrons in two-dimensional rectangular geometry.@S1063-651X~96!10006-4#

PACS number~s!: 02.70.2c, 95.30.Jx

I. INTRODUCTION

Electron transport in metals and semiconductors has been
of considerable interest for a long time@1–3#. Theoretical
studies have usually concentrated on analytical and compu-
tational solutions of the Boltzmann transport equation@4,5#.
The computational methods can be classified principally into
two categories, namely the Monte Carlo methods@6–11#
which are statistical in nature and deterministic methods of
which the method of discrete ordinates@12–15# has been
most widely used. The standard numerical technique for per-
forming coupled electron photon transport calculations is the
condensed history Monte Carlo method originally developed
by Berger@6# and has been used in codes likeETRAN @8# and
the ITS~integrated Tiger series! @16#. These codes have been
used to carry out a variety of calculations for a number of
quantities of physical interest such as transmission coeffi-
cients for slab targets, energy spectra transmitted through
slab targets, angular distribution of electrons transmitted
through slab targets, reflection coefficients for semi-infinite
targets, energy deposition as a function of depth, and detec-
tor response functions, and good agreement between calcu-
lated values and experimental data has been obtained. While
Monte Carlo treatments of electron transport are certainly
widespread and well suited in complex geometries, they can
be time consuming and expensive. An efficient and alterna-
tive deterministic method such as discrete ordinates would
be very beneficial in simple geometries. In this paper we
concentrate on the method of discrete ordinates to obtain the

energy deposition in slab targets~plane parallel geometry! in
two spatial dimensions.

The method of discrete ordinates (SN) has been used suc-
cessfully in neutral particle applications@17–19#. However,
direct application to charged particle transport is difficult due
to nonlocal Coulomb interaction. The electron Boltzmann
transport equation~BTE! is not amenable to a standard mul-
tigroup approximation in energy. This is because an accurate
multigroup representation of the collisional cross section for
electrons is impractical. Since the inelastic cross section in-
creases rapidly as energy loss becomes small, an accurate
multigroup representation would require a rather large num-
ber of narrow width groups which would make such a dis-
crete ordinates calculation very expensive. This is particu-
larly true in multidimensional calculations. Small mean free
paths and highly anisotropic scattering have also contributed
to the problem of efficient studies of charged particle trans-
port. Despite such problems, many authors have studied the
problem of electron transport in one spatial dimension using
the method of discrete ordinates. The multigroup diffusion
method of Cormanet al. @20#, the moments technique of
Haldy and Ligaou@21#, the LSN method of Antal and Lee
@22#, and the integral tracking technique of Moses@23# are
some well-known methods of one-dimensional electron
transport. Melhorn and Duderstadt@24# modified theTIMEX
@25# code to provide time-dependent solutions in one-
dimensional slab and spherical geometries. Morel@26# devel-
oped a method for using standard discrete ordinates neutron
transport codes to perform Fokker-Planck calculations in
one-dimensional slab and spherical geometries. It is shown
that energy-angle integrated quantities such as energy and
charge deposition profiles can be accurately and efficiently
calculated for electrons. Wienke@27–29# has developed a
semianalytical technique of inverting the Boltzmann trans-
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port equation using exponential differencing techniques. In
two dimensions, Filipponeet al. @30# have solved the
Spencer-Lewis equation using finite differencing of the spa-
tial variable. The first application of the discrete ordinates
method to coupled electron-photon transport calculations
was made by Bartineet al. @31#. However, their results were
not particularly encouraging as a large number of groups had
to be used to obtain accurate results and difficulties were
encountered in problems with high-Z materials. In recent
years Lorenceet al. @32# has applied theSN method to
coupled electron photon transport in one dimension. In par-
ticular, they have shown that theirSN method is as accurate
as the condensed-history Monte Carlo method. The reduction
in computing times of from one to two orders of magnitude
is possible. In their calculations, quantities integrated over
energy and angle, such as energy and charge deposition pro-
files, converged as a function of the number of energy groups
at a much faster rate than the differential spectra. This ad-
joint coupled-electron-photon method is capable of perform-
ing calculations, which are not possible with continuous en-
ergy Monte Carlo codes. Specifically, in connection with this
work, Lorenceet al. @32# developed the coupled electron-
photon multigroup cross-section generation codeCEPXSand
a one-dimensional coupled electron-photon discrete ordi-
nates code packageONELD @33–35#. CEPXSis a cross-section
generating code. The cross-section data it produces are the
multigroup-Legendre expansion coefficients of coupled
electron-photon cross sections.ONELD is a general Boltz-
mann discrete ordinates transport code. We will return to a
discussion ofCEPXS later in this manuscript. Finally, a one-
dimensional electron transport solver, based on a streaming
ray ~SR! solution to the Spencer-Lewis equation, has been
developed by Filipponeet al. @36#. The solver includes sev-
eral special numerical techniques such as an efficient routine
for simulating energy loss straggling, use of extended-
transport-corrected and Fokker-Planck equivalent cross sec-

