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Stochastic model for the motion of a particle on an inclined rough plane
and the onset of viscous friction
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Experiments on the motion of a particle on an inclined rough plane have yielded some surprising results. For
example, it was found that the frictional force acting on the ball is viscous, i.e., proportional to the velocity
rather than the expected square of the velocity. It was also found that, for a given inclination of the plane, the
velocity of the ball scales as a power of its radius. We present here a one-dimensional stochastic model based
on the microscopic equations of motion of the ball, which exhibits the same behavior as the experiments. This
model yields a mechanism for the origins of the viscous friction force and the scaling of the velocity with the
radius. It also reproduces other aspects of the phase diagram of the motion which we will JSt0§3-
651X(96)08306-1

PACS numbd(s): 46.10+z, 46.30.Pa, 46.98.s

[. INTRODUCTION appears to be different from that of region B. However, be-
cause of experimental difficulties, this regime remains
A mixture of particles with different sizes can segregatemostly unstudied.
under a wide range of conditions and due to various mecha- In region B, it was found that the constafatverage ve-
nisms (usually a combinationsuch as the “Brazil nut ef- locity satisfiegv )e<R*sin(#) [10]. This is a surprising result
fect” (the rise of large grains to the top due to shakif, because it means that the force of friction acting on the ball
shear 2], percolation 3], convection 4], or surface flowf5]. is viscous, i.e., proportional to the veloc|t§—9]. A straight-
Clearly the problems of mixing and segregation have imporforward argument suggests that the friction force should be
tant consequences for many industries. To understand thiuadratic in the velocity leading to @sin(6) behavior: It is
complicated phenomenon, it is easiest to study the effects aflear that the deceleration due to collisions is proportional to
the various mechanisms separately, if possible. the number of collisions per second times the velocity loss
In this paper we are interested in segregation due to flower collision. The velocity loss per collision is proportional
which can be seen, for example, in sand piles. When grain® the velocity itself, and one can argue that the average
with various sizes flow on the surface, one observes that theumber of collisions per second is the velocity of the ball
largest grains find their way to the bottom of the pile while divided by the average distance between surface beads. This
the smaller ones are stopped farther uphill. This segregatiogives a friction force which is quadratic in the velocity, con-
is caused by the roughness of the underlying surface otrary to what is seen experimentally. Two assumptions that
which the grains are flowing. In a much simplified picture, would lead to viscous friction arél) the velocity loss per
one can consider the bulk of the sand pile as providing &ollision is a constant independent of the velocity(#rthe
rough substrate on which the surface grains are flowing andumber of collisions per second is a constant independent of
segregating. For experimental purposes, one can carry thbe velocity. However, neither of these assumptions can be
simplification further and consider an inclined plane madgustified physically and the explanation should be sought
rough by sticking beads of a given radius, for example elsewhere.
glass or sifted sand, on contact paper and attaching it to the It is tempting to draw an analogy between the motion of a
plane. This was done in a series of experim¢6itsd] where  ball down a rough plane with peaks and troughs and the
various properties of the motion of balls down this planemotion of particles in random potentigl$1] using a Lange-
were studied. We refer the reader to the references for detaildn equation to describe the dynamics. However, such an
of the experiments and results. Here we will review some ofipproach cannot explain the viscous dissipation because the
the results before proceeding to our theoretical model. viscous friction term is put in as an assumption from the
Three regimes were four|®,9] for the motion of the ball  start. In addition, even if one does assume the viscous force
down the plane(A) A sticking or pinning regime where the and pursues this approach, the scaling of the velocity with
ball comes to a sudden stop after traveling some distancd®, i.e., with the roughness which in this approach character-
(B) a regime where the ball attains a steady state with @zes the random potential, is not correctly reproduced. The
constant(on averaggvelocity independent of the initial re- missing ingredient will be discussed in Sec. Ill. A different
lease velocity, andC) a jumping regime where the ball ex- approach was taken {iY] where a Langevin equation, with
periences big bounces and does not achieve a steady statetbe viscous dissipation and the velocity scaling wWitbuilt
the 2-m-long plane used in the experiments. One expects that, was used to study other aspects of the motion such as the
for a long enough plane, the ball will always reach a steadytopping distance and its dependence on various parameters.
state, but even so, the nature of the motion in this regime The approach we will take here is different still. We will
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big disk (as in the figurg y<0, and when it is on the other
<— ¢gsin®) side, y>0.

