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Penetration of electromagnetic velocity fields through a conducting wall of finite thickness
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The penetration of electric and magnetic velocity fields through a conductingwitiil e=1, u=1) when
a nonrelativistic charged particle is traveling outside parallel to the wall is calculated for a good conductor in
a perturbation analysis through first order in the velocity rgtiev/c. It is found that the magnetic field
behind the conducting wall is of a universal character depending only on the displacement of the field point
from the charged particle outside the wall; the field is modified by the presence of the conducting wall but is
independent of the conductivity, the thickness, or the relative placement of the wall. Within the conductor, the
magnetic field depends upon the thickness of the wall but not upon the conductivity of the wall. In front of the
conducting wall, the magnetic field is independent of the conductivity or the thickness of the wall. The electric
field inside and outside the conducting wall depends upon the conductivity and thickness of the wall. In the
region behind the wall, the electric field falls off as®. The currents in the conducting wall are independent
of conductivity but depend upon the thickness of the wall. The electric field in front of the wall exerts a
dragging force on the passing charged particle, providing the energy balance for resistive heating in the wall.
This dragging force increases as the thickness of the wall decreases. The present general analysis extends
earlier work in the literature that treats the special cases of an infinitely thick conducting wall and of a thin
perfectly conducting wall. The ideas involved are unfamiliar to many physicists, who are not aware that
electromagnetic velocity fields have an algebraic behavior inside conductors, which is completely different
from the familiar exponential damping of electromagnetic wave fields. The ideas are of interest in connection
with the electromagnetic shielding of systems from electromagnetic fields of passing charges and in connection
with the Aharonov-Bohm effect where charged particles pass close to conducting soldiB8i063-
651X(96)08906-4

PACS numbd(s): 03.50—-z

[. INTRODUCTION turbation for the case of a thin perfectly conducting wall.
Aguirregabiria, Hernandez, and RivE®| discuss the veloc-
ity fields inside a solid conducting sphere due to the radial
The exponentially-damped penetration of classical elecmotion of a charged particle, again using a nonrelativistic
tromagnetic wave fields into conductors is a familiar subjecierturbation calculation.
mentioned in all the electromagnetism textbooks. However, The only nonperturbation analysis is that of Jofidk
only in recent years has it been realized that the penetratiogho considers a line chargén order to reduce the spatial
of electromagnetic velocity fields is of an entirely different dimensiong moving perpendicular to its length and parallel
character from that of electromagnetic wave fie[ds-4]. to the face of an infinitely thick conducting wall. Instead of a
Whereas wave fields are exponentially damped in condugserturbation in the velocity ratio/c, he uses Fourier analy-
tors, the velocity fields of charged particles have an algebraisis in time; he also allows the conductor to have values of
decrease with distance, the electric fields being sharplglielectric constant and relative permeability. that differ
screened by good conductors, whereas the magnetic fieldgom unity. Jones finds a skin effect when the velocity of the
penetrate even in the limit of a perfect conductor. This newine charge is so high as to be in the Cherenkov radiation
understanding is now referred to in the textbook literafife ~ region where the charge is moving faster than the speed of
but still finds opponent§6]. Also, there is still some dis- light in the medium, but he confirms an algebraic falloff of
agreement in the literaturg]. The present calculation for the magnetic field with distance for lower velocities. How-

the case of a conducting wall of finite thickness represents gver, he arrives at conclusions that are at variance with those

generalization of some previously treated special cases ar{ﬂlijnd r?y the pert_urbatlonl ana]!y;esﬂ of 'Ten_?’]H Jones
corresponds to the situation relevant to experiment. Inds the penetration results o ¢ll] only as the zero- .
velocity limit of his analysis and suggests that the magnetic

field in the conductor actually depends upon the inverse

square of the conductivity, giving no magnetic field inside
The existing research literature involves calculations forthe conductor in the limit of perfedinfinite) conductivity.

