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Theory and simulation of classical and quantum echoes
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Echo phenomena occurring in various physical systems are investigated, and analytical results are checked
against computer experiments. It is found that Coulomb self-consistent interactions reduce the amplitude of the
echo. Proof is given of the possibility of refocusing an initially localized packet by periodically kicking the
particles, and the relation between this behavior and chaotic diffusion is discussed. Quantum echoes are
investigated via simulations of the Wigner equation in the case of an anharmonic oscillator. It is shown that
quantum effects allow for the appearance of linear echoes. The reversibility properties of classical and quantum
many-particle systems are discussgil063-651X96)09206-9

PACS numbd(s): 03.20:+i, 03.65—~w, 52.35-g

[. INTRODUCTION erations carried out in laboratory experiments involve a large
number of particles, macroscopic reversibility should be, in
Although microscopic physical laws are symmetric in principle, more easily testable than microscopic velocity re-
time, and therefore reversible in principle, macroscopic sysversal. This is the case, for example, of plasma wave echoes,
tems generally display an irreversible behavieee, for ex- first discovered theoretically by O’Neil and Godld], and
ample, LebowitZ1] and references therginAs pointed out  subsequently observed in the laboratp4y.
by Lebowitz, two ingredients are necessary to observe irre- O’Neil and Gould work out a perturbative theory of
versibility. The first one is the fantastically large number of plasma wave echoes, which, like most perturbative ap-
degrees of freedom contained in a macroscopic system conproaches, soon becomes complicated, and of difficult physi-
pared to a microscopic one. The second ingredient is relatechl interpretation: one of the aims of our paper is to provide
to the observer who, for practical reasons, can only measursome explicit numerical solutions, which may help our intu-
macroscopic, averaged quantities, such as density, tempeliion and give more insight into the analytical treatment. In
ture or pressure. In this work, we make use of several microparticular, O'Neil and Gould show that the echo still appears
scopical physical models, all of which are time reversal in-when there is no electrostatic interaction between the par-
variant (except for one cageand show how “apparent” ticles of the plasma. However, the effect of the self-
irreversibility can rise when the two conditions mentionedconsistent field on the echo is not evident from their work:
above are fulfilled. We call this irreversibility “apparent” we investigate this point in detail by means of numerical
because the detailed, microscopic description is still reverssimulations. These computer experiments are carried out
ible in principle, and there is no loss of information during with a Vlasov Eulerian codg5,6], which has proven to dis-
the evolution. However, this microscopic information is notplay a very low level of noise compared to particle-in-cell
easily accessible: for example, it may be contained in theodes.
highly intricate structure of the phase space distribution In a second group of simulations we neglect the self-
function. Thus, in practice, for an observer measuring maceonsistent interaction between the particles, which therefore
roscopic quantities, the system displays an effectively irrecan travel freely and are only subjected to external fields. In
versible behavior. this case, a different initial condition is used, in which all
If one reverses the velocities of all the particles containegarticles are spatially concentrated in a region of very small
in the physical system, the initial condition will be recoveredsize compared to the total box. Some interesting phenomena
exactly. This is of course due to the fact that the underlyinghen arise, and we show that it is possible to prevent phase
dynamical laws are time reversal invariant. However, velocspace filamentation by periodically applying a sinusoidal
ity reversal is a microscopic operation, very sensitive to anyulse. For these simulations, the integration of particle tra-
perturbation, which can be performed with utmost difficulty jectories is exactapart from round-off errojs therefore we
in laboratory experimentgand even in computer simula- adopt a Lagrangiarparticle code instead of an Eulerian
tions, given the finite number of digits availapl&@his kind  one.
of microscopic reversibility has indeed been observed in The last part of the paper is devoted to the investigation of
very refined spin echo experimeritg]. A more interesting quantum echoes. The Wigner picture of quantum mechanics
situation arises when one can induce reversible behavior by7,8] constitutes a valuable model, since it is based on a
means of a macroscopic operation, although such a reverphase space representation, similar to the classical one. A
ibility will generally be imperfect. Since most practical op- kinetic, Eulerian code, recently developed by Suh and co-
workers[9,10] has proven to be an excellent numerical tool.
Here, we investigate the effect of a nonzero Planck constant
“Present address: United Kingdom Atomic Energy Authority, Fu-on the formation of a linear echo for noninteracting particles
sion, Culham, Abingdon, OX14 3DB, United Kingdom. confined by a prescribed anharmonic potential.
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II. SIMULATION OF PLASMA WAVE ECHOES 0.02 . T .