Our first assumption is that we can ignore the rotation of
/\ the big disk as it moves down the line. Clearly this assump-
tion is not justified if we are aiming at detailed microscopic
o &5"('_";";’"2‘,71v comparison with experiments. For example, neglecting rota-

- tion means thav,, the tangential velocity of the point of
-L, \ contact during a collision, is due entirely to the translational

Yy
velocity of the disk. This is important quantitatively because
m m 7 /—\ /-\ i, the tangential coefficient of restitution, dependswgn
UU v \_y (see below However, molecular dynamicgMD) simula-

v tions have showh12] that if we prevent the disk from rotat-
ing as it bounces down the line and have only dynamic fric-
tion acting as the tangential force, the qualitative features of
the motion, such as theé dependence of the velocity, do not
o ) ) change. Since we are interested here in the scaling properties
FIG. 1. Shows the geometry of the inclined line of diskson  f the motion, we will neglect the rotation. Therefore, with
which we relgase a disR. The collision depicted is that for the this assumption, the only effect of the size of the disk is to
largest negative value of, the contact angle. contribute geometrical constraints as we will see below.
Our second assumption is that after a collision, the veloc-
consider the one-dimensional case, i.e., disks of radai® ity components normal and tangential to the small disk at the
randomly stuck on a line inclined at an anglewith the  point of impact are related to the corresponding velocities
horizontal, and on which is released a disk of radluswe  before the collision by
then consider the equations of motion of the diBk,as it

5285

moves down the line, and make as many simplifying as- |val= malvl, (1a)
sumptions as is reasonable, eventually turning the determin- ,
istic equations into stochastic ones. Our goal in this is not to Ut = MiUts (1b)

have a detailed microscopic agreement with experiments;

That would be an unrealistic hope with a very simple model)[N:erne"fl_”h("r‘t) |rs thg n?r;na\gt?nge?tlr?] ?s%fglimt (r)]f :eEStI_
and is more the domain of detailed numerical simulations, .o ' NEre are absolute value signs ut NOLEQ.

Rather, our goal is to have a bare-bones stochastic model thgtb). pecaus_,e the coefficient O.f norm_al _restitution s alwe_lys
agrees with experiments and reproduces various properties Psmve while that for tangential rest|tut!on. can be negative
the motion such as the viscous friction and the scaling of th see Eqs_.(9a) and (9.b)]' Th? angle of mmdenc_eai (not
velocity with R. With this model, we succeeded in finding a shown i tbe flgur.)a s of - cour§e given by
simple mechanism for the viscous force and the various scaf9S@) =[vnl/[v], and sin@;)=[v//[v], while the angle of
ing laws. In all this geometry plays a crucial role. reflection, a,, is given by cos§)=|v,|/|v’|, and
In Sec. Il we will construct the model clearly stating all sin(ar)=|vt’|/|5’|, where the primes denote values just after
our assumptions, and in Sec. Il we will compare our resultghe collision. Now consider the big disk going down the
with the experiments and make some comments. Section I¥xclined line colliding with the small disks, and let us exam-
contains our conclusions. ine thekth collision. Let thex andy velocities just before
(aften the kth collision be vy(k) [vy(k)] and v(k)
[v{,(k)]. It is easy to see from these definitions and the

IIl. THE MODEL simple plane geometry that
Figure 1 shows the geometry of the system. Disks of ra- _ _ ;
dius r are put in a straight line, the distance between the on(k)=[vy(K)|cod ) ~vx(k)sin(y), 23
surfaces of two neighboring disks being,2wheree is a v(K) = v (K)|Sin(y) +v(K)cog y) (2b)

random number between 0 and a maximum vadye, This

line is inclined an angl® with respect to the horizontal, and keeping in mind our convention for the sign ¢f The x

we will take the direction paraligberpendiculafto it as the  yg|ocity after thekth collision is v/(k)=|v’|sin(a, + ¥)

x [y] direction. Therefore, the gravitational acceleration i”which, after expanding the sine and using the above defini-
the x [y] direction is gsin(6) [—gcos(d)]. The big disk, t{ions of the angle of reflection, gives

radiusR, moves from right to left with a veIocityE and x

andy components, andv,, making an anglep with the vy (K) = p0(COK y) + ppv, SiN(y). €)