the penetration of electromagnetic velocity fields in a num-This is in contrast to the results reported in R¢is-3], and

ber of specialized cases. The initial investigati@hof 1974  those to be reported in the present manuscript, which claim

uses a nonrelativistic perturbation analysis to treat the perthat the magnetic field is independent of the wall conductiv-

etration of fields into an infinitely thick conducting wall ity. It may be noteworthy that these results involving inde-

when a charged particle moves outside parallel to the planpendence of wall conductivity allow superposition to obtain

surface of the conductor. Furff] uses a nonrelativistic per- the steady current limit, which is an exact result of Max-

A. The problem

B. Context of the calculation
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53 PENETRATION OF ELECTROMAGNETIC VELOCITY FIELES . . . 6451
well’'s equations; this limit indeed fits the known experimen-front surfacez=0 next to the charge; this surface charge
tal situation where a magnetic velocity field from a steadyag(’:)O gives rise to an electric field, which fa<0 exactly
current penetrates a good conductor witls 1 as though the cancels the electrostatic field of the point chaegeAt low
conductor were not present. Jones’s Bd) does not give a velocities we expect small modifications of the electrostatic
steady current result for the magnetic field that is indepensituation; we expect new surface charged),, ¥ , of
dent of conductivity. Also, Jones reports recovery of the apfirst order in the paramete® on the front and back surfaces
propriate result of Ref.1] only in the “zero-velocity” limit ~ of the conducting wall. These first-order corrections to the
holding other quantities fixed. The actual range of validity ofsurface charge give rise to first-order correcti@¥ to the
this limit is not suggested. electrostatic fields. The new fields in turn produce currents

The original calculationf1] of 1974 was undertaken in JM=E®/ 7 in the conducting wall of resistively;, which
connection with possible explanations of the Aharonov-then cause first-order magnetic fieBS). For simplicity we
Bohm effect. Experimentalists had accepted the idea that will take the conducting wall to have unit dielectric constant
conduction layer surrounding the solenoid in the effecte=1 and relative permeability = 1, the same as a vacuum.
would eliminate the electric and magnetic fields of the pass- It is natural to use the Coulomb gauge for the quasistatic
ing charge and so make untenable an explanation for thanalysis envisioned here. Then the electrostatic potedttial
effect based upon a classical electromagnetic interaction bés given as an instantaneous integral over the charges
tween the passing charge and the soleriéid Indeed, so p(r',t) 3
poorly known is the velocity field penetration that this erro- (D(m):j md r, @
neous argument is repeated exactly in the 1985 review article

on the Aharonov-Bohm effect written by Olariu and Popescuang the vector potentig is an integral over the transverse

[7]. o _ ) ) current at the retarded time

The velocity field penetration problem is also of interest L
in connection with experiments testing the weak equivalence Ar.t)= Ef J(r' tre) a3 @
principle for antimatter{8]. Experiments with antiprotons, c lr—r'| '

negative hydrogen ions, positrons, and electrons under the

influence of the earth’s gravitational field involve chargedSince the currenti™ is already first order in the velocity
particles moving parallel to conducting surfaces. The dragparametei3, we can ignore the retardation when evaluating
ging forces on the external charges associated with Jouldae vector potentiah through first order ing.

heating by currents caused in the walls of the drift tubes must A further simplification is possible because we are con-

be accounted for experimentally. sidering a configuration that moves with constant velocity
v=iv in thex direction parallel to the wall surface. Thus all
C. Present calculation functions take the fornf(r,t)=f(x—wvt,y,z) and therefore

all partial time derivatives can be converted to spatial deriva-

In the present calculation, we wish to generalize the d's’tives multiplied by a factor of,

cussion of Refs[1,2]. We will give a nonrelativistic pertur-
bation analysis for a point charge moving parallel to a con- d d

ducting wall of finite thickness. In the limit of an infinitely Ef(r’t): _C'B&f(r’t)' 3
thick wall, the results of Refl1] are recovered, and in the

limit of a thin perfectly conducting wall, the results of Ref. But then in the Coulomb gauge through first ordepinthe

