
PHYSICAI. REVIE% E VOLUME 53, NUMBER 1 JANUARY 1996

Defects in chiral columnar phases: Tilt-grain boundaries and iterated moire maps
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Biomolecules are often very long with a definite chirality. DNA, xanthan, and poly-y-benzyl-
glutamate (PBLG) can all form columnar crystalline phases. The chirality, however, competes with the
tendency for crystalline order. For chiral polymers, there are two sorts of chirality: the first describes
the usual cholestericlike twist of the local director around a pitch axis, while the second favors the rota-
tion of the local bond-orientational order and leads to a braiding of the polymers along an average direc-
tion. In the former case, chirality can be manifested in a tilt-grain boundary phase analogous to the
Renn-Lubensky phase of smectic-A liquid crystals. In the latter case, we are led to a new "moire" state
with twisted bond order. In the moire state, polymers are simultaneously entangled, crystalline, and
aligned, on average, in a common direction. In this case the polymer trajectories in the plane perpendic-
ular to their average direction are described by iterated moire maps of remarkable complexity, reminis-
cent of dynamical systems.

PACS number(s): 61.30.Jf, 61.43.Hv, 61.72.Bb, 87.15.Da

I. INTRODUCTION AND SUMMARY

It is well known that large molecules play a central role
in the structure and function of the cell [1]. In particular,
DNA, large polypeptides such as poly-y-benzyl-
glutamate, and polysacharrides such as xanthan are long
polymers with a definite and consistent chirality. DNA,
with a chain length on the order of centimeters, must be
packed into regions with length scales on the order of mi-
crometers, a scale much smaller than the average poly-
mer end to end distance in dilute solution. The packing
of these molecules both in vivo and in vitro is of great in-
terest. In the absence of specialized cellular structures, it
is plausible that liquid crystalline phases could facilitate
in this packing [2]. It is known that bacterial plasmids
can form both nematic and cholesteric liquid crystalline
mesophases [3]. In addition, dinofiagellate chromosomes
[4) and bacterial nucleoids [5] exhibit cholesteric phases,
while sperm heads [6] and bacteriophages [7] exhibit hex-
agonal columnar phases. Outside the cell, many meso-
phases arise for long and short chir al biomolecules:
columnar phases [8—10], cholesteric phases [9,11,12],
nematic phases [13—15], and recently even blue phases [7]
have been observed. The possibility of new phases arising
in long chiral moleeules is intriguing.

In the hexagonal columnar phase of chiral liquid crys-
tals, the crystalline close packing of the molecules com-
petes with the tendency for the molecules to twist ma-
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croscopically around each other. As in the twist-grain
boundary phase of smectic-A liquid crystals [16], chirali-
ty can enter the crystal through the proliferation of screw
dislocations. In close analogy with the physics of type-II
superconductors, the screw dislocations enter when their
energy per unit length is smaller than the energy gain
from introducing chirality. When the chiral couplings
are small, screw dislocations are excluded and a perfect
equilibrium crystalline phase persists, in the same way
that the Meissner phase expels an external magnetic field
below the lower critical field H, &.

In this paper we elaborate and extend the results
presented in [17,18). As before we neglect structure
along the polymer backbones and consider the allowed
chiral couplings in the hexagonal columnar phase. We
find, in addition to the usual cholestericlike term which
favors rotation of the local polymer direction, a new cou-
pling which favors the rotation of the crystalline bond or-
der along the polymer axes. This term leads to a novel
phase in which the polymers are braided and in which
their trajectories can be described by iterated moire
maps. Modulated chiral phases have been discussed in
the context of two-dimensional films [19—21] of chiral
tilted molecules. Our new phase is a three-dimensional
chiral modulated structure. Although the moire textures
we find have some similarity with the blue phases of
cholesteric liquid crystals, proposed earlier for chiral po-
lymers [12], they dift'er in that they also incorporate
close-packed crystalline order.

We propose two new liquid crystalline phases. The
first is the direct analog of the Renn-Lubensky twist-
grain boundary phase [16] in which a sequence of poly-
mer crystal regions are separated from each other by tilt-
grain boundaries which e6'ect a finite rotation of the aver-
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age polymer direction. The director (i.e., the polymer
tangent) undergoes a cholestericlike rotation around a
pitch axis which is perpendicular to the average polymer
direction as well as to the tilt-grain boundaries. We
depart here from the notation of Renn and Lubensky in
calling these walls "tilt boundaries" rather than "twist
boundaries" as in [16]. We use the nomenclature "helical
grain boundary" for the honeycomb networks of screw
dislocations in the moire state discussed now. The
second set of structures are phases characterized by a se-
quence of equally spaced parallel helical grain boundaries
which cause rotations of the local bond order. These
twist-grain boundaries rotate the bond order about an
axis parallel to the average polymer direction and perpen-
dicular to the dislocation walls. This new phase leads to
complex polymer trajectories which are highly entangled
and reminiscent of chaotic dynamical systems. One or
more of these phases should appear in suKciently chiral
biopolymers when concentrated in an isotropic solvent.
Additionally, we expect that discotic liquid crystals,
which also form columnar phases, can exhibit these
phases as well if the molecules are chiral. It may also be
possible to induce the phases we discuss by imposing ap-
propriately twisted boundary conditions on weakly chiral
or achiral samples.

In Sec. II we formulate the theory of chiral polymer
crystals, introducing the successive degrees of order
which separate an isotropic polymer melt from a directed
polymer crystal. We show how the sequence of phases
progresses through spontaneous symmetry breaking and
the nonzero expectations of order parameters. Addition-
ally, we emphasize the analogy of crystals to supercon-
ductors [22] and the concomitant analogy of rotational
invariance with gauge invariance.

In Sec. III we calculate the line energies of various
types of dislocations using continuum elastic theory. We
argue that DNA as well as discotic liquid crystals should
be in the type-II regime, thus allowing mixed phases with
a proliferation of defects.

In Sec. IV we analyze the tilt-grain boundary (TGB)
phase of the chiral polymers. Using the continuum elas-
tic theory discussed in Sec. III, we analyze the effect of a
wall of screw dislocations on the tilt and twist fields
(nematic director and bond order). We estimate the
lower critical chiral coupling y, for the TGB phase in
terms of the Landau parameters. In addition we show in
a continuum dislocation density approach that the TGB
phase arises naturally as a low energy configuration of
screw dislocations. Finally we discuss the x-ray structure
function expected for a macroscopic sample.