line of disks, sing)=|v,|/|v|. As shown in Fig. 1,y is the .~ o
angle between the Iineyperpendicular to the line of disks, a”%?;;t\)/lgllggt;hjljsvtvg?telzrqtﬁgs)w 22I(Ijlé|2cl))|?1 ﬁil?;\;;:so;?hee)((grrlej )
the line connecting the centers of the big and small disks a velocities iust before the collision as

the point of contact. We will call this the angle of contact Y J

which, it should be emphasized, is different from the angle v1(K) =0y (K) (1£:C0Z(y) — maSinA(¥))

of incidence. Our sign convention is that when the collision

is on that side of the small disk which faces the approaching + |vy(k)|(,ut+,u,n)sin( v)cog y). (4a)
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A similar argument fow (k) gives paper,R=2, this approximation is reasonable. Notice that
, ) L, is tangent to the disk just to the right of the disk involved
vy(K)=—v,(K) (s + pp)sin(y)cog y) in the collision. This shows how disks cast velocity depen-

o dent “shadows” on their neighbors thus restricting the area
+|Uy(k)|(’““ COS(7) — wisirt(y))- (4b) available for a collision with a given bead. It is straightfor-

Our next assumption, which is supported by MD simula-Ward to show that
tions [12,13, is that the motion of the disk is composed . .
mainly of a series of small bounces with very Iittlepor no Sin(ymin(k)) = sin(¢(k))coga(k))
rolling which we will, therefore, ignore. This means that the — coq¢(k))sin(a(k)), (6a)
kth collision will cause the disk to bounce and spend a time
&7(Kk) in the air during which it will experience accelera- where
tion gsin(#). Therefore, itsx velocity just before the
(k+1)th collision is vy(k+1)=7(k)g sin(8) +vy(K),

r+e .
which, combined with Eq(4a), gives coda(k))=1=2=sin($(k)), (6b)

vy(k+1)=87(k)gsin( 6) + v (K) (s COS(y) — wnSIrt(y)) and where 2(+ ¢€) is the distance between the center of the
K . disk under collision and that to its immediate right. Recall
+loy(K)l (it un)sin(y)cos y). (53 that e is a uniformly distributed random number between 0

What happens to the perpendicular velocity? If the disk, and Some maximum valugy . This gives the range of the
after the collision shown in Fig. 1, bounces up and lands orvtochastic Va”aP'eV(k)’ to be between a maximum value,
another small disk but at the sampevalue, itsv,, just before ~ @(K) [where sip(k))=v,(K)/[v(K)[], and a minimum
the new collision is identical, in absolute value, to that justvalue given by Egs(6a) and (6b). But we still need its dis-
after the previous collision. In generaL however, yheajue tribution. To this end, we assume that for a given collision,
will be different because the big disk will land on various the point of diskR that is closest to lind; (in Fig. 1 it
different points of the small disks. However, since we areactually touches jtis equally likely to be anywhere between
typically interested inR/r=3, we see that the variations in L1 andL,. The position of this point determines the value of
y are very small. We can, therefore, make the simplifyingthe contact angley, and therefore knowing its probability

assumption thav,(k+1), they velocity justbeforecolli- distribution (which we assumed to be unifojngives the
sion (k+1) equalsvy(k), they velocity justafter collision probability distribution fory. Using this, it is straightforward
k [14]. We then have to show from the geometry that is given by
=— i R+ysi k
vy(K+1)=—v,(K) (i + un)sin(y)cog y) sin(y(k))=sin(¢(k))(—yr :gs( )))
+oy(K)|(1nCOS () — pSiN(y)).  (5b)
. R+ysin(p(k))|?| "2

So, Egs(5a and(5b) express the andy velocities just —cog¢(k))| 1- " r+rR :
before the k+ 1)th collision in terms of those just before the
kth collision. Although not written explicitly, to simplify the (79

notation, it should not be forgotten that the contact angle
appearing on the right-hand side of these equations is actihere
ally y(k), the angle for théth collision. These equations are
deterministic since, given the initial conditions, one can, in
principle, calculate for all subsequent collisions the two r r
terms that have not yet been specifiéd(k) andy(k). Such sin(6) sin(6)
a detailed microscopic approach is not our goal in this paper.