[2]. The situation of finite conductivity and finite wall thick- vector potential, which is already first order i, does not
ness is the natural one when trying to understand the applienter the determination of the electric field,

cability of these ideas to experimental situations. It seems to ,

be of considerable interest that the magnetic velocity fields E(r,t)=—Vd— E %E _ p(r’.H a3’ +0(8?).
penetrating a wall of good conductivity have a universal ’ c dt [r—r’|

character that is independent of the conductivity, thickness, (4)

or detailed placement of the wall. _ _
Also, for any gauge through first order

ll. CALCULATION OF THE PENETRATION LY o, )
OF THE VELOCITY FIELDS B(r,t)=V><AEV><Ef md r'+0(p9.
OF A POINT CHARGE
A. Power series solution of Maxwell's equations Thus through ordeiB, the electric field can be evaluated

. . - . from electrostatic theory using the charge density through
The analysis here for a conducting wall of finite th'CkneSSorder,B, and the magnetic field can be evaluated using the

follows a pattern anglogous to th"’}t used n Réfl. we Biot-Savart integral over the currents arising from these elec-
expect to find a solution of Maxwell's equations as a power,

o . tric fields in the conducting wall, as well as from the charge
series in the velocity paramet@=uv/c of the charged par-

ticle moving parallel to a uniform conducting wall. e

The wall here has thickneds extending between the
planesz=—| andz=0, while the charge is located at the B. Volume currents and surface charges
positionéy=ivt+kd a distanceal from the wall. In the static In the volume of the conductor, the continuity equation

limit =0, there is a negative surface char@?}i’o on the for electric charge becomes
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p p Amp It is natural to try to construct a Green function for this
O=—r+V-I=—+V-(E/lp)=—+ ™ (6)  problem by the repeated reflection of point charge images in
the two planes. This gives the formal solutif®] for the
so that charges in the volume of the conductor decrease eglectrostatic potential,
ponentially in time. Hence no charge is expected in the vol-

ume of the conductor. On the other hand, the continuity :_f Gn(r.r )} do’, (13)
equation relates the surface charges to the normal component 2720
of the currentd in the conductor by
- 1 1
0= ;ta'z 0o—J(z=0_ )——C,B %EZ(ZZO) Gu(rr= 2 (|r—(r’+k2n|)|+|r—(Rr’+k2nI)|)’
7) 14
and whereRr’=ix’'+jy’—kz’ corresponds to the reflection of
r=ix'+jy’+kz' in the planez=0. Actually, the series in
d (14) diverges. However, the electric fieltl= — V& obtained
0= g %z=-1" J(z==14) by differentiating term by term involves a convergent series
and is finite.
B —cﬂi B EE ——1) ®) Although we will not use Eqs.13) and(14) directly, the
- ox 7= 7 Az=~14), technique of images that they suggest indeed allows a solu-
tion to our problem. We start by ignoring the surface at
wherez=0_ andz=—1|, are just inside the surfaces of the z= —|, assuming it were infinitely far away. The zero-order
conductor az=0 andz= —I, respectively. Now the zero- (electrostatig solution corresponds to the surface charge
order terms in3 correspond to the familiar electrostatic situ- +(0) = of Eq. (9), which gives rise to electrostatic fields
ation where there is a surface chakgeon the front surface E_o(r.&+4), Which appear to come from a chargee lo-
of the conductor and none on the back, cated at the poing, y=i&,+kd or £ 4=i&,—kd, which is a
—ed distanced on the other side of the plaree==0 from the field

pointr. The first-order electric field iiill) arises from the

first-order corrections to the surface charges. The surface
charge causes electric fields on either side of the wall, which
are related by reflection through the wall. Thus the electric

field E®O)(r,t) would arise solely from the surface charge

. L (1)(0) i ; i
Then from Eqs(7) and (9), it follows that the electric field ©2z=0 - Here the upper zero is a notation that we will need
just inside the front surface of the conductozat0 _ is first later and refers to the number of reflections through the plane

o o=0e(X,y; &, d) = 2l (x— &) 7+ y2+ a7 9

and
a9 _=0. (10)

z=—|

order in 3 z=—1. Then from Gauss’s law and E(L1),
(1) - _ _ (0) 1
E,;/(z=0_)= C7],3 0' (11 O'(ZI:)E)O)ZE(E(ZI)(O)(ZZO_,.)—E(Zl)(o)(ZZO_))

