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We propose an approach to numerical analysis of soliton interactions in dynamical systems described by the
Ginzburg-Landau equation. This approach is based on the analysis of soliton trajectories in a phase plane. The
main features of the interaction are represented in sufficient detail to permit understanding of the formation of
bound states and their stability. Among the bound states we find some withp/2 out-of-phase solitons.

PACS number~s!: 42.81.Dp

I. INTRODUCTION

The effect of soliton interactions clearly demonstrates the
particlelike nature of solitons. For the unperturbed nonlinear
Schrödinger ~NLS! equation~which is integrable by the in-
verse scattering transform!, soliton interactions have been
studied in Refs.@1–6# ~see also the review paper@7#! and its
features are well understood. In particular, it has been found
that the interaction of initially motionless solitons depends
on the relative phase between them: in-phase solitons attract
each other and form periodical solution, while out-of-phase
solitons interact repulsively. For arbitrary phases the result is
more complicated; however, Refs.@2,6# present an approxi-
mate expression, which allows one to find the amplitudes
and velocities of emerging solitons.

At the same time, the integrable NLS equation is an ap-
proximation that is rarely fulfilled in practice. In many cases,
there are additional effects such as third-order dispersion,
higher-order nonlinearity, amplification, and damping. The
soliton interaction is a very sensitive phenomenon and is
greatly affected by perturbations~see, e.g.,@7# and references
therein!. For instance, it was found that third-order disper-
sion and spectral filtering reduce the interaction@7–12#.
However, despite the great attention paid to the soliton inter-
action in the presence of perturbations, the problem lacks
some general approach and sometimes leads to misunder-
standing. For example, some controversy appeared on the
reduction of the soliton interaction by spectral filtering
@8,9,13,14#.

Commonly, the soliton interaction in the presence of per-
turbations is studied numerically, as the problem is too com-
plicated for analytical consideration. However, comprehen-
sive numerical analysis is also hampered because too many
parameters are involved, including parameters of the initial
condition and the perturbation itself. In particular, numerical
studies are often limited to special cases of in-phase and
out-of-phase solitons, i.e., to symmetric and antisymmetric
initial conditions. In addition, the exact analytical solution
for the perturbed NLS equation is known only for a few
particular cases, which makes numerical study even more
difficult.

In this paper we propose an approach to the numerical
analysis of the perturbed soliton interaction. This approach is
based on the analysis of soliton trajectories on the (r ,f)
plane~phase plane!, wherer5r (z) is the separation between
solitons andf5f(z) is the relative phase between them.

We show that, if the initial valuesr (0) andf(0) are given,
dynamics of the soliton interaction can be predicted from the
analysis of the special points and separatrices on this plane.

II. BASIC EQUATIONS

As a particular example of the perturbed NLS equation
we choose the complex quintic Ginzburg-Landau~GL! equa-
tion because of the following reasons. The quintic GL equa-
tion admits the stable soliton propagation, that the nonsoliton
radiation is suppressed, and that soliton parameters~the am-
plitude and the width! are uniquely determined by the coef-
ficients of the GL equation. In addition, there is great interest
in the soliton interaction in the GL equation due to applica-
tions to optical communications and fiber lasers@15–17# and
to dynamics of binary fluid convection@18#.

We write the GL equation in the following form, used in
nonlinear optics:
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wheret is the retarded time,z is the propagation distance,
andD determines the sign of dispersion. In terms of nonlin-
ear fiber optics,D511 corresponds to negative or anoma-
lous dispersion andD521 corresponds to positive or nor-
mal dispersion. The terms on the right-hand side~rhs! of Eq.
~1! stand for linear amplification, spectral filtering, nonlinear
gain, and saturation of the nonlinear gain, respectively.

Strictly speaking, a general pulse solution of Eq.~1! for
an arbitrary set of parameters is not known in analytical
form, although several solutions were found that exist if
some relation between coefficients is fulfilled~see@19# and
references therein!. If the coefficients on the rhs of Eq.~1!
are small, soliton dynamics can be estimated from the per-
turbation theory. If we write the solution of the unperturbed
NLS equation in the form

c~t,z!5hsech@h~t2D~z!!#exp@ iF~t,z!#, ~2!

then the stationary soliton amplitude obeys the equation
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It follows from the analysis in Ref.@8# that the dynamics of
the soliton interaction is determined mainly by the value of
the spectral filteringb. So it is convenient to choose all the
coefficients of the equation to be proportional tob in such a
way thath51:

d52kb/3, e5b~1/21k!, m5~5/8!kb, ~4!

where the parameterk determines the separation from the
special~singular! point (0,b,b/2,0) in the (d,b,e,m) param-
eter space~see@17,19#!. We choosek50.5, which is enough
to be sure that solitons are far enough from the singularity.