The physical system under consideration is a one-

e
dimensional, collisionless, electrostatic plasma, formed of %”
mobile electrons and a homogeneous, maotionless, neutraliz- §
ing background. This system is described by the Vlasov- g 001 .
Poisson equations, which, in dimensionless variables, read as 3
|53
of  of _ of IE =
E-FU&-FE%—O, R—dev—l. (1)
0.00 Ao ] A
Note that Egs(1) do not contain any manifestly irreversible 0 20 40 60 80
term (such as, for example, the collision integral in the Bolt- time
zmann equation for gas dynamjict Eqgs.(1) space is mea-
sured in units of the Debye lengiy, = (e,T/ne?)Y?, and a FIG. 1. Evolution of the electrostatic energy with tinfex-

time in units of the inverse of the plasma frequencypressed respectively in units ofv3, andw, 1. The echo appears at

wp=(ne?/ e;m)¥2 Heren is the plasma densitye andm  t=60w,*.

are, respectively, the electron charge and mass, and the tem-

peratureT is measured in energy units. The Debye length¢,=k,x+kov(t— 7). Taking the phase differencep,

and the inverse plasma frequency represent the typical space¢,, and requiring it to be stationary with respectitoone

and time scales in a collisionless plasma. In particular, colfinds

lective oscillations have a frequency closedq, and, for

small temperatures or large wavelengths, obey the following d _ _

dispersion relationw?= w5+3Vik?, where V= (T/m)"? g0 (b2 d0)= (kp—ky)t—ko7=0,

is the thermal velocity. One of the most interesting features

of Egs. (1), first realized by Landau, is that density modula- which gives the echo time

tions are exponentially damped, with a damping rate

v.(K), even if the system does not contain any form of ke

“truly” irreversible, collisional dissipation(11]. This colli- techo_m“

sionless damping is essentially a phase mixing phenomenon.

In our case, the initial state is spatially homogeneous, andhe numerical simulation of plasma echoes is a difficult

Maxwellian in velocity space, with thermal velocitfy,=1.  problem, and examples of it do not abound in the literature

At time t=0, we excite an external field in the plasma, of the[12,13. In fact, the numerical method must be able to keep

form the information contained in the highly filamented distribu-
tion function until the time of the echo. In our simulations

E;=a;cogkx)a(1). (20 we make use of a kinetic, Eulerian cofg6], which solves
o : . . the Vlasov equation by direct discretization of the phase
This field induces a velocity modulation, and right after, aspace. Such a code displays a very low noise level, even in

gznms'% mol\(lj:tlgtlorr]](,)wv;%:rh ?G’:tnttjhae"y dids(tarcigztsior?y ftlj‘:cnt(ijoanuzones of low density, and is thus to be preferred to usual
pIng. ’ ’ - particle-in-cell codes. As an example, we report the results of
f(x,v,t) never loses memory of the initial pulse, although

: X a simulation with the following physical parameters:
the spatial density does, and so does, of course, the electrlc)\D:O_483, kohp=0.966, w,r=30, ay=ay=0.1Vy,.

. . . . - . . . _ l

|f;)e|ll|? _Ti?]'Sf;;r?;'t?:zcﬁﬂagetrhiftgg Ipegerse(fjl??rtzgg(r)rlrzr?:%se Note that, in our units, the’s represent the velocity modu-
Y- oo Sgre lation due to the pulses expressed in units of thermal veloc-

Vlasov representation is virtually infinite, anth) the den-

sity and the electric field are macroscopic, averaged quant{gy' Figure 1 shows the electrostatic energy as a function of
ties (unlike the distribution function After the first wave has ime: the damping of the two pulses and the subsequent echo

damped away, we launch a second wave, at ime: are accurately.reproduced. The echo wave number i_s indeed
' ' ' k,—k, as predicted by the theory. The Landau damping rate
E,= a,cogk,x) 8(t— 7). 3) for the first pulse isy, =0.4w, [11], and even larger for the
second pulse. The two pulses and the subsequent echo are
The density modulation induced by this second pulse alsthus well separated in time.
decays away: however, after a time much longer than the The plasma echo is chiefly a ballistic phenomenon and it
inverse Landau damping rate of the first two pulses, a thirds important to understand the effect of collective plasma
wave appearéthe echg as a modulation of the density at the oscillations on its appearance. In order to address this point,
wave numbek..n=k,—k;. The echo is due to a nonlinear we perform a set of numerical simulations in which we let
interaction between the two pulses, and is essentially a phéhe Debye length vary. For noninteracting partichgs=
nomenon of beating between two waves. and, by decreasing the value Xf , we switch on collective
Before turning to the numerical simulations, we show thateffects. However, both the thermal velocity and the total
the echo time can be obtained by a very simple argumentength of the plasmalL are kept fixed, and since
The first pulse (2) launches a wave with a phase wp=)\51Vth, the plasma frequency also changes. Therefore,
$1=kix+kjvt; the second puls¢3) does the same with we no more measure time and space in unitogfand A,