On the other hand, Eq&3) and(10) indicate that the electric 1 cnB
e R _ DOy = 2T 0
field just inside the back surface of the conductor must van- =— EEZ (z=0_)= S x 72=0 (15
ish through first order irB,

EW(z=—1,)=0 (12) since under reflection through the plane 0, thez compo-

> .

nent of the electric field arising from a surface charge

C. Electric fields from image charges changes sign,
The determination of the electric field inside the conduc- E(zl)(o)(z=0+)= —E(zl)(o)(z=0,). (16)

tor through first order irB corresponds exactly to solving the

electrostatic problenV2®=0 in the region—I<z<0 with  The electric field associated with the surface char§B{")

Neumann boundary conditions given by E¢kl) and(12).  follows from Egs.(4) and(9):

Oy R )
_CnB 07 O'e(x ly 1§X1d)(r_r )
EDO(r t)= f } dx'dy’ = —f - dx'dy’
. A T TS [k L ady
cnB d
S X E_o(r,&), z<0
(17)
cnB 9
- -E-er,éq), z>0,

27 0
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where we have replaced the derivativ#dx) o', by a de-  planes will involve an infinite number of iterations. The re-
rivative — (d/0&,) o$2, with respect to the, coordinate of ~ sulting surface charge on the plane 0 through first order
the position&,=i&,+kd of the point charge, and then have In B 1S

taken the derivative outside the integral before switching

back to an integral with respect to. The electric field Tep,2=0= Te(X.Y; &x,d)
E_.(r,&) is the static field of a point charge e located at cnB a &

: ——( > ae(x,y;gx,d+2nl)) (23

27 IX n=0
(r=9 )
E o= —ew, (18)  and on the plang=—1 is

where hereg;=ivt+kd and & y=ivt—kd. The derivative _CnB . . ron+
dldx in Eq. (17) changes the character of the field over to a Tepz=-1""2 9% nzo TelXYigodr[2n+ 1] ).
dipole field. Thus the electric field if17) for z<0 looks like (24

that of an electric dipole o o
The electric fields arising from these surface char@®3

ecnp and (24) and from the original point charge through first
Ly 19 order ing are
located at the position of the point charge, which is passing cnB 9
the conducting wall. On the opposite side of the wall for Eevﬁ(r't):ﬁ&|2;0 E—e(ri§d+2nl)} for z<—I,
0<z, the field in(17) looks as though it were caused by the (25)
same electric dipole but now located at the p@jnt found
by reflection through the plarne=0. cnB 9 *
Although the fieldE™©)(r t) serves as a solution for the Eeg (r,t)= o &[ E_o(r, &y + nEl [E_e(r,&q+2n1)

first-order electric field for the case of an infinitely thick wall

(I—), it violates the conditiorE{!(z=—1,)=0 of Eq.

(12) for the case of a wall of finite thickness. The condition + E_e(r,g_d_zm)]} for —1<z<0, (26)
(12) can be achieved by introducing an image electric dipole

of the same magnitude (199 at the position 8 s

& 4y =ivt+k(—d—2l) corresponding to the reflection of _ Cn

the image dipole a&, through the plang=—I. From the Bep(r ) =Ee(r &0 +Eolr -0+ ﬁa_x| E-eollé-a)
analogy with(15) this corresponds to a surface charge

cnp 9 +22 Ee(r,fdzm)] for 0<z, (27
(r(zl:)(_l|)= P 5Ue(x,y;§x ,d+1), (20 n=1
. , whereEg(r,&y) is the electrostatic field of a point charge
where a¢(x,y;&,,d+1) is the static surface charge on the |j.ated atg, .

plane due to a point charge a distanced+| away. This There are a series of checks we can make on our work.
surface charge gives rise to an electric field First, we note that for the infinitely thick conducting wall
cnB 9 | —o the electric_ field expressiong_g(r,&4+0n) and
Ey 5E—e(f'§d), z< -1, E_o(r,& 4_2n) vanish so that we recover the rgsults pf Ref.
ED@)(r t)= m _[l], Egs. (30)—(32). Next if we calculateq the d|scont|m_1|ty
’ cnB 9 in the normal components of the electric fields at the inter-
7 o E-elléa-2), —I<z facez=0 and—1, we find the surface charge densities given

