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Soliton interaction in nonequilibrium dynamical systems
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We propose an approach to numerical analysis of soliton interactions in dynamical systems described by the
Ginzburg-Landau equation. This approach is based on the analysis of soliton trajectories in a phase plane. The
main features of the interaction are represented in sufficient detail to permit understanding of the formation of
bound states and their stability. Among the bound states we find somemf@tbut-of-phase solitons.

PACS numbdrs): 42.81.Dp

[. INTRODUCTION We show that, if the initial values(0) and¢(0) are given,
dynamics of the soliton interaction can be predicted from the
The effect of soliton interactions clearly demonstrates theanalysis of the special points and separatrices on this plane.
particlelike nature of solitons. For the unperturbed nonlinear

Schralinger (NLS) equation(which is integrable by the in- IIl. BASIC EQUATIONS
verse scattering transfojmsoliton interactions have been . _
studied in Refs[1—6] (see also the review papgt]) and its As a particular example of the perturbed NLS equation

features are well understood. In particular, it has been founwe choose the complex quintic Ginzburg-Land@l) equa-
that the interaction of initially motionless solitons dependstion because of the following reasons. The quintic GL equa-
on the relative phase between them: in-phase solitons attraéen admits the stable soliton propagation, that the nonsoliton
each other and form periodical solution, while out-of-phaseradiation is suppressed, and that soliton paraméteesam-
solitons interact repulsively. For arbitrary phases the result iplitude and the widthare uniquely determined by the coef-
more complicated; however, Ref@,6] present an approxi- ficients of the GL equation. In addition, there is great interest
mate expression, which allows one to find the amplitudedn the soliton interaction in the GL equation due to applica-
and velocities of emerging solitons. tions to optical communications and fiber lasgrS—17 and

At the same time, the integrable NLS equation is an apf0 dynamics of binary fluid convectidii8].
proximation that is rarely fulfilled in practice. In many cases, We write the GL equation in the following form, used in
there are additional effects such as third-order dispersiorijonlinear optics:
higher-order nonlinearity, amplification, and damping. The
soliton interaction is a very sensitive phenomenon and isdy D A 0, /2 o 4
greatly affected by perturbatiotisee, e.gf7] and references ' g, T 5 3.2 TP Y=18U+1B—— Hiep*y—iulyl*y,
therein. For instance, it was found that third-order disper- (1)
sion and spectral filtering reduce the interactipf-12).
However, despite the great attention paid to the soliton interghere 7 is the retarded timez is the propagation distance,
action in the presence of perturbations, the problem lackgndp determines the sign of dispersion. In terms of nonlin-
some general approach and sometimes leads to misundgyy fiher opticsD=+1 corresponds to negative or anoma-
standing. For example, some controversy appeared on thgys dispersion an®=—1 corresponds to positive or nor-
reduction of the soliton interaction by spectral filtering 4 dispersion. The terms on the right-hand gide) of Eq.
[8,9,13,14. L . (1) stand for linear amplification, spectral filtering, nonlinear

Commonly, the soliton interaction in the presence of peryain, and saturation of the nonlinear gain, respectively.
tu_rbatlons is studlgd numen.cally, as the problem is too com- Strictly speaking, a general pulse solution of Et). for
plllcated for. analytlcal'co_n5|derat|on. However, comprehen, arbitrary set of parameters is not known in analytical
sive numerical analysis is also hampered because t00 mamyym although several solutions were found that exist if
parameters are involved, including parameters of the initiakome relation between coefficients is fulfillésee[19] and
conqmon and the pgrt_urbatlon |tse_lf. In part|cula_r, numerical eferences therejn|f the coefficients on the rhs of Eq1)
studies are often limited to special cases of in-phase angre small, soliton dynamics can be estimated from the per-

out-of-phase solitons, i.e., to symmetric and antisymmetriG,ryation theory. If we write the solution of the unperturbed
initial conditions. In addition, the exact analytical solution | g equation in the form

for the perturbed NLS equation is known only for a few
S;fritcl;?jlljtl_ar cases, which makes numerical study even more W(7,2)= nsechin(7— A(2))Jexdi ©(7.2)]. @

In this paper we propose an approach to the numerical _ . . .
analysis of the perturbed soliton interaction. This approach ighen the stationary soliton amplitude obeys the equation
based on the analysis of soliton trajectories on thgp)
plane(phase plang wherer =r(z) is the separation between
solitons and¢= ¢(z) is the relative phase between them.
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10E . . . . - for r(0)<r, the solitons still attract each other, while for

: E r(0)>r, solitons move away from each other until the in-
teraction becomes negligible.