tions, a discrete transport correction, and the method of nu-
merical shoves and countershoves. A characteristic line in
the SR model lies in thex-s plane, wherex is the spatial
variable ands is a path length variable directly related to the
energy variable. This is in contrast to the multigroupSN
model where electron transport takes place at fixed energy
and energy loss is modeled through discrete jumps to lower
groups. The model used in our two-dimensional electron
transport work@37–39#, is basically a multigroupSN model
as opposed to the SR model in which the electron loses en-
ergy continuously. A characteristic line in our two-
dimensional model lies in thex-y plane where bothx and
y are spatial variables and none of them is related to the
energy.

The purpose of this paper is to study the problem of
coupled electron photon transport in two dimensions due to
an incident source of electrons. Specifically, we have devel-
oped a technique that can be considered a two-dimensional
generalization of the one-dimensionalCEPXS/ONELD method
of Lorenceet al. @40,41#. Our main consideration has been to
develop a two-dimensional technique compatible with the
CEPXSmultigroup cross-section data generation code.CEPXS

includes all of the coupled electron-photon interaction phys-
ics treated in production Monte Carlo codes such as those in
the ITS system@16#. It is advantageous to use theCEPXSdata
not only because we obtain the most complete and accurate
interaction physics, but also because comparisons of our de-
terministic solutions with Monte Carlo solutions will reflect
only differences in numerical accuracy as opposed to differ-
ences in both interaction physics and numerical accuracy. In
the following section, the outlines of the theory are pre-
sented, followed by results and conclusions in Sec. III.

II. THEORY

We first write the coupled electron-photon Boltzmann
transport equation in two-dimensionalx-y geometry as

m
] f e
]x

1h
] f e
]y

1s tef e5E E dE8dV8 f e~x,y,E8,V8!se-e~E8→E,V8V!

1E E dE8dV8 f p~x,y,E8,V8!sp-e~E8→E,V8V!1Qe~x,y,E,V!, ~1!

m
] f p
]x

1h
] f p
]y

1s tpf p5E E dE8dV8 f p~x,y,E8,V8!sp-p~E8→E,V8V!1E E dE8dV8 f e~x,y,E8,V8!se-p~E8→E,V8V!

1Qp~x,y,E,V!, ~2!

in which f is the particle flux~number density of particles
times their speed! defined such thatf dVdEdV is the flux of
particles in the volume elementdV aboutr , in the element of
solid angledV aboutV and in the energy rangedE about
E. Similarly QdVdEdV is the number of particles in the
same element of phase space emitted by sources independent
of f . The subscriptse andp stand for electron and photon,
respectively. The macroscopic total interaction cross section

is denoted bys te for electrons ands tp for photons. The
cumulative electron to electron differential scattering cross
section is denoted byse-e , the cumulative photon to electron
differential scattering cross section is denoted bysp-e , the
cumulative photon to photon differential scattering cross sec-
tion is denoted bysp-p , and the cumulative electron to pho-
ton differential scattering cross section is denoted byse-p .
All of these cross sections may be dependent on the spatial

53 6515COMPUTATIONAL MODEL FOR COUPLED ELECTRON-PHOTON . . .



variablesx andy but in our case we have assumed no spatial
dependence of the total interaction cross section and the scat-
tering cross section.