4
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but rather in “ballistic” units related toL for space, and

L/Vy, for time. Finally, the amplitude of the two pulses is -8l . . .
rescaled in order to have the same velocity modulation; i.e., 0.00 0.25 0.50 0.75 1.00
the a's are kept constant. X

Although the previous description might seem compli- FIG. 3. Phase space representation of 2000 parti@esat
cated, we are just performing an experiment in which wet=0; (b) after filamentation has occurred and before the application
progressively increase the particle charmgewhile keeping  of the pulse at=T"; (c) at the time of the echo=2T. Space,
all other parameters constant. Thus, the Debye length and thiee, and velocity are expressed, respectively, in units,of, and
plasma frequency scale asjocq‘l,wpocq. We present a L/T.
group of typical simulations for which we take
a1=a>=0.05y, ko=2m/L=2m, ki=2ky, ko=3kg, and  any other truly irreversible phenomena are also very efficient
L)\gl equals, respectively, 0, 0.1, 0.15, and 0.2 in Figsin preventing the formation of the echo, inasmuch as they
2(a)-2(d). These figures show the real part of the Fouriererase the small scale correlations of the distribution function.
component of the electron density at the wave numbeiThis point has been addressed in the original paper by
Kecha= Ko—Kj . O'Neil and Gould[3] for the case of Coulomb collisions:

The echo amplitude is found to be maximum for nonin-their estimate is that Coulomb collisions are important when
teracting particles. WheRp <0 an oscillatory behavior ap- vgow§r3> 1, wherewvy is the collision frequency at 90 de-
pears, due of course to the plasma collective effects. At thgrees. Some numerical simulations illustrating the effect of a
same time, the amplitude decreases, and lfa;'=0.2  truly irreversible term will be presented in the next section.
(k1Ap=0.628) the echo has virtually disappeared. Our nu-

mer.ical results thus prove tha_t collective interactions can ef- Ill. PARTICLE FOCUSING
fectively destroy the echo. This phenomenon was partly rec-
ognized by Coste and Peyraufl4], although their Having proven that the echo is mainly due to ballistic

complicated analytical treatment could not give a qualitativemotion, we now completely disregard the self-consistent
picture of this phenomenon. Of course, collisional effects offields. In this case, the particle trajectories can be integrated
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exactly, and a Lagrangian code is more convenient. Further- 1
more, we want to investigate the evolution of an initial con- Pnztf f f(X0,v0,0)exf —iknX(t,Xo,v0) JdXodv
dition where all particles are concentrated in a small region
compared to the total length of the domain. More precisely 1 =
the particles are randomly distributed over a rectangle =i > (—1)83Jkne(t—T)]exd —i(ky—Skp)xi]
X <X<Xp, —Vn<V<V,,, with x;=L/4, x,—x;=0.04_, =
V,=5LT"! (the unit of time T is defined below The
boundary conditions i are again periodic. Contrary to our Xf dvog(vo)exd —ivo(tk,—Tsky)]. (7)
previous experiments, we do not apply a pulsg¢=aD. In
fact, the purpose of this first pulse was to initially create an
inhomogeneity in the density, which is now already built in
the S-like initial condition. After a timeT, we apply a sinu-
soidal pulse of the forne sin(2emx/L), wheree is the o s )
velocity modulation. The evolution dfi,=2000 particles is exp(—|asm6)=sz2w (—1)>s(a)expiso),
illustrated in Fig. 3: it is seen that && 2T the initial state is
partially reconstructed. By counting the number of particles ) i )
that fall again in the regiom;<x<x,, we find it to be where thel are Bessel functlpns of the first I§|nd. .
roughly 35% of the total number of particles, while a uni- !f the support of_trl1e functiog(v) in velocity space is
form distribution(which would be expected when filamenta- Much larger tharl T7, the last integral in Eq(7) can be
tion in phase space has occuiredould give of course Well approximated by & function §(nt—msT). Sinces
(X,—X1)/L = 4%. Note that, in this group of simulations, we Must be an integer number, the timenust satisfy
normalize time tol and length td., and all figure axes are
expressed in normalized units. In this particular case the am- tn
plitude and wave number of the perturbation are 9= F p, = Integer. ®
£=0.179.T ' andm=2.