In Sec. V we analyze the new moire phase. We calcu-
late the lower critical field y', for this phase to exist as
well as the effect on the tilt and twist fields of a single
twist wall composed of a honeycomb network of screw
dislocations. This phase is also shown, in a continuum
"Debye-Hiickel" approach, to arise as a low energy
configuration of scre~ dislocations. The braided struc-
ture of the moire phase contains parallel regions of dou-
ble twist [23] as found in the blue phases of chiral liquid
crystals. Unlike the blue phases, however, the order in
most cross sections perpendicular to the average polymer

direction resembles a perfect triangular lattice.
Finally, in Sec. VI we propose a microscopic structure

for the moire state. We model the polymer trajectories as
lines woven by a sequence of moire maps. We discuss the
preferred rotation angles for which moire patterns appear
as well as the scaling statistics of the polymer trajectories.
Upon projecting the polymers onto a plane perpendicular
to their average directions, we study the scaling of the
distance between neighboring paths, leading to Lyapunov
exponents. In the Appendix we prove that the special ro-
tation angles that produce moire maps are irrational frac-
tions of 2~ and thus the moire state is an incommensu-
rate structure: the projected polymer paths never repeat.

II. ROTATIONAL INVARIANCE
AND FREE ENERGIES

We first derive the elastic theory of the polymer crys-
tal, starting from phases of higher symmetry. Columnar
crystals are solidlike in two directions and liquidlike in
one [24]; we assume that the individual monomers in
neighboring columns are out of registry, unlike conven-
tional solids which are crystalline in three directions. At
high temperatures or in the limit of extreme dilution the
polymers will be isotropically entangled. We proceed by
breaking successive rotational and translational sym-
metries until a hexagonal columnar phase is reached. All
these phases need not exist for a given material; one or
more of the intermediate phases could be skipped via a
direct first order transition.

A. The polymer nematic phase

=—,'[K, (V~ 5n ) +K&(V~X5n ) +K3(B,5n ) ], (2.1)

where the IK, J are the splay, twist, and bend elastic con-
stants. In the nematic phase we can take n=z+5n
where 5n is a vector in the plane perpendicular to the
average director. Here, and in the following, vectors
which lie in the plane perpendicular to the average direc-
tion of the director will be denoted as 3, while full
three-dimensional vectors will be represented by bold
face A. We will henceforth take the average nematic
direction to be z. Because the polymers are long, K& is
much larger than it would be in a comparable short-chain
hquid crystal [26,27], diverging when the polymers be-
comes infinitely long. In addition, nonlinear effects are
known to modify the behavior of K2 and K3 and the bulk
compression modulus, leading to their anomalous depen-
dence on the polymer lengths [28,29]. If the system were
chiral, terms which violate parity transformation would
be allowed. In a nematic phase the director has a discrete
n —+ —n symmetry which must be preserved in the free
energy. Since under parity V~ —T, the lowest order
chiral term is n (V Xn). Note that since every term must

When the temperature T is decreased or the density in-

creased, an isotropic polymer melt can transform into a
nematic phase [25]. Orientational Iluctuations are then
described by the usual Frank free energy density:

7„=—,'[K, (V n) +K2[n (VXn)] +K3[nX(VXn)] j
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have even powers of n we can choose to take n~ —n
(vector) or n~n (pseudovector) under parity. For
definiteness we take n to be a vector, though this has no
effect on the analysis or results. We write the chiral con-
tribution to the nematic free energy as

V„*= —yn (V Xn) = —yVj X5n, (2.2)

where the two-dimensional pseudoscalar cross product is
a X b =e; a; b . One ground state configuration of
V„+V„* is a cholesteric state with pitch qo=y/ICz, al-
though more exotic blue phases are also possible [23].
Nonlinearities associated with rotational invariance are
known to modify the relation between y and qo [29].

B. Nematic-hexatic (N +6) phase with chirality

At still lower temperatures or higher concentrations a
new phase may occur which includes hexatic order in the
plane perpendicular to the nematic director n [30]. Al-
though the present experimental evidence for the hexatic
order in polymer nematics is sketchy, such phases seem
highly likely in columnar systems, in analogy with the
hexatic order possible for vortex lines in high tempera-
ture superconductors [31]. There is a complex order pa-
rameter ge which characterizes the local bond order. Its
behavior is determined by a Landau theory

+ "21 Vowel +
I tel + IWel

(2.3)

,'E" (B,Oe—) + ,'IC~(Vige)— (2.4)

where K~ =36~pe~ (h, +hz) and K„=36ge h2 are hex-
atic stiffnesses parallel and perpendicular to the nematic
director and afire

=a ( Te —T) /4u. The symmetry
n~ —n discussed above for pure nematics must also hold
in this phase. However, since 06 is measured around n,
upon taking n~ —n we must also have 06 —06. If, for
instance, we had originally measured a change in 06 with
respect to the right-hand rule using n, we would now see
the change go in the opposite direction, with respect to
—n. Thus we may have any term quadratic in powers of
06 or n. Under parity, 06 will change sign if we take n to
transform as a vector, for the same reason it changes sign
under nematic inversion. Note that 06~ —06 is
equivalent to pe~pe. We are now able to write a new
chiral term [32] for the "N +6"phase. Namely,

p/
V,*= i n (g,"V@—, g,Vg;)= —y'n VO—= —y' ~.Oe

(2.5)

with r =a(T Te). In t—he ordered phase, for T( Te,
6i6,

(Pe)%0 and we may write pe= ge~e . Sufficiently
below the transition we may neglect the fluctuations in
the magnitude of the order parameter and employ a Lan-
dau theory for 06. Upon suppressing an additive con-
stant, Ve becomes

Pe= |~~II (n. VOe) + —,'X„[(VOe)—(n VOe) ]

where y'=I" ~ge~ . In a nematic ground state with n=z
everywhere (i.e., y=0), this term will favor a ground
state with Oe twisting with a pitch qo =@'/E~~~ along the z
axis. A similar coupling has been considered before in
hexatic smectic-B phases [24] and in cholesteric elasto-
mers [48]. If both y and y' are nonzero and qo and qo
are incommensurate, one might expect that a chiral iV+6
polymer melt would resemble an incommensurate smec-
tic [33,32]. These considerations also apply to short-
chain nematogens with the same symmetries: if a chiral
nematic (or discotic) had the analog of an N+6 phase
two distinct chiral couplings would again be allowed.
Table I gives a list of important couplings with their sym-
metry properties.

There are, in addition to the chiral coupling between n
and Oe, nonchiral couplings between n and Oe [30,34].
Based on rotational, nematic, and parity invariance, the
lowest order terms are

V e
=C(n. VOe) [n.( V X n) ]+O'VOe. (V X n)

=CB,OeVI X5n +O'VqOe XQ, 5n (2.6)

where C =C+ C' and C'= C'. While the Anal two terms
differ only by a total derivative, they are, in principle,
different in the presence of topological defects in n and
06.

C. Hexagonal columnar phases with chirality

6

p=po+ g p (r)expI —iG rI,
a=1

(2.7)

TABLE I. Symmetries of a variety of operators. Those with
parity ( —) are chiral. Only combinations which are invariant
under nematic symmetry are allowed.