(22) in (23) and (24). Finally, the fields inside the conductor at
z=0_ and -1, meet the boundary conditiori$l) and(12).
Now the combined surface charge${” and o{V®)

give rise to electric fields that satisfy the conditi¢h?). D. Electric currents and the magnetic fields
However, now the boundary conditighl) is no longer valid
because of the surface char@®) atz= —1 giving rise to an
electric field at the surface=0. The boundary condition
(11) can be reestablished by taking the image of the surface J=Ely, (29)
charge(20) in the planez=0, corresponding to a correction
surface charger!Y{? on the planez=0, so that

The electric field inside the conducting wall gives rise to
currentsJ. according to

cnpB 4 cB 9 ”
0= gy e yibadr2h. (229 Jc<r,t>=£5|EE<r,§d>+§l [E ol £4s 2n)

This new surface charge gives rise to new electric fields. It is
clear that this repeated reflection through the two conducting +E_o(r,&_q_on)] (29
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for —1<z<0. These currents are independent of the conduc-
tivity 1/ of the wall. Be,s=B% 12
The magnetic fields for our situation arise from these cur-

Ee(r,§d>+n§l [Ee(r &4 2m)

rents in the wall together with the curredy of the moving
point charge TEe(r,é-q-2n)] ] -Vo, (35
Jo(r,t)=iecB83(r—&). (30 since
Thus the associated magnetic fields through first orde# in VX(2BXE.)=28V-E.—28-VE.=2 iE .
are those following from the Biot-Savart expression (2BXE)=2pV-Ecm2p- VE=2p5 E !
(36)
(r)== J [Je(r', )+ 3o(r", ) X (r— 1" )d we haveV -E,=0 in the region when the source poiéis
Bess [r—r'|3 outside the region.
) Finally, in the region 6<z in front of the conducting wall,
_epiIxX(r—&) the curl equation for the magnetic field takes the form
Ir— &l
1 3 1) VXB T evs¥(r—g)+ = 2 E
= r'Hx—r’ =—evo(r— - =
+_fdxffdyrfz odZ, C( ,(3 ) C d c ot
I [r—r’']
31 =4meBs(r—&)— B ([Ee(r £a)
E. Magnetic fields and Maxwell’'s curl equations +E_o(r,E_9)]+0(B?). (37)

Although it may be feasible to evaluate the integral inThijs has the solution to first order i,
(31) directly, it is also possible to find the magnetic field by
recognizing familiar solutions to Maxwell's equations. Since Be,p(r,t)=BX{Ee(r, &) +E_o(r,&§_¢)}—V¢. (39
the integrations do not seem elementary, we will follow the
second route in a manner analogous to that followed in Ref. Maxwell's curl equation for the magnetic field is satisfied

[1]. in all of space by Eq933), (35), and(38), except possibly at
In the regionz< —1 behind the conducting wall, the curl the boundarieg=0,z=—1. The equation holds for all space
equation for the magnetic field gives if we can show that the tangential component8adre con-

tinuous at the two boundaries. The functietV ¢ has con-
tinuous tangential components, provided all the sources for
¢ are confined to the planes=0, z=—1. All the other
terms for the magnetic field iB3), (35), and (38) involve
expressions of the forBx &(r,t). SinceB=iB, we need to

; o check only that thez components of the expressions
empt{) space gndd sm_cef,: theEterrand)IJ:YIfE/ﬁ’t— _f'BaE/éX &(r,t) are continuous across the boundaries. However, this
must be second order /& from Eq.(25). It follows from Eq. indeed holds from the relationship between the expressions