If the particles are initially located aroung (with a small
dispersionAx;<L), we have found “empirically” that the
final positionx; is given by the formulgfor m=2)

In deriving Eq.(7) we have made use of the identity

o)

By performing the sum in Eq(7), and remembering that
(—1)°=exp(xiws), we obtain the following result:

1 _ t t L
Xi=—Xx;+L/2. (5 pn=EJq[kns(t—T)]exp{—|an1—f xitf ﬁ”
€)

This expression is invariant whes andx; are interchanged.

We have found that the echo amplitude is maximum when; e replaced the Bessel functidy with a constant, Eq(9)

X =X;=Xo, Which givesxo=L/4. This was the choice of the \yoyid be the Fourier transform of & function centered at
previous example. the point

In order to give a theoretical basis to the “empirical”
formula (5), we adopt the same Lagrangian approach of t fL
O’Neil and Gould[3]. The trajectory of a single particle with X;= ( 1— _) O — (10)
initial conditions q,v,) is given by the following expres- T/77T 2m
sion, valid fort>T:
Substituting the parameters of our previous simulations, i.e.,
t=2T andm=2, Eq.(10) turns out to be identical to E¢5)
[in this case, the second term on the right-hand side of Eq.
(10) becomes+L/2, and, because of periodicity, both signs
whereky,=27m/L. Liouville’s theorem states that the dis- gjve the same contributignOf course, with different values
tribution functionf and the volume elememtxdv are both of t andm, it is possib]e to recover a greater Variety of

X(t,XO,Uo):Xo+tvo+8(t_T)Sir{km(X+UoT)], (6)

conserved along a trajectory. Consequently echoes, but, for the sake of simplicity, we focus our study on
the case=2T andm=2.
f(x,0,0)dx dv = f(Xg,v0,0)dXdvo. It is clear that, for the relation10) to be approximately

true, the Bessel functiody[k,e(t—T)] must be a slowly
) o o decreasing function af, since in this case the Fourier trans-
Now, assuming the initial distribution to b&(Xo,v0,0)  form of p,, is highly peaked around; . In order to investi-
=9g(vo) 8(xo—X;), we can calculate theth component of  gate this point, we need to study the behavior of the function
the Fourier transform of the spatial density at titne J,(Cn) for n>1 [15]. It turns out that three asymptotic ex-
pressions hold, respectively, for<C<1, C>1, and
1 C=1:
anEJ J f(x,v,t)exp —ik,x)dx dv.

exdn(tanhe—a)]
i o ) Jn(nsechwy)=
With the help of Liouville’s theorem, we obtain Vv2mntanhy

(«>0), (119
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FIG. 4. Phase space representationtat2T for the case 2me

£=0.79.T L. The echo appears &=0.79., as predicted by the

theory. Space, time, and velocity are expressed, respectively, in FIG. 5. Amplitude of the echo as a function of the velocity

units ofL, T, andL/T. modulation 2re. The solid curve is computed from the theoretical
result Eq.(12) in the casem=2t=2T. The dots are results from
computer experiments. Space, time, and velocity are expressed, re-

T
Jn(nse®)= \/2/(7Tntar18)cos< ntanBd—ngB— Z) spectively, in units oL, T, andL/T.

- =" d—ZAi Ko (t—T) T sin( koA
(O<'B<E)' (11b A=f AP(X) X_T+n:1 Jglkne(t— )]kn—Lsm( WA,
(12