Operator

v—=Ve,

Symmetry under
spatial inversion

Symmetry under
nematic inversion

v n
v-(V Xn)
n. (v V)n
v(n V)n
n. (n T)v
n (VXn)
(v n)[n. (VXn)j

A.t still lower temperatures T( T„„(orhigh concen-
trations) the polymers can crystallize in the xy plane. To
ensure rotational invariance, and, in analogy with treat-
ments of crystals made up of point particles [35],
we build up the crystal out of a superposition of plane
density waves with wave vectors Cx . In the case of
a triangular lattice we could take, for example,
G = G~(cos(era/3), sin(m. a/3), 0) where a=1, . . . , 6,
~G~ =4'/(&3ao) and ao is the lattice constant of the
crystal. The IG ] are the six smallest reciprocal lattice
vectors of a triangular lattice and G z=0. The areal po-
lymer density in a plane perpendicular to the average
direction may be expanded as
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where higher order reciprocal lattice vectors could also
be included.

Each plane wave is modulated by a spatially varying
magnitude and phase p (r)=~p (r)~expIiG u(r)j,
where u is a two-dimensional displacement field. Under a
rotation by 8, the plane waves in (2.7) change. In partic-
ular r —+r+8Xr, and so G r~G r+r (GX 8). Thus ro-
tations lead to a position dependent change in p (r),
namely, p -+p expIi G (8 Xr)]. Likewise, under a glo-
bal rotation about the x axis or y axis by an angle 0 or
Oy p respectively, n —+n +0 Xa =z +O„x—8 y, i.e.
5n~5n+8 x —8,y. Similarly, under a global rotation
about the z axis by 0„06~06+0,. To ensure rotational
invariance [22,35], derivatives of p (r) must be accom-
panied by the fields 06 and 5n,

V„„=g ~G [Vip i8—6(G Xz)p, ]~2

+—~G X [V'ip i8—6(G Xz)p ]~2

+—~d, p i(G —5n)p ~
+—

~p ~

6 +GO+6 =0
+c X p p&p&+O(p ) .

a,P, y

(2.8)

Crystalline order arises in this Landau expansion for
sufficiently small b-(T T„„)so t—hat (p )WO. Due to
the third order term, this transition will, in general, be
first order, and T„represents a limit of metastability.
The free energy is the sum of all the terms discussed ear-
lier, namely,

3x pu2+ —u2+K 2u 22 A 2

—yV~X6n —y'8, 06 ', (2. 1 1)

III. ISOLATED DISLOCATIONS
AND THEIR ENERGIES

When dislocations are introduced into the free energy
(2.11) u(r) is no longer single valued. To account for
this, we introduce a new variable uz, - which is equal to
8 u, away from the defects [37]. The free energy be-
comes

where u; =
—,
' (8;u~ +8 u; ). Here and throughout Roman

indices indicate directions only in the xy plane while
Greek indices indicate all three coordinate directions. In
terms of the parameters in (2.8), p= —,'~G~ ~p~ (A +B)
and A, =—,

'
~G~ ~p~ ( A —B). In contrast with polymer

nematics, in the crystal elastic constants do not diverge
when the nonlinearities associated with rotational invari-
ance [32] are taken into account. The simplified free en-
ergy (2.11) is similar to the Ginzburg-Landau theory in
the London limit.

The response of superconductors to an external mag-
netic field is determined by ~, the ratio of the penetration
length to the coherence length. As discussed in the next
section, the parameter analogous to ~ in hexagonal
columnar crystals is typically much greater than 1, show-
ing that these materials behave as type-II rather than
type-I superconductors in their response to chirality. In
other words, the equilibrium ground states may contain
defects.

F= f d x [ V„+9'6+ V„6+V„*+V6 +V„„]. (2.9) F= fd'xI m; +m; g E3+—(w, , ) + (B,w„)

5n; =B,u;,
106 zF jB Qj

(2.10)

The resulting free energy to lowest order in u and its
derivatives is now

The free energy (2.9) is analogous to the Ginzburg-
Landau theory of a superconductor. Here, rotational in-
variance dictates the couplings between Goldstone
modes, 6n and 06, and derivatives of p in the same way
that gauge invariance dictates the coupling between
derivatives of the BCS order parameter itj and the elec-
tromagnetic field A. The contribution (V„+96+V„6)
mimics the field energy (VX A) . The two chiral cou-
plings are analogous to the coupling between the magnet-
ic field B:—VX A and the external field H [36]. In our
case there are tao distinct "magnetic fields" H represent-
ed by the chiral couplings y and y'.

Upon setting p = ~p~exp[iG u ] and integrating out
5n and 06 we find that these fields become locked to vari-
ous derivatives of the displacement fields:

1
'Y~rgc}twz) 'V dz

2
(3.1)

z+j~j
Dislocations are restricted so that the Burgers vector b

must lie in the xy plane and t.(n Xb) =0, where t is the
unit tangent point along the dislocation line. The latter
constraint eliminates dislocations which add a row of po-
lymer ends [31], which we neglect. We introduce the
density tensor ar, (r)= fdtdb t b;p(t, b, r), where
p(t, b, r) is the volume density of dislocations at the point
r with Burgers vector b pointing in the t direction. Since
the dislocations do not end, V.t=0, and Ozark,

—=0. The
constraint O=t (nXb)=n (b Xt) becomes, assuming
n~~z, b„t~=b~t„,or in the case of many defects a„~=a~„.
In terms of m; this constraint reads 9;m„.=B,m-, i.e.,
Vi.5n = —B,w. —= —B,(5plp) (5p is the fiuctuation in
the areal density of polymers p in a constant-z cross sec-
tion) which creates the sort of long-range interactions
that are central to theories of directed polymers
[38,39,27].

Following Ref. [37], we can relate w~; to the density of
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188= ——Bwz 6 2 z yx

4E3b dgydqz qz & (q y+q z)

2 2 4(2~) pq +K3q,"

= ——5(y)5(z) — —A, ly l
e ' /4kl&Ib b

2 16V7r

(3.11)

where

(3.12)

The nematic twist is

consider, for instance, a vortex disclination in a two-
dimensiona1 XY model. While a symmetric configuration
with the spins pointing out radially from the core may
have the lowest elastic energy, boundary conditions can
change this configuration. In an L XL region of the xy
plane we could impose boundary conditions such that the
spins are normal to the surfaces at x =+L. All the wind-
ing of the order parameter at the boundaries will occur
along the lines at y =+L. In the case of a dislocation in
the columnar crystal, either 86 or 5n "wind, " depending
on the boundary conditions. The boundary condition
5n —+0 as z ~+~ implies that there is no net twist of the
nematic director. In the above example and in Fig. 1 we
have enforced this constraint on surfaces at z =+L for all
values of y. This is equivalent to taking the large y cuto6'
to infinity first, i.e., q ~0. Hence in this case, the in-
tegral over a constant x plane of B,86 is

Vj X517=8 lD y ByN

2
Ijb I qydqz qy t(q y+q, z)

(2m. ) pq~ +K3q,

=b5(x)5(y)+28, 86 . (3.13)

Jdy dz 8,86(r)= lim lim B,86(q)= ——,b

q~Oq ~0 2

while the similar integral of Vj X5n is

J dy dz Vj X5n(r)= lim lim V~X5n(q)=0 .
q Oq ~0

(3.14)

(3.15)

Note that (3.11) and (3.13) are related as in (3.8).
Boundary conditions plays a crucial role in determin-

ing the integrated value of the twists. The key issue is
whether the boundaries at large lz l go to infinity before
or after the boundaries at large ly l. It is enlightening to

The boundary conditions and the order of limits will be
of importance when adding up the effects of a collection
of defects, as we shall see in the following sections.