To create initial conditions in the form of superposition of
two stationary pulses, we solve Eq.~1! numerically and ob-
tain a stationary one-soliton solutionF(t) for each set of
parameters. Then this stationary solution is used in the initial
conditions

c0~t!5F„t2r ~0!/2…1exp~ if0!F„t1r ~0!/2…, ~5!

wherer (z) is the separation between the solitons@the mini-
mum possible variation ofr (0) is determined by the numeri-
cal grid step size#.

III. SOLITON INTERACTION IN THE CASE
OF ANOMALOUS DISPERSION

A. In-phase and out-of-phase solitons

Before considering a general behavior, we study the soli-
ton interaction in particular cases of in-phase (f50) and
out-of-phase (f5p) pulses. Let us recall the dynamics of
the NLS solitons. Iff50 and all the coefficients on the rhs
of Eq. ~1! are equal to zero, initially motionless solitons of
the NLS equation attract each other and collide and then
repeat this process periodically. In the presence of weak
spectral filtering the motion of solitons becomes slower, but
the attractive type of interaction is retained at least before the
first collision @8#. However, if the spectral filtering is strong
enough and solitons are well separated@r (0).r 1 , r 1'5.66
for b51#, the interaction changes sign from attraction to
repulsion. Figure 1 shows the soliton separation versusz for
different values of the initial separationr 0 . One can see that

for r (0),r 1 the solitons still attract each other, while for
r (0).r 1 solitons move away from each other until the in-
teraction becomes negligible.

For out-of-phase pulses@f(0)5p#, we also observe the
change of the sign of the interaction at certainr (0) and an
even more remarkable phenomenon: the formation of bound
states~BSs! of out-of-phase solitons. In this case, to charac-
terize the interaction, we introduce the critical value
r 2'10.82. Forr (0),r 2 , the bound state is formed, with the
separation between the solitonsrBS

(1)'5.4. Note that, depend-
ing on the initial separation, solitons can move toward each
other or away from each other during the bound state forma-
tion. For r (0).r 2 , pulses repel each other as in the case of
the unperturbed NLS equation.

B. Arbitrary relative phase

The question arises, what happens if the relative phase
between the solitons is neither 0 norp? This is the most
interesting case, although it is more difficult to analyze. In-
deed, forfÞ0,p, the soliton interaction is asymmetric, with
some oscillations and nonuniform dynamics of both the soli-
ton amplitudes and positions. It is known that in the case of
an integrable system@2# ~and, more generally, a Hamiltonian
system@20#!, there is some energy exchange between soli-
tons forfÞ0,p. Consequently, soliton amplitudes become
unequal. On the other hand, in our system forb;1 the am-
plitude and the central frequency are tightened to the station-
ary values.

To characterize the soliton interaction, we propose to plot
the ‘‘soliton interaction trajectory’’ on the (r ,f) plane,
where r5r (z) is the separation between the solitons and
f5f(z) is their relative phase. We suppose2p,f<p. In
numerical simulations we calculater as the separation be-
tween two maxima andf as the phase difference between
them. The plots are in the polar frame, i.e.,rcos(f) and
rsin(f) are plotted as the abscissa and the ordinate, respec-
tively.

Strictly speaking, the soliton shapes can change during
the interaction because the dynamical system is infinite di-
mensional. However, it follows from numerical simulations
that these changes are small unless the distancer is smaller
than the width of each soliton. So the reduced problem has
only two dynamical variablesr andf. It is convenient to
plot them using the polar coordinates.

First, we analyze the special points on this plane. Note
that a small region around the origin is undefined because the
distance between the solitons becomes less than the width of
each soliton. The dynamics of such strongly overlapping
solitons depends on the relative phase between them. Iff is
close top and solitons are in the ‘‘forbidden zone’’@filled
region in Fig. 2~a!#, the amplitude of their superposition is
too small and the trivial solutionc50 is formed. If two
strongly overlapping solitons are outside the filled area, they
collide and fuse to one pulse.