Jn(n)een =12, (119 whereq is given by Eq.(8). In deriving Eq.(12), use has
been made of Egs.(8)-(10), and of the relation
Restricting ourselves to the case of our previous simulation_(—x)=J,(x), and the mod@=0 has been treated sepa-
the Bessel function we have to considerJigk,eT), and rately. Note that the first term of this series gives the fraction
thereforeC=2meTL™ 1. When 0<C<1, Eq. (119 applies  of particles to be expected in the interfak—A,x;+A] in
and o>1: the Fourier coefficienp, therefore falls rapidly the case of a uniform density, i.e.A2L. The series of Eq.
(exponentially with n, and the particle densitp(x) will (12) is convergent and its sum can be computed numerically.
cover almost uniformly the intervdlO,L]. This is natural, In order to compare with a computer experiment, we have
since the echo must disappear for-0. For @ approaching performed a simulation witm=2,t=2T,27e=1.28.T 1,
zero, the exponential in Eq11g becomes almost constant with zero spatial dispersion in the initial conditigall par-
and then™ Y2 dependence dominates: this results in more andicles are initially located at;=0.25.=Xx;) and a larger dis-
more particles accumulating a at the timet=2T. The persion in velocity space [,=19LT ). We obtain
value =0 (corresponding t€C=1) is singular, and in this A=0.436 for the computer experiment, ad=0.431 by
case Eq(11g applies. The maximum echo amplitude is to summing the series of Eq12). The small error comes from
be expected nearby the val@=1, since then” ' depen- the finite number of particles used and from the finite disper-
dence is the slowest one compatible with the expressionsion of the initial condition in velocity space. The function
(12). In our variables this means=L/2#T, and, with the A(2mwe) is plotted in Fig. 5 and displays a number of relative
units adopted in the simulatonL&ET=1), e=1/2=w maxima. The first one is located atr2=1. The other
~0.16, very close to the value=0.175, which was found maxima are located at points for which f@&n B=2p, for
“empirically” by computer experiments. p=1,2,3,..., and se6=2we, according to Eq(11b). At
WhenC>1, Eq.(11b) applies, and the Fourier coefficient these values of, the cosine in Eq(11b) shifts the echo
pn behaves liken~ 12 its dispersion inn decreasing with position of a multiple of the box length. The theoretical
increasingC=se@, so that forC—oo the densityp(x) curve of Fig. 5 has been checked against various computer
again becomes uniform. Furthermore, the cosine in(Eth) experiments, with good agreement between the two.
should split the echo in two, and shift its position of a quan- When most of the particles have focused aromrex; at
tity Ax;= = (tan8— B)L/27, where seB=2meTL™ 1. This  the timet=2T, the system is in a state similar to its initial
point has been verified by numerical simulations taking acondition. Thus, if we let it evolve, and then apply another
value ofe=0.75 such af2\x;==*L/2. In this case, the two pulse att=3T, a new focusing will take place dt=4T.
parts of the echo will recombine at=x;+L/2=0.75_ Generally speaking, if we apply a pulsetat(2l—1)T, for
(Fig. 4). This last point could not be guessed on simplel=1,2,3,.. ., theparticles will focus arounds for all times
grounds, and reassures us of the correctness of our theoryt=2IT. Computer experiments confirm this behavior: the
The amplitudeA of the echo can be estimated more pre-number of particles falling in the initial region around
cisely. We integrate the density, E@), in the vicinity of  x;=0.25_ [shown in Fig. €a)] strongly peaks at=2IT.
X; over an interval of width equal to/& More interestingly, there is no sign of decaying and, after a
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FIG. 7. Phase space representation of 2000 particles for the
interval x. <x<x. as a function of time. A pulse is aoplied at same case of Fig. 3. Now the particle velocity has been modified of
! 2 - AP pp a random quantityde at t=T. (8) Semax=0.3¢;(D) Sema=3¢.

t=T,3T,5T, .... Thedensity peaks at times=2T,4T,6T, .... . . . . .
. - Space, time, and velocity are expressed, respectively, in units of
(b) Phase space representatiori-al0T. The periodic pulses sup-
) . X . - L, T, andL/T.
press filamentation and the echo is still clearly visible after ten
pulses. Space, time, and velocity are expressed respectively in uni
of L, T, andL/T.

FIG. 6. (a) Fraction of the particles with position in the initial

fsg rmL~1<1) the trajectories are periodic and each particle
keeps an approximately invariant velocity: all spatial inho-

large number of pulses, peaks of 30% are still observed. A@ogeneltles in the initial condition are damped away by

e o hase mixing. In the chaotic regime4fmL~1>1), the par-
t=20T (after ten pulsesthe echo is still clearly visiblgFig. 'Ei)cles experignce a “random” gequé(nce of kigks eaF\)ch one