Instead, we want to transform Eq&a) and (5b) into sto- One sees that the distribution for is a function of the
chastic processes by makinga stochastic variable. To do geometry R, r, ande) and the incoming velocitie{ and

that we need its distribution which must be based on the»,) which determine how much of the surface disk area is
underlying microscopics of the collisions. To simplify the available for collision. The distribution given by Eq&.a)
calculation of this distribution, we assume that the disk and(7b) is shown in Fig. 2.

collides with a given small disk only once. With this assump- Equations(5a), (5b), (7a), and (7b) define most of the
tion, it is clear from Fig. 1 that for a given incident velocity stochastic model. We still need to specify(k), the time

v or, equivalently, for a given anglg, the largestpositive ~ between collisions, when energy is fed into the system. Per-
contact angley,ax(K) is obtained when the big disk collides Naps & temptingly simple hypothesis is that
with the small disk while tangent to the lire,. For this ~ d7(k)=d/v (k), whered is the average distance between
case,ymadK) = ¢(k). On the other hand, the smallgge., the centers of the line disks. However, as explained in Sec. I,
the largest negativey,, (k) is obtained for the case shown it is easy to see that this gives a friction force proportional to
in the figure, with the big disk tangent to ling . This is a vi, and notv, . An alternative argument is to say that for a
good approximation only for large valuesRfsince then the perfectly smooth surface, the time between bounces is given
moving disk does not go deep in the space between twonly by v, [5T(k)=2v§(k)/gcos(0)], and assume the same
surface disks. Since in the experiments, and therefore in thisolds for the rough plane. Integrating the stochastic equa-

y=uniform random number

—2(r+e),

. (7b)

€
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2500 , r — . r a simplification that attempts to understand the separate roles
of the parallel and perpendicular velocities.

The last ingredient in our model is the experimental ob-
2000 - servation that the tangential coefficient of restitution is
Tl ] strongly dependent on the angle of incident8], given by
1 the normal(tangential components of the velocity, (v,)

WOF E ] [see Egs(28) and (2b)]. It was found in Ref[15] that the
L I tangential coefficient of restitution is well parametrized by
1000 |- W T (k)=1—351+ ) Un(k) (9a)
Iu’t " Mn Iu’ Ut(k) 1
S0 in collisions that involve gross sliding, whereas in collisions
that do not
%025 0.00 0.25 050 —7 mi(k)=-pg. (9b)

v (radians)

In these equationgy is the coefficient of friction, ang is

the tangential coefficient of restitution in the absence of slid-

ing. The normal and tangential velocities are given by Egs.

our convention,y<0 if the collision is as shown in Fig. 1, and _(2a) "’?”d(Zb)- We_mentlon he_re t_hat as a consequence 9f our

v>0 if it is on the other side of the perpendicular. ginE0.3, Ignoring the.rotatlon of the big disk, t_he tangent|.a'I velocity is

R=0.3 cm, r=0.05 cm, e=0.01 cm, u,=0.9, x=0.142, and 9IV€N only in term§ of the_t_ranslatlonal vel_ocme§ and

B=0.45. See Eqd54), (5b), (7a), (7b), (8a), (8b), (9a), and(9b) for Uy However_, rotation modifies the tangent(zhiut not the

definitions of the parameters. norma) velocity and therefore the effective, for each col-
lision. This effective change im; will lead to a different

tions of motion with this assumption produces two types of2Verage velocity, but not to a qualitatively different behavior
solution depending on the parameters used: Either the bal{nich is one justification for ignoring rotation. Note that
energy is continuously dissipated until it comes to a coml9noring rotation and its influence on the tangential ve_IO_C|ty,
plete stop, or the ball makes bigger and bigger jumps accelt» Means that the only way can be changed by a collision
erating all the time and never reaching a stationary statdS Via dissipation. This dissipation is produced by a small
Clearly neither of these two possibilities for(k) is realis- amount of sliding and the concomitant friction, which is
tic. Since the surface is rougbothv, andv, play a role in modeled mesoscopically by Ed9a. Therefore, in our

determinings7(k). As we shall see below, the balance pe.Mmodel, it is Eq.(99) that provides the tangential dissipation

tweenv, and lays a crucial role in determining the prop- with no contribution from Eq(9b_). .
erties 1())? m ot?oynP y g prop Now, our stochastic process is completely defined by Egs.