Upon inserting the expressions for wr, . into (3.1), we
find the screw dislocation energy per unit length,

Pq +K3q,

d'q l+ lq
(2m )

PK3&
dq dq~

2(27r)

3/4~ 1/4y 2
3

2~'Qg,
1 1 5 —&25+1 1 &25

5 arctan + —ln + —arctan
5 2 2 5 +V'25+1 2 ] 52

(3.16)

where
' L/4

(3.17)

3/4~ 1/4g 2
3

5—moo

+ Xbp 5~0
4~$2

(3.18)

and g'z and g, are the short-distance y and z cutoffs, re-
spectively. In the two extreme limits, the elastic free en-

ergy per unit length becomes

so the deciding factor is the dimensionless parameter 5.
In analogy with superconductors, 5 plays the role of K,
the ratio of the penetration depth to the coherence
length. Indeed, suppose for simplicity that the two
cutoffs g~ and g, are comparable (g~-g, —:g) so that

5 =QIC3/p/g. From inspection of (2.11), we see that

A, =QIC3/p is the length scale over which bend deforma-
tions heal, so QX3/p plays the role of the London
penetration depth in a superconducting analogy [24].
Thus 5 is the ratio of the healing length of director Auc-
tuations over the healing length of density fluctuations
(g'-ao, the lattice constant) which is precisely the form
of K, in superconductors. When 5 &(1 the polymer crys-
tal is type I and chirality will be excluded until the crystal
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breaks down completely, forming a chiral liquid. Howev-
er, when 6)) 1 type-II behavior occurs and chirality can
creep into the crystal through the proliferation of defects.
We must determine the magnitude of 5 to decide which
sort of behavior we expect.

We erst consider chiral polymers, such as DNA. We
take g~ to be the average spacing ao between the polymer
strands and g, to be on the order of the polymer diame-
ter, or alternatively the base pair spacing in DNA. Then
K3 =kii TL /gi and p=eo/gi, where L =iamb/kii T is the
persistence length (ai, is the polymer bending stiffness)
and eo is the polymer interaction energy per unit length.
With the experimental parameters in [41], we have
$, =5 A, (i=30 A, L =550 A, and e 0=1.5k iTiA
leading to 5=5. Thus we expect type-II behavior.

For dense chiral discotics, we take gi and g, to be the
respective sizes of the disk-shaped molecules. In this case
we expect that K 3

—Uo /g, and p —Uo /( gQ', ) where Uo
is a characteristic interaction energy. If the interactions
were entirely steric we would expect that Uo kg T. Us-
ing (3.17) we then find that 5=(i/g, . In discotics, as the
name implies, gi»g, and so we expect that they will
also be type-II columnar crystals. Note that in the limit
of rodlike molecules (as in nematics) gi ((g, and we ex-
pect type-I behavior in the hypothetical situation of
nematic molecules forming a hexagonal columnar phase.

Straightforward estimates, along the lines taken in [42],
show that the screw dislocation core energy per length,
when the magnitude of the Burgers vector b =ao and
5))1, is

which is finite, and can be reduced to the complicated ex-
pression (3.16) by replacing p with (2p+A, ) [24].

IV. THE TILT-GRAIN BOUNDARY PHASE

A. Strains, energies, and displacements

The twist-grain boundary state was IIirst proposed as
the analog of the Abrikosov Aux lattice in chiral smectic-
A liquid crystals [16] and later discovered to exist in na-
ture [43]. In analogy with this state, and, as suggested by
Kleman [44], the tilt-grain boundary phase of polymers is
a crystalline version of a polymer cholesteric, where the
cholesteric twist arises from a sequence of low-angle tilt-
grain boundaries.

We first consider a single grain boundary. The wall is
made up of screw dislocations, pointing along the x direc-
tion, stacked up in the xz plane. An example with three
screw dislocations is shown in Fig. 2. To determine the
twists and strain, we superpose the strains from each in-
dividual screw dislocation. With screw dislocations at
z =0, +d, +2d. . . , we have

[V'i X5n ]Toii= g [V'i X5n (x,y, z —nd)], , (4.1)

where the notation [ ]i refers to the result (3.13) for a sin-
gle screw dislocation. With the help of the Poisson sum-
mation formula (4.1) can be rewritten as a mixed Fourier
transform

~ 1/4 3/4 3/2
c C 3 P +o (3.19)

where c is a numerical constant of order unity. Thus E,
is the same order of magnitude as the 5~ ~ limits of the
elastic energy displayed in (3.18).

Considering now an edge dislocation with a Burgers
vector of magnitude b and parallel to the z axis
ar, . =5&,5; b5(x)5(y). The free energy per unit length is
[with g =A, /( 2@+A, ) ]

f, ,~, =b [128+70' ]+ [8—12y+5y ] ~

(3.20)

which, unlike the screw dislocation energy, will diverge
as the logarithm of the system size. The core energy is
E, =c'pb in this case. The logarithmic divergence arises
because a vertical edge defect acts on each xy layer as a
normal edge dislocation in a two-dimensional crystal.

Unlike infinitely long polymers, discotics can also have
edge dislocations lying in the xy plane. For an edge dislo-
cation running along the y axis, we have
ar; =b5r~5, 5(x)5(z) and find an elastic free energy per
unit length

(2p+ A)K3b , q,
dqdq, —

2(2m) (2@+A.)q +K3q,

(3.21)

FIG. 2. View of a tilt-grain boundary, looking down the y
axis. For clarity we only show the polymer rows immediately
behind and in front of the TGB. The heavy lines pointing in the
x direction are the screw dislocations.
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[V'iX5n ]Toii= — g e ' ' V'iX5n x,y, q, = 2am
d

2~j~z/d ~ ~ 2~j~z/d 2 —
A, (2~) m ly i /d

2d
(4.2)

where (3.13) has been used in the second line. Since d is
small compared to y and z in the far field limit, we ap-
proximate the second sum by the first term, the remain-
ing terms being exponentia11y suppressed:

[Vi X5n ]ToB=b5(y) g 5(z —iid)