6(b)]. This result is surprising, since one would expect a_. . : L ) ; .
. . ..~~~ "either increasing or reducing its velocity, which results in a

smaller and smaller fraction of the particles participating in andom walk in velocity space. The intermediate regime

the echo. It proves that the background particles, althougﬁ y space. 9

spread over the entire box in an apparently random way, stilgﬁgr?/;ocg 1) lﬁg;eipor;gii;?a?e|rezoﬁi?sceihzogggnnéewgs.n
keep memory of their initial condition. y P PP y €d

tween two filaments in velocity space after at timéwhich

Now, we note that our previous prescription defines a . o S
well-known Hamiltonian dygamical s?/stem pthe “periodi- 'S of the orderL/m7). When this condition is satisfied, the

cally kicked rotor” [16] with a periodr=2T. The equations system responds to the external excitation by resonantly os-
of motion for the kicked rotor are cillating at the same frequeney *, but with a dephasing of
half a cycle. This response is seen as an “echo” bringing

o back a large number of particles to their initial positions at
dx dv i t=7 273
— =y, —:82 S(t—Il7)sin(2amx/L). TTET,OT, - ) ) ) )
dt dt = Finally, we briefly investigate the effect of introducing a

truly irreversible term in our original equatiorfae remind
It is also known that such a system becomes chaotic whethe reader that all dynamics treated so far are time reversal
ermL~1>c, wheree is the velocity modulation due to the invarian). In order to do so, we slightly perturb the particle
pulse, anct is a number of order unity. When this inequality velocities right after the sinusoidal pulsetatT. The per-
is satisfied, the particles diffuse in velocity space with a dif-turbationde is a random number uniformly distributed in the
fusion coefficient D=m?e?7~ 1. Our simulations have interval[ — emax 0 max. We expect the echo to disappear
proven that the echo amplitudes reaches its maximum valuehen Se,o=¢, since this would destroy the correlations
when ermL~1=c, i.e., at the borderline with the chaotic hidden in velocity space. The numerical results confirm this
regime. Therefore, we have shown the existence, for a vergonjecture (Fig. 7): the echo is still quite visible for
simple dynamical system, of an intermediate regime betweede,=0.3¢, but has virtually disappeared whede
the integrable and the chaotic ones. In the integrable regime 3e¢.
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FIG. 8. Dynamics of noninteracting particles in an anharmonic
potential: time evolution of the kinetic energy in the classical case
(H=0). Arbitrary units.

IV. LINEAR QUANTUM ECHO

In order to evaluate the quantum corrections to classical
dynamics, it is useful to adopt the Wigner representation
[7-10Q), according to which quantum mechanics can be ex-
pressed in a phase space formalism. The quantum distribu-
tion functionW(x,p,t) has all the good properties of its clas-
sical counterpart, except positivity. The evolution \&f is
given by the Wigner equation, which replaces the classical
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FIG. 9. Same as Fig. 8 in the quantum casg.H=0.16; (b)
H=0.12;(c) H=0.08. Arbitrary units.
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FIG. 10. Same as Fig. 8 witte) H=0.06; (b) H=0.04; (¢
H=0.02. Arbitrary units.

where ¢(x,t) is the potential.

We make use of the Wigner equation to show that quan-
tum mechanics allows for the appearance of linear echoes.
Evidence of this phenomenon has already been pointed out
in the literature[17—-21]; our work attempts, however, to
solve the Wigner equation directly, while many previous
studies focused on the numerical solution of the Sdimger
equation. This is an important point for a number of reasons.
(1) The Wigner representation enables us to work with the
most general class of quantum mechanical mixed states,
whereas only pure states can be represented by a@obes
wave function.(2) Phase mixing and echoes are statistical
conceptginvolving a large number of particlgsand there-
fore classical mechanics should be comparedtadistical
guantum mechanics, rather than to single particle quantum
mechanics(3) The approach to the classical limit is a very
delicate operation in the Schtimger formalism(a semiclas-
sical state is represented by a strongly oscillating wave func-
tion), whereas it is very natural in the Wigner formaligame
just lets# go to zerg: it is thus possible to compare the
evolution of exactly the same initial condition for different
values of Planck’s constan®d) Finally, the phase space pic-
ture allows for a direct visual comparison between classical
and quantum results. In particular, it will be clear from our
simulations that quantum effects prevent complete phase
mixing, which is the ultimate reason for the appearance of
the echo.

We now turn to the numerical simulation of the dynamics
of noninteracting particles in a confining potential. The sim-
plest choice would be the harmonic oscillator, but it can be
shown easily that the dynamics of the harmonic oscillator
has no quantum corrections in the Wigner representation
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FIG. 11. Classical phase space for the anhar-
monic oscillator. For negative, the figures are
symmetric with respect to the origin of axes. Ar-
bitrary units.