For out-of-phase pulsdsp(0)= ], we also observe the
change of the sign of the interaction at certa{®) and an
even more remarkable phenomenon: the formation of bound
states(BS9 of out-of-phase solitons. In this case, to charac-
terize the interaction, we introduce the critical value
r,~10.82. For (0)<r,, the bound state is formed, with the
E separation between the solitorfg)~5.4. Note that, depend-

E . : . . ] ing on the initial separation, solitons can move toward each
0 20 40 60 80 100 other or away from each other during the bound state forma-
Distance 2 tion. Forr(0)>r,, pulses repel each other as in the case of

FIG. 1. Soliton separation for the interaction of in-phase solitonsthe unperturbed NLS equation.

atD=+1, B=1, andk=0.5 for differentA. Values ofr(0) for . )
two curves near the threshold are shown. B. Arbitrary relative phase
The question arises, what happens if the relative phase
It follows from the analysis in Ref8] that the dynamics of between the solitons is neither 0 nat? This is the most
the soliton interaction is determined mainly by the value ofinteresting case, although it is more difficult to analyze. In-
the spectral filtering3. So it is convenient to choose all the deed, for¢# 0,7, the soliton interaction is asymmetric, with
coefficients of the equation to be proportional@an such a  some oscillations and nonuniform dynamics of both the soli-
way thatn=1: ton amplitudes and positions. It is known that in the case of
an integrable systeffi2] (and, more generally, a Hamiltonian
5=—KkpBI3, e=pB(1/12+k), u=(5/8ks, (4) system[20]), there is some energy exchange between soli-
tons for ¢ # 0,77. Consequently, soliton amplitudes become

where the parametek determines the separation from the Unequal. On the other hand, in our systemfior 1 the am-

special(singulaj point (08, 8/2,0) in the @, 3, €, i) param- plitude and the central frequency are tightened to the station-

eter spacésee[17,19). We choos&=0.5, which is enough &'y values. L .

to be sure that solitons are far enough from the singularity. ' © characterize the soliton interaction, we propose to plot
To create initial conditions in the form of superposition of the “soliton interaction trajectory” on ther(¢) plane,

two stationary pulses, we solve Ed) numerically and ob- whererz_r(z) is the_ separation between the solitons and

tain a stationary one-soliton solutidf(7) for each set of ¢=#(2) is their relative phase. We supposer<¢=. In

parameters. Then this stationary solution is used in the initigfumerical simulations we calculateas the separation be-
conditions tween two maxima and@ as the phase difference between

them. The plots are in the polar frame, i.ecos(p) and

ol 7) =F(7—1(0)/2)+ exp(i bo) F(r+1(0)/2),  (5) :i\s/ier1|§l¢) are plotted as the abscissa and the ordinate, respec-

Strictly speaking, the soliton shapes can change during
the interaction because the dynamical system is infinite di-
mensional. However, it follows from numerical simulations
that these changes are small unless the distansesmaller
than the width of each soliton. So the reduced problem has
IIl. SOLITON INTERACTION IN THE CASE only two dynamical variables and ¢. It is convenient to

OF ANOMALOUS DISPERSION plot them using the polar coordinates.

First, we analyze the special points on this plane. Note
that a small region around the origin is undefined because the

Before considering a general behavior, we study the solidistance between the solitons becomes less than the width of
ton interaction in particular cases of in-phasg=<0) and each soliton. The dynamics of such strongly overlapping
out-of-phase ¢= ) pulses. Let us recall the dynamics of solitons depends on the relative phase between thehidf
the NLS solitons. If¢=0 and all the coefficients on the rhs close to7 and solitons are in the “forbidden zondfilled
of Eq. (1) are equal to zero, initially motionless solitons of region in Fig. Za)], the amplitude of their superposition is
the NLS equation attract each other and collide and thetoo small and the trivial solutions/=0 is formed. If two
repeat this process periodically. In the presence of weaRtrongly overlapping solitons are outside the filled area, they
spectral filtering the motion of solitons becomes slower, bugollide and fuse to one pulse.
the attractive type of interaction is retained at least before the Each critical value on the ling=0,7 (i.e.,ry andr(Bls)) is
first collision[8]. However, if the spectral filtering is strong a special point. The circle with the center at the origin of the
enough and solitons are well separafe(0)>r,, r;~5.66 coordinate frame and radiug can play the role of a sepa-
for B=1], the interaction changes sign from attraction toratrix.
repulsion. Figure 1 shows the soliton separation versios Figure Za) shows the overall dynamics of the soliton in-
different values of the initial separatiog. One can see that teraction on the i, ) plane forD=+1, ¢(0)= *0.95,