Equations~1! and ~2! describe the actual physical situa-
tion in which electrons can give rise to photons and photons
can give rise to electrons. However, for certain types of prob-
lems, it is not necessary to consider full coupling between
electrons and photons. We have thus implemented a partial
coupling scheme in our computational model in which pho-
tons are produced from electrons but the production of elec-
trons from photons is not accounted for. Such a partial cou-
pling scheme has been used by Lorenceet al. @32# in one-
dimensional applications and noted to be of particular
usefulness in shielding calculations such as those pertaining
to the shielding of spacecraft electronics from geomagneti-
cally trapped electrons. The partial coupling scheme as de-
scribed above amounts to setting the photon to electron scat-
tering cross sectionsp-e equal to zero. Then the electron flux
in Eq. ~1! f e can be solved without reference to the photon
flux f p . However, the photon cross interactions associated
with electron production can still contribute to the total pho-
ton cross section. The energy which would have gone into
the photon produced electrons is considered to be deposited
where the photon interaction occurs. If the energy of the
incident electron is greater than the critical energy given by
800/Z in MeV @42#, i.e., the energy below which collisional
losses predominate, the dominant physical interaction of the
bremsstrahlung produced photons in pair interaction and the
above approximation will not be valid. In the description that
follows we omit the subscriptse and p to denote electrons
and photons. It is understood that quantities without a sub-
script e or p can stand for either electrons or photons. The
reduction of the Boltzmann transport equation to a dis-
cretized form suitable for computation is similar for elec-
trons and photons. This has been presented before for elec-
trons@38#, however, for the sake of completeness, we present
it again to discuss the full nature of coupling between elec-
trons and photons.

In our work, the scattering transfer probability~electrons
and photons! is assumed to be represented by a Legendre
polynomial expansion of the form

ss~E8→E,m0!5 (
n50

ISCT

~2n11!Pn~m0!ss~E8→E!, ~3!

where

m05VV85mm81~12m2!1/21~12m82!1/2cos~w2w8!

and ISCT is the order of scattering.
Using cross-section expansion and the addition theorem

for Legendre polynomials, we now write~1! as

m
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]y
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`

dE8(
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`

~2n11!ssn~E8→E!

3 (
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The functionsRn
k are defined by

Rn
k5F ~22dk0!~n2k!!

~n1k!! G1/2Pn
k~m0!cos~kf!, ~5!

wherePn
k are the associated Legendre polynomials. If the

angular fluxf is expanded in a series of these functions, then
the f k

n denote the expansion coefficients and are given by

f k
n5E

21

1

dmE
0

p

dfRk
nf /2. ~6!

These coefficients are calculated by using the fully symmet-
ric quadrature sets given in Lewis and Miller@15# and Lath-
rop and Carlson@43#. At this point, we setQext(x,y,E,V)
50 implying the absence of external sources.

The multigroup equations are now obtained by dividing
the energy domain of interest into IGP intervals~referred to
as groups! of width DEg and integrating Eq.~4! over a par-
ticular energy group. The final form of the space, energy, and
angle discretized coupled electron-photon transport equa-
tions in the partial coupling approximation is given by
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We now describe the solution to the within group equations.
Once again we suppress the subscriptse andp and note that
the procedure is analogous for electrons and photons. Omit-
ting the group subscriptg, the within group equation in the
discrete ordinates form is

mn

] f n~x,y!

]x
1hn

] f n~x,y!

]y
1snf n~x,y!5q~x,y,hn ,mn!,

~9!

whereq(x,y,hn ,mn) is the within group scattering source
for a mesh point (x,y) and discrete ordinate direction
(mn ,hn).