Each critical value on the linef50,p ~i.e., r 1 andrBS
(1)) is

a special point. The circle with the center at the origin of the
coordinate frame and radiusr 1 can play the role of a sepa-
ratrix.

Figure 2~a! shows the overall dynamics of the soliton in-
teraction on the (r ,f) plane forD511, f(0)560.95p,

FIG. 1. Soliton separation for the interaction of in-phase solitons
at D511, b51, andk50.5 for differentD. Values ofr (0) for
two curves near the threshold are shown.
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and several values of the initial separationr (0) in the vicin-
ity of rBS

(1) . It can be seen that this is a saddle point in terms
of the theory of dynamical systems. Indeed,r tends to the
stationary value, while the variation of the phase
uf(z)2f(0)u increases. Note that the separation remains al-
most constant, until the phase becomes close to zero. The
further dynamics is mainly determined by the ratio ofr (0)
and r 1 . If r (0),r 1 , the separation starts to decrease, i.e.,
the solitons attract each other and eventually fuse to a single
pulse. If r (0).r 1 , the trajectory rounds the circle and tends
to the x axis, while the separation increases, i.e., solitons
repel each other. One can see that one of the trajectories
crosses the circle so that the actual boundary between the
regions of attraction and repulsion is determined by a slightly
deformed circle. Note that the system under consideration
plays the role of a ‘‘phase equalizer’’ for the soliton pair in
the sense that the phase difference converges to zero, starting
from an arbitrary value.

Another case is depicted in Fig. 2~b!, which is similar to
Fig. 2~a! except for the initial phasef(0)560.05p. This
can be considered a magnified version of Fig. 2~a!. One can
clearly see that the circle with radiusr 1 is a separatrix for the
soliton interaction. The pointf50 on this curve is again the

saddle point. However, stable and unstable directions inter-
change in comparison withf(0)50.95p, i.e., the phase
tends to zero while the separation increases or decreases,
depending on the position of the initial point with respect to
the separatrix.

The same dynamics is observed for other values of the
initial phase difference~see Fig. 3!. This figure shows soliton
trajectories for two values of r (0) and f(0)5
0.1p, 0.2p, . . . , 0.9p. Soliton trajectories that start out-
side the circle with radiusr 1 round it. Eventually a pair of
in-phase solitons is formed, while the separation between
solitons increases. Note the trajectory forf(0)50.9p,
which almost coincides with the circle. Another set of trajec-
tories, which start inside the circle, corresponds to fusing
solitons. This plot clearly shows that the special point
(r 1,0) is a saddle point.

IV. THE CASE OF NORMAL DISPERSION

A. In-phase and out-of-phase solitons

By analogy, we start from the special cases of in-phase
and out-of-phase pulses. As for anomalous dispersion, we
found numerically the stationary solution for each set of pa-
rameters and use the linear superposition~5! of two pulses as
initial conditions. For the case of normal dispersion, the adia-
batic perturbation theory cannot be applied, but we still use
relations~4! between the coefficients on the rhs of Eq.~1! for
convenience. It turns out that forb;1 the amplitude of the
stationary pulse in normal dispersion is approximately the
same as for anomalous dispersion, but the pulse width is
nearly twice as large.

For the case of positive dispersion, the bound states were
found for both the in-phase and out-of-phase solitons. For
in-phase solitons, numerical study shows that the pulses fuse
to a single pulse forr (0),r 3 , r 3'7.7, form a bound state
for r 3,r (0),r 4 ~a separation in the bound state is
rBS
(2)'8.56), and repel each other forr (0).r 4 , r 4'11.84.
Note that the pulses in such bound state are much farther
apart from each other than in the bound state of out-of-phase
solitons in the case of anomalous dispersion.

Out-of-phase pulses form the bound state forr (0),r 5 ,
wherer 559.41, and the separation between the pulses in the
bound staterBS

(3)54.8. Forr (0),2.15 pulses annihilate and a

FIG. 2. Soliton trajectories on the (r ,f) plane for D511,
b51, andk50.5 ~solid lines with arrows show the direction of
motion!. The solid circle shows the center of the frame and the
bound state of out-of-phase solitons; the open circle shows the
threshold between attraction and repulsion for in-phase solitons.
The dashed line gives the circle with radiusr 1 . The filled area
corresponds to the ‘‘forbidden zone.’’~a! f(0)560.95p and ~b!
f(0)560.05p.