To motivate our choice fof7(k) note, from Eqs(4a) and (5a), (5D), (7."")’ (7b).’ (8a), (80), (9a), and(9b). This stochas-
(4b), that a collision with a negativey transfers velocity tic process is nonlinear and cannot be solved exactly. How-

from thex to they direction, while the opposite happens for ever, th_e _equations can be easily_iterated numerically, and
a positivey. Furthermore, f;)r a negative collision, the big the statistical properties of the motion of the disk down the

disk has to jumpverthe small disk in order to continue its line studied in detail. The initial conditions are random
motion, while for a positivey collision the big disk can Clho'(}eﬁ forvx(l),lvé(l), and ¥(1)t;‘]rom V‘éh'Ch everytrrlng
always continue its motion. For these reasons, we assumg 'S¢ follows simply by genérating the random numjme a
that for a collision withy negative(positive, d7(k) is de- collision results in a negative value for, we consider the

- disk to have been pinned.
termined only by, (v,). In other words, fory(k) <0 The equations defining our model can be further simpli-

, fied by noting that all the angles are very small allowing us
57(k) 2vy (k) 83 to expand all trigonometric functions to second orderyin

FIG. 2. A histogram showing the distribution of the stochastic
variable y (in radiang given by Eqgs.(7a and(7b). Recall that in

gcog 6)’ However, the resulting equations will still be nonlinear and
require a numerical integration. The utility of such an expan-
and for y(k)=0 sion would be for approximate solutions, e.g., mean field.
2r+€) Ill. RESULTS
St(k) = ———. (8b)
vx(K) In this section we compare the results of our model with

the experiments. The first test of the model is whether it can
Note that in Eq(8b) we are assuming that the distance trav-reproduce the three experimentally found phd$es9), the
eled to the next collision is well approximatédn average  pinning phase A, the constant velocity phase B, wHerg
by 2(r+€). Of course in realityp, andv, togetherdeter- <« sin(#), and the “jumping” phase C. Figure(d shows
mine the time between collisions. This can be calculated bufv,) as a function of sing) for three values oR, the radius
would not reveal the underlying reasons for the viscous forcef the big disk. We clearly see regions that are linear in
which we are trying to explain. Equatiofi8a) and(8b) give  sin(#) through which we have fitted straight lines. Although
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<v,> (cm/sec)
<v>-v,, (cm/sec)

0.0 0.1 0.2 0.3 0.4 0.5
sin(e) sin(6)

FIG. 4. Deviations ofv,) from the straight line fits of Fig.(®.
v R=3,4,5 mm for the dot-dashed, solid, and dashed lines.

X§§“ This insensitivity of the exponent to the values of the coef-
30 ggn 1 ficients of restitution and friction explains the experimental
8 result[16] that for a given value ob, R, andr, the average
velocity is practically independent of the material of the
plane or the bal[17]. In other words, having fixed, R, and
- r, balls of plastic, glass, and steel, whose coefficients of
restitution and friction are not very different, were found to
- (b) have the same terminal velocity. Furthermore, this terminal
0 "' ) . ) . ) . ) . velocity did not change when the surface of the plane was
0.0 0.1 0.2 0.3 0.4 0.5 changed from glass beads, radusto sand with average
sin(6) grain radiusr.
To check how linear these plots are, we show in Fig. 4
FIG. 3. (@ Shows the dependence ¢b,) (in cm/se¢ on  (v,)—vy;, Wherevy; is the value of the velocity given by
sin(¢). There is a clear linear region in agreement with experi-the straight line fit to each of the curves. We see that for
ments.R=3,4,5 mm forlJ,A,V; ©=0.142; 1,=0.9, B=0.45;  sin(§) between about 0.1 and 0.25 the deviation is extremely
r=05 mm. (b) Same as(@ but with the vertical axis scaled by small and the linear fit is excellent. For s#f)(larger than
R about 0.25 we see that tije,) increases faster than linearly.
we will not attempt to match our results exactly with experi- We take this as the definition of region C, which for brevity
mental values, it is beneficial to see if the theoretical resultsve will call the “jumping” regime because, as mentioned in
are in reasonable general agreement with experiments. Thike Introduction, the motion is dominated by large jumps as
linear regions stretch from about 4.5 to 14.5 degréhe = compared with the small bounces in region B. We see from
precise values depend & and for a giverR they depend Fig. 4 that the largest disk, dashed line, enters the jumping
on the coefficients of friction and normal restitutjpand the  regime earlier and faster than the smaller ones. This is in
values of(v,) are of the order of 5 to 15 cm/sec, all in very agreement with experimental phase diagram8] and with
good general agreement with the experiments. Also in agregrumerical simulation§18,12. Experiments have also shown
ment with experiments, we found that the average velocity irthat as the ball approaches the jumping regime, C, it exhibits
region B does not depend on the initial velocity with which intermittent behavior where it still has a constant average
the ball was released. This is an important property of thevelocity but it shows bursts of acceleration and deceleration.
motion in this region and does not apply in region C. WhenFigure 5 shows a plot of distance traveled as a function of
we scale the curves in Fig(& by a factor ofR"%4°we get  time for sin(9) =0.53 from our model. Bursts of acceleration
Fig. 3(b), which shows excellent scaling in the linear region,and deceleration are clearly seen. This intermittency gets
again in agreement with the experiments. The exponent weuch more dramatic as one gets closer to the jumping re-
found, —0.49, differs from the experimental valy€,8], gime (increasing#) before the motion gets completely de-
—1.4. Changing the parameters of the calculation, i.e., thstabilized. The origin of a burst of acceleration is a particu-
values of the coefficients of restitution and friction, changedarly big bounce, due to high speed and a large negative
the exponents only a little and does not bring it close enoughlvhere the disk spends a long time in the air, gaining a lot of
to the experimental value. We think that this difference couldenergy, which it has difficulty losing. Then comes another
be due to the fact that the calculation is done in one dimenbig shock that dissipates a lot of the energy, and the disk
sion while the experiments are two dimensional. It mightregains its former slower velocity. This mechanism can be
also be that our approximations, while maintaining the qualiinferred from the sharpness of slope changes, velocity
tative features of the physics, have changed this exponenthangesin Fig. 5.
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FIG. 5. Distance traveledn meter$ as a function of timgin FIG. 7. Scaling ofv,) with R whenR/r is kept constant. The