In simpler notation we write the above equation as

a
] f n
]x

1b
] f n
]y

1c fn5d~x,y!, ~10!

wherea5mn , b5hn , c5s(x,y), d(x,y)5q(x,y,mn ,hn),
and the cross section is assumed to be constant. We have
used the method of characteristics@38# and the final differ-
encing scheme is given by

f n„xi ,j~xi !…5expS 2
c

a
xi D F1aExi21

xi
d̄„s,j~s!…expS ca sD ds

1 f n„xi21 ,j~xi21!…expS ca xi21D G . ~11!

Therefore given the angular fluxf n at „xi21 ,j(xi21)… we can
calculatef n at „xi ,j(xi)…, wherey5j(x) is a characteristic,
i.e., particle trajectory.

The spatial interpolation scheme will depend on the direc-
tion of particle travel which can be in four different direc-
tions given by the following cases.~a! Travel from left to
right and from bottom to top.~b! Travel from left to right and
from top to bottom.~c! Travel from right to left and from
bottom to top.~d! Travel from right to left and from top to
bottom. Here we only discuss briefly the first case.

Consider a typical two-dimensional mesh cell as shown in
Fig. 1. The direction of travel is from left to right and from
bottom to top characterized bym.0 andh.0. The angular
flux f n(xi ,yi) is written asN( i , j ) for a particular direction
(m,h) where we have omitted the subscriptn. The source
d(x,j) is assumed to be constant over the mesh cell and is
denoted byS. The exponential term inside the integral is
treated analytically and the angular flux at the point where
the characteristic drawn through the right top corner inter-
sects the cell boundary~left vertical if r is less than 1 and
bottom horizontal ifr is greater than 1! is denoted byÑ and
r is defined as

r5UhDx

mDyU. ~12!

Equation~11! then can be written as

N~ i11,j11!5ÑexpS 2
sDx

umu D1
S

s F12expS 2
sDx

umu D G .
~13!

The value ofÑ is given by

Ñ5rN~ i , j !1~12r!N~ i , j11!, r,1 ~14!

and

Ñ51/rN~ i , j !1~121/r!N~ i , j11!, r.1. ~15!

Thus, if the characteristic drawn through the right upper cor-
ner of the cell intersects the left vertical boundary, we inter-
polate between the left upper and the left lower corners. If
the same characteristic intersects the bottom horizontal
boundary, we interpolate between the left lower and the right
lower corners.

Now, the two-dimensional differencing scheme that we
use must satisfy the conservation relation for particles enter-
ing and leaving the mesh cell together with the sources in-
side the cell. Form,h.0, the two-dimensional linear Boltz-
mann equation written in a conservation form over a two-
dimensional rectangular mesh cell is

m~Ni112Ni !

Dx
1

h~Nj112Nj !

Dy
1sN5S, ~16!

where N denotes the cell average flux over the two-
dimensional mesh cell and the other quantities are defined as

2Ni5N~ i , j11!1N~ i , j !, ~17!

2Ni115N~ i11,j11!1N~ i11,j !, ~18!

2Nj5N~ i , j !1N~ i11,j !, ~19!

2Nj115N~ i , j11!1N~ i11,j11!. ~20!

Substituting forNi , Ni11 , Nj , andNj11 from Eqs.~17!–
~20! into Eq. ~16! we get

FIG. 1. Interpolation scheme based on the slope of the charac-
teristics.
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m
N~ i11,j11!1N~ i11,j !2N~ i , j11!2N~ i , j !

2Dx
1h

N~ i11,j11!1N~ i , j11!2N~ i11,j !2N~ i , j !

2Dy
1sN5S. ~21!

We now substitute forN( i11,j11) from Eq.~13! in Eq. ~21! and solve forN which gives

N5
S

s
2

m

2sDx F ÑexpS 2
sDx

umu D1
S

s
12expS 2

sDx

umu D1N~ i11,j !2N~ i , j11!2N~ i , j !G
2

h

2sDy F ÑexpS 2
sDx

umu D1
S

s
12expS 2

sDx

umu D1N~ i , j11!2N~ i , j !2N~ i11,j !G . ~22!