Separation r

7(0)=5.703
+«— 7(0)=5.625

wherer (z) is the separation between the solitdtiee mini-
mum possible variation af(0) is determined by the numeri-
cal grid step sizp

A. In-phase and out-of-phase solitons
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F . \ ] saddle point. However, stable and unstable directions inter-
: / ' change in comparison witlp(0)=0.95x, i.e., the phase
% 08 &,r‘ ] tends to zero while the separation increases or decreases,
] ! depending on the position of the initial point with respect to
& ' /v/’ the separatrix.
—1F : &: ] The same dynamics is observed for other values of the
' = initial phase differencésee Fig. 3 This figure shows soliton
;' trajectories for two values ofr(0) and ¢(0)=
“20 2 S é é 0.1w, 0.2m, ..., 0.97. Soliton trajectories that start out-
4

side the circle with radius, round it. Eventually a pair of
in-phase solitons is formed, while the separation between
FIG. 2. Soliton trajectories on ther () plane forD=+1, s%l!t%nsl |ncrea§es:d Notg hthﬁ tr.:;lJ(TctoAr\y fgx(O)—O.fQW,.
B=1, andk=0.5 (solid lines with arrows show the direction of w .IC am_ost Comc'. es.' with 1 e.CIrC e. Another set o tra]e.‘c_
motion). The solid circle shows the center of the frame and theton.es’ Whlch start inside the circle, corresponds .to fus!ng
bound state of out-of-phase solitons; the open circle shows théolltons. This plot (_:Iearly shows that the special point
threshold between attraction and repulsion for in-phase solitond." 1:0) is @ saddle point.
The dashed line gives the circle with radiug. The filled area

corresponds to the “forbidden zone(a) ¢(0)=*0.95r and (b) IV. THE CASE OF NORMAL DISPERSION
¢(0)=*0.057.

Separation 7

A. In-phase and out-of-phase solitons

and several values of the initial separatiq@) in the vicin- By analogy, we start from the special cases of in-phase
ity of r2. It can be seen that this is a saddle point in termgand out-of-phase pulses. As for anomalous dispersion, we
of the theory of dynamical systems. Indeedtends to the found numerically the stationary solution for each set of pa-
stationary value, while the variation of the phaserametersand use the linear superposit®of two pulses as
|#(z) — #(0)| increases. Note that the separation remains alinitial conditions. For the case of normal dispersion, the adia-
most constant, until the phase becomes close to zero. THtic perturbation theory cannot be applied, but we still use
further dynamics is mainly determined by the ratior¢) relations(4) between the coefficients on the rhs of ED.for
andr,. If r(0)<r,, the separation starts to decrease, i.e.convenience. It turns out that f@#~1 the amplitude of the
the solitons attract each other and eventually fuse to a singl@tationary pulse in normal dispersion is approximately the
pulse. Ifr(0)>r,, the trajectory rounds the circle and tends Same as for anomalous dispersion, but the pulse width is
to the x axis, while the separation increases, i.e., solitong)early twice as large. _
repel each other. One can see that one of the trajectories FOr the case of positive dispersion, the bound states were
crosses the circle so that the actual boundary between tffgund for both the in-phase and out-of-phase solitons. For
regions of attraction and repulsion is determined by a slightlyn-phase solitons, numerical study shows that the pulses fuse
deformed circle. Note that the system under consideratiofP & single pulse for(0)<r3, r3=~7.7, form a bound state
plays the role of a “phase equalizer” for the soliton pair in for rs<r(0)<r, (a separation in the bound state is
the sense that the phase difference converges to zero, startifgl~8.56), and repel each other fo(0)>r,, r,~11.84.
from an arbitrary value. Note that the pulses in such bound state are much farther
Another case is depicted in Fig(8, which is similar to  apart from each other than in the bound state of out-of-phase
Fig. 2(a) except for the initial phase(0)=+0.057. This  solitons in the case of anomalous dispersion.
can be considered a magnified version of Fig)20ne can Out-of-phase pulses form the bound state rf(d)<<rg,
clearly see that the circle with radiug is a separatrix for the wherers=9.41, and the separation between the pulses in the
soliton interaction. The poinp=0 on this curve is again the bound state )= 4.8. Forr (0)<2.15 pulses annihilate and a
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FIG. 4. Soliton trajectories on the (¢) plane forD=—1. (a)
#(0)==0.057 and (b) ¢(0)==0.957. FIG. 5. Dynamics of thew/2 out-of-phase solitons for