(2m ) b AZmz Iz Iz&~
~
&dccos e

d3

b 5
(2~)'bA, 2mz=—5y- cos

d

ing (3.4)—(3.7), that the only configurations with non-
divergent elastic energies are those for which
a„(q)—const as q~O and all other components of a„
vanish in the same limit. We consider only
configurations with no edge dislocations parallel to the
polymers, as they cost a logarithmically divergent energy
per unit length. Upon taking a j o- (2m ) 5(q )5(q, )5 5J
we see that the only nonvanishing component of m„ is
w, =ia „/q~ which, upon substitution into (3.1) gives
V=iK2qpq uI,„O=—ya,„.Note that the quadratic
contribution to the elastic energy in (3.1) vanishes in this
continuum limit. We now add the core energies of the
dislocations, leading to the free energy PDH in the contin-
uum Debye-Hiickel approximation:

(2~)2j(„ly
l /d 2

(4.3) ~DH Eijkl ~ij ~zkl (4.5)

Similar manipulations lead to

(2') bi2vr, z Iz~I2k~~~ &dc
z 61TGB

2d
cos

d
e (4.4)

where Ejk/ is a positive definite matrix of line energies of
dislocations lying in the xy plane and 0, is the spatially
averaged dislocation density tensor. As discussed in [31]
the core energies of screw dislocations have the form

and again (3.8) is satisfied, since now the density of dislo-
cations is precisely a„=b5(y)+„5(znd)=(—bid)5(y).
In this superposition of many dislocation lines, stacked
along the z axis, we implicitly took the limit in which the
boundary at large Iz

~
goes to infinity first: It is the q, =0

term in the Poisson summation formula which puts the
Dirac 5 function in the expression for V~X6n and not
into 8,06.

Upon inserting these results into (2.11), using our ear-
lier results for screw dislocations, and neglecting the in-
teractions between the lines, we find that the threshold
chiral coupling above which screw dislocations will
penetrate is y, =f„„

ib where f „„

includes both elas-
tic and core energies. For y & y, it becomes energetically
favorable for screw dislocations to Aood into the crystal
and form grain boundaries until their density is limited
by the repulsive interactions between screw dislocations.
Figure 3 shows a schematic phase diagram for the poly-
mer crystal. The transition to a tilt-grain boundary phase
occurs along the y axis when y' is small. In the following
section we will calculate y,', the critical chiral coupling
for the bond-order chirality.

The tilt-grain boundary texture is also suggested by a
continuum elastic "Debye-Huckel" approach similar to
that used in [35] and [31]. This continuum theory re-
quires length scales not only large compared to the lattice
constants, but also large compared to the dislocation
spacing. We require that the dislocation density a„lead
to displacements with finite elastic energies. Suppose
there is a configuration which only depends, say, on the y
coordinate. In this case it is straightforward to show, us-
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FIG. 3. Phase diagram of a chiral polymer crystal. Insets are
representative tilt- (TGB) and moire-grain boundaries. Shaded
lines are screw dislocations. Although we focus here on TGB
and helical moire states, more exotic screw dislocation phases,
including those with melted dislocation arrays, could also ap-
pear.
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2 I 2
Eijkl+ij ~kl E screw(+i() +Escrew(~ij ) (4.6) 2K

d'

where E„„andE,'„,are core energies for screw dislo-
cations. In the case of a single dislocation E,'„,=0.
The minimum of (4.5) occurs when
a =y/(2E„„+2E,'„,„),and all other components of
e, vanish. This is precisely the continuum version of the
microscopic tilt-grain boundary lattice. In the same ap-
proximation, using the relation between w, and n „,we
find 5n„=w„=—[y /(2E„„„+2E,'„,) ]8(y), where
8(y) is the Heaviside step function, so that across the
grain boundary 5n jumps in proportion to the chiral
coupling y. Since Burgers vectors are quantized in units
of the lattice vectors, our proposed periodic array of
screw dislocations is the closest allowed approximation to
a uniform density.

/

l

I

I

I

�

/'
I

l

/r,
I

B. Structure function

A perfect hexagonal close-packed polymer crystal
aligned along the z axis will have six primary 6-function
Bragg peaks in the q, -q plane at a radius 4'/(v 3ao),
where ao is the lattice constant of the polymer crystal.

A tilt-grain boundary, being made of parallel screw
dislocations, must also be parallel to an allowed Burgers
vector. As a result, if two crystalline regions are joined
together by a tilt-grain boundary, they will be rotated
with respect to each other around a common reciprocal
lattice vector, which we take to be Cx = (4'/V 3ao )

[0,1,0]. Thus, iii Fourier space, the six spots will rotate
around an axis that passes through one pair of diametric
points on the original hexagon. If the illumination
volume in a diffraction experiment contains a number of
grain boundaries, this rotation will continue, laying out
the Bragg peaks along two circles lying in the q„-q,plane
of radius 2'/ao at q =+2rr/(&3ao). If the angle of ro-
tation is rational there will be discrete Bragg spots
around the circle, while if the rotation angle is an irra-
tiona1 fraction of 2~ the spots will form a continuous cir-
cle. Figure 4 shows a hypothetical structure function for
a TGB state with pitch axis parallel to y with a rotation
angle of 2'/7. A perfectly periodic array of twist-grain
boundaries with spacing d' will produce a finely spaced
set of additional peaks along the q axis centered on
4~/+3ao at intervals of 2~/d' (not shown in Fig. 4). If
the tilt-grain boundaries are more irregularly spaced they
will nevertheless limit the range of translational correla-
tions along y and all Bragg peaks will be broadened in the
q direction with a width on the order of 2m/d', where d'
is a translational correlation length.

We expect that due to long-range interactions between
the grain boundaries the angles of rotation will lock in at
rational fractions of 2m, in analogy with the Renn-
Lubensky twist-grain boundary phase [45]. While a de-
tailed calculation of d and d' in terms of the Landau pa-
rameters is difBcult, we can estimate their sizes by assum-
ing that repulsive interactions between screw dislocations
lead to d =d'. If the Burgers vector has length b=ao,
the angle of rotation across each grain boundary is

FIG. 4. Structure function of a tilt-grain boundary phase in
Fourier space. Due to the interruption of order by grain boun-
daries spaced along the y axis (with period d'), the Bragg spots
are broadened along the q~ axis. This schematic shows a TGB
phase with rational rotation angle / =2~/7

/=tan '(ao/d), and thus the pitch is P =2nd'/P. Tak-
ing d =d')&ao we have P=2mdd'/ao. Upon taking a

0

typical cholesteric pitch to be on the order of P =5000 A
and the interpolymer spacing to be a0=50 A, we find
that d =d' = 200 A and P = 14'.

V. THE MOIRE PHASE:
CONTINUUM ELASTIC THEORY

2b sin(q„d/2) 3lg md
8

= (4m. )
b sin(q„d/2)

g 5(3dq„+2mn),

A. Strains, energies, and displacements

We have seen that a TGB induces a finite jump in the
director and only ripples in the bond-orientational order
parameter which integrate to zero. We would like to find
a dislocation structure which induces a finite jump in 06,
and thus exploit the chiral coupling y'.