In this case sinceN( i , j ), N( i , j11), and N( i11,j ) are
known, Eq. ~13! can be used to calculate the flux
N( i11,j11). After that we use Eq.~22! to calculate the cell
average flux that satisfies the conservation relation for par-
ticles entering and leaving the mesh cell together with
sources inside the cell. Fluxes calculated using this differ-
ence scheme will therefore conserve particles due to spatial
differencing. We note that@22# does not guarantee a positive
cell average flux. However, in our calculations, negative
fluxes were not significant and no fixup of any kind was
used.

There are two ways to represent the restricted CSD ap-
proximation @44# in discrete ordinates codes. The restricted
CSD operator could be differenced directly into the code
@31#. The approach taken in our calculations is the approach
devised by Morel@26# in which ‘‘pseudo’’ multigroup Leg-
endre cross sections are devised to represent the different
form of the restricted CSD operator. These CSD cross sec-
tions do not have a microscopic counterpart but they enable
a standard multigroup code to obtain real physical solutions
to the underlying Boltzmann-CSD equations. The multigroup
cross sections used in our calculations are generated by the
cross section generating codeCEPXS @33–35#. The different
electron cross sections generated by the code are as follows.

~i! Elastic scattering. The cross section data of Rileyet al.
@45# are used at nonrelativistic energies. The Mott cross sec-
tion with Moliere screening is used at relativistic energies
@6,46#. The extended transport correction@47# is applied to
these elastic scattering cross sections to make them amenable
to representation by a low-order Legendre expansion.

~ii ! Inelastic scattering. The Moller cross section@46# is
used for large energy loss collisions. For other collisions, the
restricted CSD~continuous slowing down! approximation is
used. In this approximation, the restricted collisional stop-
ping power specifies the energy loss of the electron per path
length due to small energy loss collisions only. This is cal-
culated as the difference between the total collisional stop-
ping power and that portion of the total collisional stopping
power that is due to large energy loss collisions. The total
collisional stopping power@48# is tabulated at discrete ener-
gies for all elements in the set of electron data called
DATAPAC @8#.

~iii ! Knock-on production. Knock-on electrons are defined
to be the least energetic electrons that emerge following an
inelastic collision. The Moller cross section@46# is used to
determine the production of knock-on electrons with ener-
gies to the cutoff energy.

~iv! Radiative energy loss. The bremsstrahlung cross sec-
tion is based on a formulation by Berger and Seltzer@49#,
involving Born approximation cross sections described by
Koch and Motz@50#. This cross section is used to describe
the slowing down of an electron by radiative emission that
results in large energy losses. For small energy loss radiative
events the restricted CSD approximation is used, which
specifies the energy loss of the electron per path length due
to radiative emission in which the energy loss is small. Once
again it is calculated as a difference between the total radia-
tive stopping power@48# tabulated at discrete energies for all
elements inDATAPAC @8#, and that portion of the total radia-
tive stopping power that is due to large energy loss radiative
events.

~v! Impact ionization. The impact ionizations inCEPXSare
not correlated with inelastic collisions. They are used solely
to determine the production of relaxation radiation. The en-
ergy of the relaxation particle is less than or equal to the
binding energy of the shell that is ionized. The Gryzinski
@51# impact ionization cross sections are used for theK,
L1, L2, L3, andM shells.

The different photon cross sections generated by the code
are as follows.

~i! Compton incoherent scattering. The Klein-Nishina
cross section@52# is used for Compton incoherent scattering
of photons with atomic electrons. This cross section was de-
rived for scattering from free or unbound electrons. When
the photon energy is on the order of the atomic binding en-
ergies this assumption is not valid. However, photoelectric
absorption dominates incoherent scattering at such energies.

~ii ! Photoelectric absorption. An incident photon cannot
be totally absorbed by a free electron. However, total absorp-
tion can take place if the electron is initially bound in an
atom. The tightly bound electrons have the greatest probabil-
ity of absorbing a photon. About 80% of the photoelectric
absorption process takes place in theK shell if the incident
photon energy clearly exceeds theK-shell binding energy.
The Biggs-Lighthill @53# cross sections are used for photo-
electric absorption.