FIG. 3. Dynamics of the soliton interaction forD511;
f(0)560.1p,60.2p, . . . ,60.9p; and r (0)54.688 and 6.25.
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trivial solution c50 is formed, while forr (0).r 5 pulses
repel each other.

B. Arbitrary phase

Figure 4~a! shows the soliton interaction on the phase
plane forf(0)50.05p. The tendency of the phase dynamics
is opposite the case shown in Fig. 2: the absolute value of the
relative phase increases and passes the point where
f56p. Before this point, all trajectories demonstrate a
clear tendency to move near therBS

(2) circle. Hence the special
point rBS

(2) is also a saddle point. After reaching thep phase
difference, solitons are attracted by the special pointrBS

(3) and
they continue their motion along therBS

(3) circle. Finally,
when the phase differenceufu'3p/4, the trajectories fall to
the center of coordinates, i.e., solitons fuse to a single pulse.
We have to emphasize that the value of the phase difference,
when the fusion occurs, is almost independent ofr (0). This
fact cannot be established without use of the (r ,f) plane.
However, the fusion occurs at different distances, depending
on the initial soliton separation.

Forf(0)50.95p, we observe very similar dynamics@see
Fig. 4~b!#. In this case the absolute value of the soliton phase
decreases. There is no contradiction with the case shown in
Fig. 4~a!, as increasing of the absolute phase occurs along the
rBS
(2) circle, while decreasing takes the plane along therBS

(3)

circle. For ufu'p/2, solitons fuse. Again, the value of the
phase difference at which the solitons fuse is almost inde-
pendent on the initial separation, although the distance where

this occurs strongly depends onr (0) @it increases asr (0)
increases#.

Finally, using our method, we discover one more bound
state forf(0)5p/2 andr (0)'9.922. When the initial con-
dition is close to the point corresponding to this bound state,
both the soliton separation and the relative phase between
pulses oscillate@Fig. 5~a!#. The closer the initial condition to
this stationary point, the more oscillations can be observed.
In other words, the trajectories are outgoing spirals, so that
the special point inside them is the unstable focus. The dy-
namics of the soliton interaction in time domain is shown in
Fig. 5~b!. Note the asymmetry of the field between the two
pulses.

V. DISCUSSION AND CONCLUSION

As we can see from the results obtained, all stationary
points on thef50,p line are of saddle type. If the BSs on
this line is stable to perturbations ofr , it is unstable to phase
perturbations and vice versa. We can compare these results
with the results obtained in@20# for Hamiltonian systems,
where soliton BSs were also found to be unstable.

At the same time, although all the bound states studied
appear to be unstable, they clearly manifest themselves in the
interaction. If we choose initial conditions close to the spe-
cial point, solitons propagate a long distance before eventu-
ally fusing or moving apart.

FIG. 4. Soliton trajectories on the (r ,f) plane forD521. ~a!
f(0)560.05p and ~b! f(0)560.95p. FIG. 5. Dynamics of thep/2 out-of-phase solitons for

D521, r (0)59.922, andf(0)52p/2. ~a! Phase plane and~b!
time domain.
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These results allows the understanding of an earlier paper
@21#, where the BS of in-phase solitons was discovered. The
authors of that paper claimed that the BS is stable in a small
asymmetric perturbation, although it decays if the perturba-
tion is strong enough. Apparently, their simulations were
similar to those shown in Fig. 3~a!. After being slightly per-
turbed, the BS propagates a large distance with almost con-
stant separation between solitons; however, eventually the
solitons fuse to one.

In conclusion, we study the soliton interaction of the quin-
tic Ginzburg-Landau equation. We show that the dynamics
of the soliton interaction is mainly determined by the posi-

tion of initial conditions with respect to the special points
and the separatrix on the (r ,f) plane. The special points
correspond to bound states of two solitons. All the bound
states studied appear to be unstable with respect to either the
phase or separation perturbations. Despite this, bound states
play a pivotal role in the overall dynamics of two-soliton
interactions.
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