An attractive possibility is a honeycomb lattice in a
constant z plane composed of screw dislocations on its
links (see Fig. 3). Such a structure generalizes for three-
dimensional systems the grain boundaries discussed in
[20]. To calculate the strain fields we must superpose the
effect of a collection of finite-length screw dislocations
with Burgers vector b. Consider a collinear row of seg-
ments, pointing along x, each of length d, separated by
2d. We can build up a hexagonal lattice by translating,
rotating, and superposing the strains or twists from this
distribution of defects.

Consider the dislocation density generated by the row
discussed above, namely, a, =b5~„5,.„5(y)5(z)g„[8(x

3nd +d—/2) —O(x 3nd —d /—2) ]. The only nonzero
component is, in Fouricr space,
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where we have used the Poisson summation formula.
When we Fourier transform back to real space, this be-
comes

a, (x,y, z)=b5(y)5(z) g sin(m n /3) i2mnx /3d
7TPl

(5.2)

We neglect the oscillatory contributions, and approxi-
mate the sum by the n =0 term,

a, =—,'b5(y)5(z) . (5.3)

Thus the broken line of screw dislocation segments is
equivalent at long wavelengths to a solid line with —,

' the
Burgers vector if we are at distances larger than d. In
this approximation, we can replace the honeycomb lattice
with a triangular lattice made by extending all the edges
to meet at the center of each hexagon, provided we divide
the superposition by 3 to restore the correct dislocation
density. Proceedings as in the TGB case, we have

b
I: Vi x 5+ ]moire

=

j/2

—Yam/A. h[z
~

1/2

1/2

e-~ "'~'~sin Iz I+—g cos[2vrg r~/6], (5.4)

with Qj z X e . , where e are the unit lattice vectors of
the triangular lattice of polymers and b. =d&3/2 is the
spacing between parallel Bragg planes in that lattice.

Now, 8,06 has the 5 function:
3

[8,86];„,= — g 5(z)+ —[V&X5n ]
j=l mOlre '

given by the Mermin-Ho relation:

[VXQ]„=,'e„ep—n 8 nod n

The geometrical connection between the moire state, the

To confirm (3.8), note that for a honeycomb lattice,
a„=a~~=b5(z)/(d&3), so Tr[a] =2b5(z)/i&3
=b5(z) /S.

The honeycomb lattice allows us to exploit the y' term
in (2.11). The integral of B,86 over space from a stack of
honeycomb lattices separated by a distance d' along the z
axis is b (/2b, d') pe—r unit volume. The total length per
unit volume of honeycomb is 2d/d &3d'. Thus, assum-
ing d, d'&)ao so that interactions among dislocations are
negligible, y', =2f„„/b. The region in which we expect
the moire state is shown in Fig. 3. In Fig. 5 we show a
set of polymer trajectories and the dislocations leading to
them. The moire state in Fig. S contains an inner region
of polymers which consist of a single polymer at the
center of a bundle of six polymers twisting around it.
This texture has double twist in the nematic field as found
in the low-chirality limit of blue phases of cholesteric
liquid crystals [23,44]. The moire state takes advantage
of both double twist energies and the new chiral coupling
y'. The bond-order field 06 and the nematic director n
are linked to each other geometrically —since 06 is mea-
sured around n, when the director is not uniform we
must carefully define 06. This leads to the same sort of
considerations which occur in He -A: the wave function
is defined in the plane perpendicular to the nuclear spin
axis. The appropriate covariant derivative, which takes
the nematic "curvature" into account, is

D„06=0„06—0„,
where Q is the connection and its curl is unambiguously

FIG. 5. The moire state. The thick tubes running in the z
direction polymers, while the dark lines are stacked honeycomb
arrays of screw dislocations. The intersection of these polymers
with any constant z cross section away from the hexagonal de-
fect arrays has the topology of a triangular lattice.
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Mermin-Ho relation, and the nearest-neighbor packing of
polymers is discussed in [32].

The honeycomb network of screw dislocations de-
scribed above can also be understood in terms of a con-
tinuum approach where one looks for dislocation densi-
ties which lead to strains which only depend on the z
coordinate. As in the TGB phase we neglect edge dislo-
cations parallel to the polymers and set a, =0. Upon as-
suming uk~ proportional to (2n. ) 5(q„)5(q ), we find that
w, =Oand

2K
d

l ~yx
lD kj CXxx

k =x,y
j=x,y

' (5.8)

Upon substituting this result into (3.1), we find the
Fourier transformed free energy

2
~DH 2 [+yx +xy ]

2qz

P 2 z l 2+ a„~+a~„+—(a~ —a„,) +E, k&a, ak&. "
qz 2

y'
2

[a +a,„]i o . (&.9)

8. Structure function

The helical grain boundary will rotate the six primary
Bragg spots of the structure function of a perfect crystal
in Fourier space. In this case all six spots will be swept
around a ring in the q -q plane of radius

iqi i

=4m. /(&3ao). If the rotation angle is a rational frac-
tion of 2m there will be a discrete set of spots, while if the
angle is an irrational fraction of 2m the spots will form a
Bragg ring. While we might expect that interactions be-
tween grain boundaries would favor rational lock-in an-
gles, we shall see that the geometry of an isolated helical
grain boundary favors an irrational angle. In Fig. 6 we
show a schematic structure function for the irrational an-
gle PI)3=2 tan '(&3/21) =9.4' obtained by superimpos-
ing the structure functions of ten crystalline regions (i.e.,
nine grain boundaries). An infinite periodic array (spac-
ing d') of twist-grain boundaries would lead to a finely
spaced set of Bragg peaks along the q, axis, at positions
q, =2mn jd'. If the twist boundaries are spaced more
randomly, the translational correlations along z will still
be limited to a range of order d'. Rejecting this fact, the

In order to eliminate the terms that diverge as q, ~0, we
must take a, =a„(i.e., no edge dislocations) and
ax~=a»=e» —a~„=O. Thus a«=a„~ are the only
nonzero components of ak . The minimum of (5.9)
occurs at a „=a=y'/(8E„„+4E,'„,) where we
have used (4.6). Moreover, 86 =

—,
'

( w„~—w~„)= —[y'/(8E„„+4E,'„,„)]O(z)and so the bond order
jumps discontinuously as we go across the helical grain
boundary by an amount proportional to the imposed
chirality. As in the TGB phase the honeycomb array of
screw dislocations is the closest approximation to a uni-
form sheet distribution of screw dislocations in terms of
quantized defects with discrete Burgers vectors.

FIG. 6. Structure function of a moire state in Fourier space.
Because of the periodicity along the z axis, the Bragg spots are
broadened along q, . This shows a moire phase with irrational
rotation angle P, =9.4' with ten crystalline regions.