seconds for a disk of radiusR=4 mm and an inclination angle data collapse is foR=3,4.5,6,7.5,9 mm and the same parameters
sin(#) =0.53. All the other parameters are as in Figs) &nd 3b). as in Figs. 8) and 3b).
The slope gives the velocity parallel to the inclined line and exhibits

bursts of acceleration and deceleration. <UX>R70.5 as a function of sinf) for R=3,4.5,6,7.5,9 mm
andR/r fixed at 6. The figure exhibits excellent data collapse
with an exponent that agrees with the experimental value.

Figure 4 also shows that asis decreased, the average H’_he same scaling is observed in MD simulati¢n].

velocity decreases and eventually exhibits a sublinear depe So. we see that the simplified stochastic model presented
dence before it enters the pinning regime. To study the trant-1 h duced pk bl I all the f P  th
sition between the pinning regime A and the constant veloc- ere has reproduced remarkably well all the features of the
ity regime B, we release several disks for each value afd experimental results. But what is the mechanism behind the

R (keepingr fixed) one after the other and with slightly Ilneatr degepd(;nce Icl)n'fsmx and the ‘:’ﬁa,:'rt]ﬁ V\tl!tm'bAt\SN
different initial velocities. We consider the system in the MeNtoned I Sec. i, It one argues that the ime between

o - : .collisions, 87, is set by the parallel velocity;,, one gets a
pinning regime when at least half the disks are stopped. As i€ i dEin(0) X2 .
clear from Fig. 6, the pinning regime quickly shrinkise., very stable dependence of the velocity ¢sin(6) implying
moves towards smallefl), and then disappears &is in- a friction force that is proportional to the square of the ve-
creased. This agrees with the experiments, although in od?c'ty' 'I"hefast.erthe disk r.noves,'thehorterthe time inter-
calculation region A disappears faster. val during which energy is fed .|nto the .sysFem. If, on the

Experiments have indicatd®,19| that(v,) does not de- other hand, One assumes, as in ballistic ﬂ'ght’ thatis

pend on the ratidR/r alone. For example, Jaet al. [19] determined only by the perpendicular velociy,, then one
showed that changing while keeping the raticR/r fixed gets very unstable motion. Thasterthe disk, thdongerthe