3.0

[22]. Therefore, we introduce an anharmonic td23,24],
and consider the following quartic potential:

d(X)= 2 mw?x®+ : mpx*. (14

By injecting this potential in Eq(13), one can easily verify
that the Wigner equation takes the following form:

aw+ p IW 20t o W A'mB W
ot Tmax ~ M@t Bx )07_p_ 4 gpd
(15

Note that only the first quantum correctidin #2) has sur-
vived, and this correction disappears =0 (purely har-

plotted the evolution of kinetic energy against time. In the
classical caseH =0), the kinetic energy relaxes to a station-
ary value: this is due to the phase mixing induced by the
quartic term in the potential.

WhenH is small, but not zero, the kinetic energy also
relaxes to the same value, but, at a subsequent time, an os-
cillation (the ech appears. The evolution of the kinetic en-
ergy is represented in Figs. 9 and 10 for different values of
H. When H decreases, the echo amplitude goes to zero,
while the time of its appearance is rejected to infinity. From
these and other simulations, we have tried to estimate how
the echo time varies as a function Bf. If one takes for
t echothe time of maximum echo amplitude, a rough estimate

monic potential. The relative importance of quantum effects gives Techo”—‘H:’; with 1/%<1M<2/3- This result rules out
is conveniently measured by the dimensionless parameté&tich laws asi™~ or logH™ -, the former being too fast and
H=7%pB/mw>. We have solved the Wigner equation with a the latter too slow. The log dependence has bee proposed as

Gaussian initial condition centered »at p=0, with disper-
sionso,=1, o,=1.5 such asr,o,>%/2 to ensure Heisen-

a typical time of validity of the semiclassical approximation
for chaotic dynamical systeni&5]: since our Hamiltonian is

berg’s uncertainly principle. Other parameters in the definiintegrable, it is not surprising that the classical behavior lasts

tion of the potential arm=m=1,8=0.2. In Fig. 8 we have

for a longer time.
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FIG. 12. Quantum phase space for the same
case of Fig. 11, wittH=1.2. Positive part of the
Wigner function. Arbitrary units.

Figure 11 shows, in the classical case, the phase portrdigft to evolve without any other external intervention. On the
for the evolution of a Gaussian initial stater=0.6, contrary, for the case of Sec. Ill, a sinusoidal pulse is applied
o,=2) in the quartic potential described by H45), with  att=T: it is precisely this intervention that allows for the
w=m=1,8=0.8. The distribution function soon develops a appearance of the echo. Otherwise, in the absence of such a
spiral structure, displaying a very fine filamentation, which ispulse, the corresponding distribution function would fila-
the ultimate cause of the kinetic energy relaxation. The samment, just as in the case of the oscillator. It is, however,
simulation is repeated in the quantum cakle<(1.2). Figure remarkable that a simple macroscopic operation, such as ap-
12 shows the positive part of the Wigner function, and Fig.plying a sinusoidal pulse, can induce a partial reconstruction
13 its negative parfthe respective maxima are in a ratio of of the initial condition.
about 20. We see that complete phase mixing is stopped by It is also interesting to note the different properties of the
a nonzero Planck constant, via the formation of negative iselassical and quantum phase space as far as reversibility is
lands in the distribution function. The correlations amongconcerned. According to Lebowif4], the main signature of
these structures are responsible for the appearance of tirgeversible dynamics is the possibility of ordering a se-
echo. guence of snap-shots of the physical system with increasing

According to Fig. 8, the classical kinetic energy relaxes totime. Thus, in the case of two miscible liquids of different
a constant value, and no echo is ever observed. Physically, @slors (say, ink and watgr a picture showing a localized
we have seen, this is due to phase space filamentation. Thikkop of ink in otherwise colorless water must precéded
behavior might seem in contrast with the results of Sec. llljndeed does in the real wojplénother picture representing a
in which a classical dynamical system displayed a variety ofiquid of roughly uniform color. In the same way, the se-
echo phenomena. There is, however, an important differquence of Fig. 11 for the classical phase space can easily be
ence: in the case of the quartic oscillator, the initial state i©rdered with time: the more filaments are present, the
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FIG. 13. Same as Fig. 12: the negative part of
the Wigner function is shown here. The maxi-
* - mum of the positive part of the Wigner function