Bragg spots will be broadened along the q, axis, with a
width =2~/d', as indicated in Fig. 6. When many in-
commensurate twist boundaries are included in an il-
lumination volume, the difFraction rods in Fig. 6 will
merge into a continuous ring, broad along q„but with a
very narrow radial width. We have verified this numeri-
cally by calculating the scattering from a perfect moire
state composed of 24 grain boundaries. This Fourier
transform is axially symmetric about q, and in Fig. 7 we
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FIG. 7. Numerically computed scattering contours in the q~-

q, plane for a moire state with 24 helical grain boundaries. We
have scattered from each of 96 beads evenly spaced along each
of the 3721 polymers. The structure function is axially sym-
metric around the q, axis. This numerical evidence supports the
schematic of Fig. 6.
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preferred lock-in angles. In the continuum approach of
Sec. IV, we estimated a moire twist of /=11'. The n =3
moire state nicely approximates this continuum result
with /~=9. 4'. In conventional crystals, cusps in the
energy landscape near a lock-in angle P„will have a
contribution from the density of extra dislocations,
proportional to P

—P„asweH as the logarithmic inter-
action between the dislocations, leading to the form
he~ P

—P„ln P —P„~. In the columnar crystal, due to
the softer interaction between dislocations, the leading
term in the energy will behave as he~ ~P

—P„~which is
still sharp enough to produce the lock-in angles.

It is interesting to consider the effect of the moire map-
ping on nearest-neighbor bonds. Consider a polymer
crystal at z= —~. In the xy plane the polymers sit at
the sites of a triangular lattice. We may draw lines con-
necting nearest neighbors as shown in Fig. 10(a), with po-
lymers at the vertices. After allowing various arrange-
ments of screw dislocations to pierce the crystal, we can
look again at the polymers in the xy plane at z=+ oo.
Again, the polymers will sit at the sites of a triangular
lattice, typically rotated with respect to the original one.
The effect of intervening defects shows up if we undo the
rotation but retain the original nearest-neighbor connec-
tivity of the polymers at z = —~. Figure 10(b) shows the
effect of a single screw dislocation, which has "sheared"
the polymers on either side with respect to the other.
Note that each vertex still has the coordination number 6
it had at z = —~. As shown in Fig. 11, when moving a
bond, in any particular plaquette, we may make one of
two types of moves denoted by o. , and 0.2. A row of o. , or
o.

z moves in a triangular lattice represents the effect of a
left- or right-handed screw dislocation, respectively.
Note that both moves are area preserving, in that the
area of the parallelogram remains unchanged. We may
represent the effect of a plane of defects by making a se-
quence of moves. The restriction of keeping a coordina-
tion number of 6 at each vertex amounts to the restric-
tion that dislocation lines may never end and that they
must meet in triples at 120'. Figure 10(c) shows the eifect
of a section of a helical grain boundary, near the intersec-
tion of three defect lines.

Upon two iterations of the moire map separating three
regions of polymer crystal, the first coincidence lattice is
rotated with respect to the second coincidence lattice by
precisely the angle of rotation P„.Thus the composite
coincidence lattice is the "coincidence lattice of coin-
cidence lattices, " with lattice constant a„/ao. Moire
maps iterated p times lead to triangular composite coin-
cidence lattices with spacing a„(a„/ao),i.e., to ever
sparser lattices of fixed points with intricate fractal struc-
ture in between them. Figure 12 shows the projected po-
lymer paths for a lock-in angle of a square lattice [with
P&

= tan '( —') =36.9 j iterated p = 1, . . . , 4 times. Note
the intricate fractal structure which appears after several
iterations of the map.

B. Polymer trajectories and I,yapunov exponents

In contrast to the TGB state polymers braided by
moire maps with p &) 1 are highly entangled and wander

far from straight line trajectories. Figure 5 shows the po-
lymer trajectories for the n = 1 moire map, of a triangular
lattice iterated nine times. In Fig. 13 we show 40 ran-
dom polymer trajectories after 99 iterations. Although
these polymers are clearly infIuenced by their proximity
to a special center of rotation, exceedingly complex tra-
jectories are superimposed on their slow drift around this
center. The center becomes less and less noticeable for
distant polymers. Using a perfect moire state with 3721
polymers, we have calculated the average Fourier trans-
form of the monomer density p(q~, q, ) of a single poly-
mer, averaged over all members of the array. In Fig. 14
we show contour plots of the intensity ( ~p(q~, q, ) ) in
both the q -q and q -q, plane. Again we see that struc-
ture is approximately axially symmetric about q, . If a di-
lute concentration of deuterated polymers were intro-
duced into the mix, neutron scattering shouM produce
these incoherent averages. In addition, we have studied
numerically the scaling behavior of the polymer size as
measured by the components of moment of inertia tensor
in the radial and azimuthal directions relative to the

PVVVVVVV gg

FIG. 10. Connectivity diagram for a polymer crystal. (a)
shows the unperturbed connectivity at z= —~. (b) shows the
e8'ect of a single screw dislocation. Note that every vertex has
coordination number 6 on the cross section at z = + ~, preserv-
ing the nearest-neighbor connectivity of the polymers at
z= —~. (c) shows a section of a honeycomb array of screw
dislocations near an intersection of three dislocations. Again
the coordination number of every vertex is 6.
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FIG. 11. Allowed moves on a triangular lattice. Note that
the moves preserve the area between the four vertices. These
moves can be put together to model the eFect of dislocation ar-
rays.

FIG. 13. A projected top view of 40 random polymer paths
resulting from the moire map with n=1 iterated 99 times.
There is an exceptional fixed point of all 99 maps at the center.

R„(N,RO)
(6.4)

For large R0 or small N, we find that the radial R„and

center as a function of X, the number of iterations. We
expect that the radius of gyration of the projected poly-
mer R should be a function of N and R0, the radius of the
starting point of the polymer trajectory. We postulate for
the radial radius of gyration that

R~(N, RO)

R0

3'y

=X ~A~ (6.5)

azimuthal R& radii of gyration do not depend on R0 and
both scale as N', i.e., as a simple random walk in the xy
plane. Thus as z~0, A„(z)-zand x„+y„=—,'. Similar-

ly, the azimuthal radius of gyration scales as
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FIG. 12. The projected top view of a moire map on a square
lattice with rotation angle tan '(

4 ). The four boxes show the
projected polymer paths after p = 1,2, 3,4 iterations.

and again we find that x&+y&= —,
' and A&(z)-z as z~O.