o . . . D=-1,r(0)=9.922, and$(0)=— /2. (a) Phase plane antb)
trivial solution =0 is formed, while forr(0)>rs pulses  me domain.

repel each other.

) this occurs strongly depends @1i0) [it increases as(0)
B. Arbitrary phase increasek

Figure 4a) shows the soliton interaction on the phase Finally, using our method, we discover one more bound
plane forg(0)=0.057. The tendency of the phase dynamics state for¢(0)= /2 andr(0)~9.922. When the initial con-
is opposite the case shown in Fig. 2: the absolute value of thdition is close to the point corresponding to this bound state,
relative phase increases and passes the point wheh®th the soliton separation and the relative phase between
¢==m. Before this point, all trajectories demonstrate apulses oscillat¢Fig. 5@)]. The closer the initial condition to
clear tendency to move near tlﬁ&) circle. Hence the Specia' this Stationary pOiI’lt, the more oscillations can be observed.
pointr{ is also a saddle point. After reaching thephase 'E other ‘,"’?rdsj the t'rdajeciltorle's a;]e OUIQO'SIQ ?plrals,Tsho tgat
difference, solitons are attracted by the special pdgﬁtand the specia point Inside L emis t e_unsta € Tocus. 1he dy-

) . . 3) ; namics of the soliton interaction in time domain is shown in

they continue their motion along thle(BS circle. Finally,

Fig. 5(b). Note th try of the field bet the twi
when the phase differen¢e|~3/4, the trajectories fall to 'g. S(b). Note the asymmetry of the field between the two

; . . i gulses.
the center of coordinates, i.e., solitons fuse to a single pulse.

We have to emphasize that the value of the phase difference,

when the fusion occurs, is almost independent(&f). This V. DISCUSSION AND CONCLUSION

fact cannot be established without use of thed#) plane. As we can see from the results obtained, all stationary
However, the fusion occurs at different distances, dependingoints on thep=0,7 line are of saddle type. If the BSs on
on the initial soliton separation. this line is stable to perturbations of it is unstable to phase

For ¢(0)=0.957, we observe very similar dynamifsee  perturbations and vice versa. We can compare these results
Fig. 4b)]. In this case the absolute value of the soliton phasevith the results obtained ifi20] for Hamiltonian systems,
decreasesThere is no contradiction with the case shown inwhere soliton BSs were also found to be unstable.

Fig. 4a), as increasing of the absolute phase occurs along the At the same time, although all the bound states studied
r(BZS) circle, while decreasing takes the plane along n@é appear to be unstable, they clearly manifest themselves in the
circle. For|¢|~m/2, solitons fuse. Again, the value of the interaction. If we choose initial conditions close to the spe-
phase difference at which the solitons fuse is almost indeeial point, solitons propagate a long distance before eventu-
pendent on the initial separation, although the distance wheraly fusing or moving apart.
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These results allows the understanding of an earlier papéion of initial conditions with respect to the special points
[21], where the BS of in-phase solitons was discovered. Thand the separatrix on the () plane. The special points
authors of that paper claimed that the BS is stable in a smaflorrespond to bound states of two solitons. All the bound
asymmetric perturbation, although it decays if the perturbastates studied appear to be unstable with respect to either the
tion is strong enough. Apparently, their simulations werephase or separation perturbations. Despite this, bound states
similar to those shown in Fig.(8). After being slightly per- play a pivotal role in the overall dynamics of two-soliton
turbed, the BS propagates a large distance with almost corateractions.
stant separation between solitons; however, eventually the
solitons fuse.to one. o _ . ACKNOWLEDGMENT
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