" is approximately 20 times larger than the maxi-
mum of the negative part. Arbitrary units.
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“older” the picture. This is therefore a case of irreversible plotted in Fig. 8, the system will effectively behave in an
dynamics, as illustrated by the relaxation of the total, macirreversible way: the kinetic energy oscillates and then de-
roscopic kinetic energyFig. 8 (incidentally, this is so even cays to a constant value, but the oppo&igcillations arising

if our dynamical system is integrable: irreversibility is a spontaneouslynever occurs. Of course, the fact that this
separate issue from integrability and chaos, as pointed out bgystem is integrable has an impact on the dynamics. Since
Lebowitz[1]). The reader might be surprised that a simple,the oscillators are independent and each of them preserves its
anharmonic oscillator turns out to be an irreversible system ienergy, the accessible region of phase space is greatly re-
we accept the above definition of irreversibiliiyhich is a  duced. For example, if the initial distribution occupies an
very plausible and easily testable gn€o dissipate any pos- annulus of energ¥; <E<E,, points outside this region are
sible confusion, we stress that the macroscopic physical sysot of course accessible. However filamentation still occurs,
tem that we are considering it a single oscillator, but and the total kinetic energy will still relax as in Fig. 8.

rather a collection of an infinite number of independent os- On the other hand, for the quantum phase sgkigs. 12
cillators. Each individual oscillator represents one of the mi-and 13, there is no self-evident way of arranging the pic-
croscopic constituents forming our macroscopic systemtures with increasing time, and therefore no irreversible be-
which is described by Eq15) with #=0, i.e., by Liouville’s  havior. Heuristically, this can be understood by the following
equation. Note that we are just rephasing the textbook defiargument. If we define a microscopic constituent as a region
nition of a statistical ensemble, only from a more “realistic” in phase space of volunte, the classical, macroscopic sys-
point of view: for us, each element of the ensemble is not aem contains an infinite number of microscopic constituents
convenient fiction, but a real constituent of some macro{the individual oscillators referred to in the previous para-
scopic physical object. For an observer who can only meagraph. On the contrary, the number of microscopic constitu-
sure macroscopic quantitiésuch as the total kinetic energy ents contained in the quantum system is finite, and propor-
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tional to o,o,/fi. When this ratio is not large, some spatial region, without any appreciable losses for very long
reversible behavior is to be expected. In this case, in fact, thtémes. This is an effective way of suppressing phase mixing
first of the conditions for irreversibility mentioned in Sec. | by means of a macroscopic operation. This regime is situated
has been violated. The onset of irreversibility is thus, at leasth between the integrable and the chaotic regimes of the pe-

in this case, closely related to the relative importance ofiodically kicked rotor. _ _ _
quantum effects. Quantum echoes have been investigated in the case of an

anharmonic potential by making use of the Wigner formal-
ism, which expresses quantum mechanics in the familiar
phase space representation. It was found that quantum me-
In this paper we have investigated the properties of a fewchanical effects prevent complete phase mixing, and conse-
dynamical systems that are invariant with respect to timequently allow for the appearance of a linear echo. The results
reversal, and nevertheless display an effective irreversiblebtained have been interpreted in terms of the reversibility
behavior for suitable macroscopic quantities. Plasma waveroperties of our physical system. In particular, we have
echoes are particularly interesting in this respect, since thestressed that irreversibility aris€$) because the number of
represent a nice example of partial reversibility, which ismicroscopic constituents.e., degrees of freedoncontained
triggered by a simple macroscopic operati@n instanta- in a macroscopic object is extremely large, d8i because
neous sinusoidal velocity modulatiprlThis kind of macro- an observer can only measure macroscopic quantities. Our
scopic reversibility is, in our opinion, more interesting than physical objeci{an infinite collection of anharmonic oscilla-
the microscopic reversibility due to velocity reversal. Wetors) has an integrable dynamics, nevertheless it behaves ir-
have shown that not only collisional damping, but also col-reversibly as far as macroscopic observables are concerned.
lisionless self-consistent interactions can effectively reduc&Vhen quantum effects are taken into account, the first of
the amplitude of the echo. The echo is therefore a typicallfthese conditions may not be satisfied, and a reversible behav-
ballistic effect: to prove this, we have performed a series ofor is observed.
computer experiments in which we progressively switch on We have performed a more extensive investigation of the
collective effects by increasing the particle charge. reversibility properties of classical and quantum systems in a
When the initial condition is highly inhomogeneous previous publicatior{10], to which we refer the interested
(* &like™ ), only one pulse is needed to obtain a variety ofreader. It is our feeling that this point deserves further inves-
echo phenomena. By periodically repeating the pulse, onggations, and could shed new light on the subtle problem of
can focus a considerable fraction of the particles in a smalihe semiclassical limit.

V. CONCLUSION
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