~iii ! Pair interaction. The photon is completely absorbed
in this process and in its place appears a positron-electron
pair whose total energy is equal to the energy of the incident
photon. The Biggs-Lighthill@49# cross sections are used for
the absorption of photons by pair interaction.

III. COMPUTATIONAL DETAILS AND RESULTS

In this section we shall discuss the computational details
and results of our calculations. The quantity of interest is the
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energy deposition which is calculated using the formula

Edep~x,y!5 (
g51

IGP

Ng~x,y!Sg , ~23!

whereEdep(x,y) is the energy deposited in a mesh cell which
has (x,y) as its left lower corner point,Ng denotes the cell
average multigroup scalar flux for electrons or photons~ob-
tained by summing the multigroup angular flux over all di-
rections! for the same spatial mesh cell, andSg is the energy
deposition cross section for electrons or photons, which is
defined as the net energy deposited in the medium due to

interactions of particles in a group per unit path length and
has units of energy per distance. IGP is the total number of
groups. The total energy deposition is obtained as a sum of
the energy deposited due to electrons and photons.

The computations are performed on a two-dimensional
rectangle having 20 divisions in thex direction and 40 divi-
sions in they direction as shown in Fig. 2. In the calculations
presented in this paper we choose thex length of the rect-
angle to be half they length in all cases. Thus the mesh cells
in our calculations are squares. However, it should be
pointed out that this method can be applied to rectangular
mesh cells as well. All calculations are performed using the
fully symmetric Galerkin quadrature sets given by Morel
@54#. As is known, proper treatment of the continuous-
slowing-down operator represented by theCEPXS data re-
quires an exact treatment of truncatedd-function cross-
section expansions. In one-dimensional calculations standard
Gauss quadratures properly treat such expansions, but there
exists no two-dimensional~or three-dimensional! quadra-
tures which do so. The special Galerkin quadrature method
always treats truncatedd-function scattering expansions cor-
rectly in all dimensions. We use Galerkin quadratures in all
of our calculations in order to ensure proper treatment of the
continuous-slowing-down term. To our knowledge, Galerkin
quadratures have not previously been used in multidimen-
sional coupled electron-photon transport calculations. Also,
as pointed out in the Introduction, the number of energy
groups can be rather large to accurately account for electrons

TABLE I. Comparison of calculated and experimentally mea-
sured dose behind aluminum slab shields irradiated by monoener-
getic, isotropic electron beams.

Incident energy Thickness Expt. dose Calculated dose
MeV mil MeV/gm MeV/gm

1 30 1.762 260.176 22 1.754
2 30 2.627 360.256 32 2.572
3 30 2.707 460.272 34 2.931
4 30 2.387 060.240 30 2.453
1 60 0.125 1160.125 11 0.659
2 60 1.890 460.192 24 1.954
3 60 2.483 160.256 32 2.543
4 60 2.178 760.224 28 2.404

FIG. 2. Mesh cells for energy deposition calculation.

FIG. 3. Energy deposition for 1 MeV isotro-
pic electrons incident on an aluminum slab of di-
mension 0.230.4 cm.
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slowing down. However, by dividing the energy loss pro-
cesses into large and small energy loss collisions~restricted
stopping power formalism!, it is possible to account for the
energy loss in a pseudomultigroup approach by using a con-
siderably lower number of energy groups. This approach
coupled with a second order difference scheme in energy has
proved to be highly accurate in one-dimensional applications
@32–35#. We, therefore, chose to apply the same technique in
our two-dimensional calculations.

To further validate our results, we note that the experi-
mentally measured dose by Van Guyten@55# behind alumi-
num slabs of different thicknesses irradiated by monoener-
getic isotropic electron beams of different energies was
reported by Seltzer@56#. To simulate this experimental setup
we consider an isotropic beam of electrons incident on the
left boundary of the slab~Fig. 2!. Table I gives the calculated
and experimentally measured doses for aluminum slabs of
different thicknesses for isotropically incident monoenergetic
electron sources. These calculations are performed using ma-
trix quadrature sets of order 12 with the cross-section expan-
sion through order 12. The number of electron groups is 40
and the number of photon groups is 40 with the cutoff energy
in each case being 50 keV. All the groups are chosen to be
uniform implying that the group widths are constant. Thex
thickness of the slab is set at 30 ml and 60 ml, and the
correspondingy thicknesses at 60 and 120 ml, respectively,
where 1 ml50.006 86 gm/cm2. The unit of length gm/