These observations suggest the one parameter scaling
form

R; (N, RO)

R 0 R 0

(6.6)

where g; = I /y;, i = r, P, and the scaling functions
9;.(z)-z as z ~0. Figure 15 suggests that, superimposed
on the small N "random walk" behavior is a slow drift
around the rotation center in the azimuthal direction.
This drift represents the effect of the distant exceptional
coincidence site. As the polymers spread around the cir-
cle at radius R0 they appear to stay confined to an annu-
lar region of width —R 0. For simplicity we take

We choose g so that the points of crossover
to ballistic (for R&) and constant (for R„)behavior col-
lapse. We find g=1 gives the best collapse. In Fig. 15
we show the radius of gyration data for 1364 polymer tra-
jectories around a supercoincidence site of 99 n = 1 moire
maps. We have binned the data into 30 equal width an-
nuli and assigned an average R0 to each bin. The figure
clearly shows that x;+y; =

—,'. After the crossover points
R„(N,RO)Pconst and R&(N (Ro)-N, as expected. In
the radial case, there is a second crossover point in
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4Tt:
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j3a,

FIG. 14. Numerically calcu-
lated average Fourier transform
of the monomer density of a sin-

gle polymer in the (a) q -q~ and
{b) q~-q, planes. We expect that
a dilute concentration of deu-
terated polymers would produce
neutron scattering profiles simi-
lar to these. The plots were
made from the same data set as
in Fig. 7.

R„(X,Ro), presumably where the polymers have made a
complete circle around the supercoincidence site. This
second crossover is evident in the plot only for small
values of Ro.

Not only do the polymers spread from their starting
point, but they also diverge from their neighbors. Figure
16 shows seven polymers which start as nearest neigh-
bors. After 99 iterations they separate from each other,
as shown by their trajectories Consider a pseudodynam-
ics under which the z axis becomes time and we consider
the trajectories of the polymers as the trajectories of

two-dimensional particles. We can look at the average
square distance between pairs of neighboring polymers
and consider the scaling of the separation as a function of
X, in the spirit of measuring a Lyapunov exponent in a
real dynamical system. We have performed this numeri-
cal experiment with the same set of 1364 polymers used
to study the radius of gyration. We calculate
b, =Q (!5r; 5r, ! ) =Qb,—„+b, &, where 5r, is the dis-
placement of polymer i from its starting point, and where
the average is over all i and j which are nearest neigh-
bors. Again, we postulate scaling forms for the root
mean square radial and azimuthal separations b „(N,R„)
and 6&(X,Ro):

! T !
I

! ! !
I

!

C3
C3

CI

t40

Pi

C3

t40

! ! I ! ! I !

]ogto(+/+o)

FIG. 15. Radial (R„)and azimuthal (R&) radii of gyration
near a supercoincidence site. The polymers are binned accord-
ing to Ro, the distance of their initial point from the center of
rotation. We have rescaled the radii and N by Ro and collapsed
all the data. The lower curve is log, o[R„(N)/Ro] and the upper
curve is log, o[R &(N)/Ro ]+2.

FIG. 16. Trajectories of seven nearest neighbors. The large
dots represent the starting points of each polymer path.
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From our analysis we find that, again, for small N,
(N R p ) does not depend on R o. Thus 8;(z)~z as

z~0 and, according to our data, x;+y; =0.8. Thus we
will have the scaling form

b,;(N, Ro)
0.Sv,.

=b;
0 R '

0

(6.8)

where v; =1/y;, i =r, P. We find the best collapse of data
for v„=v&=0.3. The collapsed data are shown in Fig.
17. The separation between neighbors for small N is not
quite ballistic. Presumably this is due to the fact that the
polymers stay with their partners for some time before
splitting apart as seen in the four rightmost paths in Fig.
16.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge stimulating conversa-
tions with P. C. Hohenberg, T. C. Lubensky, J. F. Mar-
ko, R. B. Meyer, F. Spaepen, P. L. Taylor, E. L. Thomas,
J. Toner, and G. Yan. R. D. K. acknowledges the hospi-
tality of IBM Research Division, as well as support by
National Science Foundation Grant No. PHY92-45317.
D. R. N. acknowledges the hospitality of Brandeis Uni-

FIG. 17. Radial (5„)and azimuthal (6&) root mean square
separation of nearest neighbors near a supercoincidence site.
The polymer groups are binned according to Ro, the distance of
their initial point from the center of rotation. We plot the res-
caled values of 6 versus log, o[X/Ro']. The lower curve is
log, 0[6,„(X)/Ro "] and the upper curve is
1 go, lOhy(N)/Ro' ]+2.

versity, AT8rT Bell Laboratories, and Exxon Research
and Engineering, as well as support from the Gug-
genheim Foundation and the National Science Founda-
tion, through Grant No. DMR-9417047, and in part
through the Harvard Materials Research Science and En-
gineering Center via Grant No. DMR-9400396.

APPENDIX: IRRATIONALITY OF LOCK-IN ANGLES

The special lock-in angles that we have found for the
triangular lattice are all irrational fractions of 2~. We
will prove a more general theorem in this appendix that
applies to any rotation which leads to a coincidence lat-
tice with a finite lattice constant. An alternate, algebraic
proof appears in [18].

Consider two lattices with the second one rotated with
respect to the first by an angle P around a lattice point in
common (so that if /=0 the lattices coincide). At certain
"magic angles" P„there will form a lattice of points
which are on both lattices. This is the coincidence lat-
tice. Take the magic angle in question to be P*. If the an-
gle is not an angle of symmetry of the lattice (e.g. , 2irn /6
for a triangular lattice) then the spacing of the coin-
cidence lattice will be larger than the spacing on the orig-
inal lattice by a factor of g. Now consider adding a third
lattice, rotated again by P with respect to the second lat-
tice (i.e., rotated by 2$ from the first lattice and by P
from the second lattice). The first two lattices create a
coincidence lattice and the second two lattices create a
coincidence lattice. However, the last two lattices may
be obtained by rotating the first two lattices by P'. Thus
the coincidence lattice of the last two will be rotated by
P' with respect to the coincidence lattice of the first two.
Therefore the coincidence lattice of all three lattices will
be the coincidence lattice of the two coincidence lattices
and so the spacing of the supercoincidence lattice will be
a factor of g larger than the spacing of the original lat-
tice.

This argument can now be extended to the coincidence
lattice of n lattices. The first (n —1) lattices form a coin-
cidence lattice, as do the last (n —1) lattices. These two
coincidence lattices are rotated by P* from each other
since the last (n —1) lattices can be obtained by rotating
each of the first (n —1) lattices by P'. Thus the coin-
cidence lattice of n lattices is the coincidence lattice of
two (n —1) coincidence lattices. This means that every
time we add another rotated lattice, the coincidence lat-
tice spacing grows by a factor of g and so the coincidence
lattice of (n+ 1) lattices is a factor of g" larger than the
original lattice spacing.

If the angle P* were a rational fraction of 2rr,
P* =2mp/q, then after no more than q iterations the lat-
tices would start to repeat. Thus upon adding the next
lattice, the supercoincidence lattice would remain the
same, and thus the lattice spacing would not grow. This
implies that P '=1 and so the angle P' must be an an-
gle of symmetry of the lattice. This proves that the lock-
in angles are not rational fractions of 2m. .
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