_ . . time interval during which energy is fed into the system and
(they keptR=r), (v,) grows like VR. Figure 7 shows the more difficult it is to dissipate it. This drives the insta-

bility. In our simple model, the time of flight is given by both
, , r vy andv, depending on the side of the line beads that is
impacted.
] For small inclination angles, our model give® that
is dominated [20] by v, as shown in Fig. &) for
i sin(#) =0.03. This gives a dependence on ginthat is very
close to a square root, as is seen for the same angle in Figs.
3(a) and 3b). The reason for this is that at such small angles,
vy is so small that the motion is mostly parallel to the line,
i.e., in thex direction, which, as mentioned above, gives a
\ sin(#) dependence. For large values @f the motion is
very bumpy,v, is quite large, and it dominates the contribu-
tion to 87, as is seen in Fig. (8) for sin(d)=0.4. At this
value, we see thatv,) increases faster than linearly with
0.0 0.0 0.4 0.6 sin(9), Figs. 3a) and 3b), as the system is headed for the
sin(6) jumping regime C. In between the two regions of sublinear
and superlinear dependence on gn(there is a region of
FIG. 6. Fraction of pinned disks as a function of the inclination COmpetition between the, andv, contributions tosr as is
angle.R=2, 2.2, 2.4, 2.6, 2.7 mm fotl, 0 ,A,V,+. The other ~ seen in Fig. &) for sin(§) =0.2, which is in the heart of the
parameters are as in FigsaBand 3b). For each data point 500 linear regime. It is this competition between the destabilizing
disks were released. influence ofv, and the strong stabilizing influence ©f that

pinned fraction

00 | ] |
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6000 overlap completely in the linear regime. Furthermore, we
found that with this assumption, it is tremnaller disks that

(@) enter the jumping regime C first, in clear contradiction with
the experiments and intuition. Therefore the experimentally
based Eqs(9a) and(9b) are crucial to obtaining the correct
4000 ] behavior. On the other hand, we found that takingto be
constant does not change the behavior in Figi.€., when
R/r=cons} by much: the exponent is changed from 0.5 to
0.43 and the scaling is still clearly visible. This interesting
2000 | _ result indicates that although, in our model, the exponents for
Figs. 3b) and 7 are very similar, the two scaling effects
appear to have different origins.

It is worth emphasizing that geometry is playing a domi-
nant role in this model. The distribution of the stochastic
0.00 002 0.04 006 008 variable,y, given by Eqs(7a and(7b), is dominated by the

&t (sec) velocity dependent shadows cast by disks on their neighbors,
constraining the cross section available for collisions. In ad-
dition, this distribution is clearly crucial in deciding which of
Egs.(8a) or (8b) determines the time of flight whose role is
discussed above. Because of all this, we see that the allowed
collisions and the velocities are strongly dependent on the
geometry, which also means that, because of(Ba), u; is
also dependent on the geometry.

1000 [ T T

800

600

IV. CONCLUSIONS
400

We have presented in this paper a stochastic model for the
motion of a disk down an inclined line of smaller disks,
separated by random distances. The stochastic equations are
based on the original deterministic equations of motion to
which we have added some simplifying assumptions. Our

0.03 two main assumptions are that we can neglect rotasop-

ported by MD[12]), and that the motion of the disk is a
series of small bounces, with one bounce per line (sip-

- . ported by recent experimental results on the two-dimensional

plane[21] and by MD simulation$12]). This simple model,

© where geometry plays a very important role, accurately re-

produces the features of the experimental data, and explains

the origin of the viscous friction force. This is seen to be the

_ result of competition between ballistic motidwith large

vy determining the time of flightand motion parallel to the

plane(wherev, determines the time of flightWe also em-

1 phasized the importance of the dependence of the tangential

coefficient of restitution on the angle of incidence.

The next phase is to compare the results from this model
with experiments currently being done on the stopping dis-
tance of the balls in regions A and B. The properties of the

A i - stopping distance in region B have very important industrial

0.000 0.006 0.012 0.018 0.024 applications in the segregation of grains with different sizes.
8t (sec) We will also compare with experiments the results of our

model for the longitudinal dispersion of the velocity and its

FIG. 8. (a) Histogram of times between bounces. The shadeddependence on the sizes of the balls and the inclination
histogram showsr for collisions at positivey, i.e., where the time  angle. For the longer term, we would like to generalize the
of flight is determined by, . The other histogram shows the case model to a two-dimensional plane, where we can make more
for negativey, i.e., 57 is determined by, . sin(9)=0.03, the other  quantitative comparisons with experiments including results
parameters are as in Figs(aBand 3b). (b) As in (a) but with  for the transverse motion which is absent on a one-
sin(#)=0.2. (c) As in (a) but with sin(¢) =0.4. dimensional line.
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