cm2 is obtained by multiplying the conventional unit cm by
the density of the medium and is thede factostandard in the
field of electron transport. As can be observed from Table I,
the calculated values indeed compare very well with the ex-
perimentally measured values over a wide range of incident
energies and slab thicknesses, our values lying within the
experimental uncertainties in all cases except one. The only
exception is the case of 1 MeV electrons incident on a 60-
ml-thick slab. However, the uncertainty in the experimental
value of this case is 100%. The CSDA range for a 1-MeV
electron is 0.5542 gm/cm2, which is very close to the thick-
ness 60 ml5 0.4116 gm/cm2 of the slab. Thus the discrep-
ancy can be attributed to the fact that the thickness is rather
close to the CSDA range for the particular energy.

Having thus established the fact that our partial coupling
scheme is a valid computational tool for calculating energy
deposition, we now focus our attention on an isotropic
source incident on the left face of the slab. Once again the
x length of the slab is taken to be half of they length, the
order of the discrete ordinates calculations is 12, and the
cross-section expansions are through order 12; there are 40
electron groups and 40 photon groups, the cutoff energy be-
ing 50 keV. Figures 3–5 present our results along with the
results obtained from the ITS code@16# run at Sandia Na-
tional Laboratory@57#. Figure 3 shows the energy deposition
for rows A, B, andC for cells 1 through 5 for a 1-MeV
monoenergetic isotropic electron source incident on a slab of
aluminum 0.2 by 0.4 cm in dimension. Figure 4 shows the
energy deposition for the same case as in Fig. 3 but for a 0.1
by 0.2 cm slab. The energy deposition due to 5-MeV elec-
trons on a 0.6 by 1.2 cm slab is shown in Fig. 5. From the
graphs it is seen that our results compare very well with the
Monte Carlo results. The dose for all the rows falls off as we
move away from the source into the medium. However, this
drop is steeper when the dimension of the slab is comparable
with the CSDA range of the particular incident energy. Also,
the agreement with Monte Carlo results is generally more
favorable when the dimension of the slab is less than the
CSDA range which is 0.2 cm for 1 MeV and 1.2 cm for 5
MeV. However, the general pattern of the dose profile is very
clear. The energy deposited in row C, which denotes the
zones at the upper and lower boundaries of the slab, are
significantly less than the energy deposited in rows A and B,
which are closer to the center. Although the depositions for

FIG. 4. Energy deposition for 1 MeV isotropic electrons inci-
dent on an aluminum slab of dimension 0.130.2 cm.

FIG. 5. Energy deposition for 5 MeV isotro-
pic electrons incident on an aluminum slab of di-
mension 0.631.2 cm.
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row A and row B are very close, row B is lower than row A.
Basically, this implies that with isotropic sources, energy
deposition decreases as we move away from the center of the
slab. For thicker slabs, we expect finer meshes will be nec-
essary to obtain reliable results. Finally, although theONELD

transport code uses a linear-discontinuous~LD! spatial dis-
cretization for coupled electron-photon transport calcula-
tions, we have chosen to use a simpler step-characteristic
~SC! method in our two-dimensional calculations. Step-
characteristic methods have been used previously by Filip-
poneet al. @36# in one-dimensional electron transport calcu-
lations. Our two-dimensional SC method has one unknown
per spatial cell per angle per group and is second-order ac-
curate, whereas the two-dimensional LD method has three
unknowns per spatial cell per angle per group and is third-
order accurate. Since the main thrust of our work is to de-
velop the first two-dimensional coupled electron-photon

transport calculations with Galerkin quadrature and the
CEPXScross-section data, the spatial differencing scheme that
we use is not particularly important as long as it is reason-
ably effective. However, we do intend to pursue more accu-
rate step-characteristic methods@58,59# in our future work.
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