(3? that tge magnegg: ﬁfldf in thi‘T‘ refgiont. is given to first for B and the boundary conditiofi1) and(12). Thus thez
order inj by the gradient of a scalar function component in the curly brackets (85)

vxB=Ty3 1 ey 32
BT (32

This occurs since there are no curredtin this region of

Bes=—V¢ for z<-—I. (33 -
B
° Belr£0)+ 2, [Ee(r &aszn) +Eelr € g zn)]
In the region—1<z<0 inside the conducting wall, the (39
curl equation for the magnetic field receives a contribution ,
from the currents ir(29), vanishes az=—I, whereas az=0 this bracketed expres-
sion has the same component as B.(r,&;), which agrees
A with the z component of the curly bracket in E(88),
a
XB=—J.+0(B?
VXB= It OlsY {Eo(r ) +E o1 £ o)}, (40
= 4%7 % jx[ E_o(r,&)+ E [E_o(r, &4 2n1) F. Magnetic fields and Maxwell's divergence equations

Since the Maxwell curl equation fd is satisfied in all
space through first order i, we need only determine the
+E_e(r,§_d_2n|)]]. (39 scalar function¢ so as to satisfy Maxwell's divergence
equation in order to arrive at a complete solution. The re-
quirementV-B=0 in all space takes the form fror83),
Now we can satisfy this equation by writing (35, and(39),
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V- (BX&—V ¢)=0) (42 since B is a constant and sincé X <=0 for an electrostatic
field. Therefore from Eq(42), we see thatp must satisfy
or Laplace’s equatiortW2¢=0 except possibly at the bound-
VZp=V-(Bx¥), (42 ariesz=0 andz=I.

where & is a sum of point charge electrostatic fields. How- At these boundaries, Maxwell's equatiovi-B=0 be-
ever, away from the boundaries, the source term in(Eg.  comes the condition that the normal componenBa$ con-
becomes tinuous. Thus from Eqs33), (35), and (38), we require at

V.(BX#)=#-(VXB)—B-(VX#)=0, (43 2=0,

K-[BX{Ee(r, &) +E_o(r,&- )} = Vdl—0, =k- ﬁx[z Ee(ragd)"'nZl [Ee(r1§d+2nl)+Ee(rig—d—zm)]) ] _V¢} :
B z=0_
(44)
and atz=—1,
k- BX{Z Ee(ragd)"'nz:l[Ee(rv§d+2nl)+Ee(rv§d2n|)])]_v¢} =k-[-V]-— . (45)
B z=—1,
These expressions can be simplified by no{wiB and using
k-(BX#)=(kx p)-&=B&,. (46)
Then we find that Eq944) and (45) become
) ap| 2epy . 4epy
“al,, T, e ay T & [ Gy (@ 2T “7
and
e I¢h < —4epy
oz azl,_ _n; {(x=&)7+y?>+(d+[2n—1]1)7¥> (48)

=1,

The determination o# is analogous to solving an electrostatic problem, with the surface chayggsand o g, implied
by Eqgs.(47) and (48). The function—V ¢ is an integral over the surface charges

(o [ TanliX) Hily=y)tka [ oI x) iy =y ) Kz D]
—van=[ o [ oy Ty | o | o G gy

Although it may be possible to carry out the integral$48) directly, it is also feasibl@10] to solve for—V ¢ by recognizing
the surface charges {@7) and(48) as being related to the images of certain line charges stretching to spatial infinity from the
image pointsé,+k[ = (d+2nl)] on either side of the planes=0 andz=1.

The electric fieldg, (r; &, +) of a line chargex per unit length beginning &,=i¢,+kd and running to spatial infinity
parallel to the+ z axis is given by

(49

[i(x— &) +jyl(z—d)—K[(x— &)+ y?] . i(X—&)+]y
[(Xx—E)2H Y2 (X— E)2 Y2+ (z—d)?]2 7 (x—&)%+y?

1
N EA(Ti & +0)= (0

The electric fieldE, (r;&_4,—«) of a line charge\ per unit length beginning a_4=i&,+k(—d) and running to spatial
infinity parallel to the— z axis is found by reversing the signs nfandk in (50),

_ —lix= &) +iyl(z+d) +k[(x—£9%+y?] N i(x—&) iy
(=8P YN (X— E)7H Y+ (z+d)P]YP T (x— 9% +yY

1
CEMTiE g~ %) &)
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The electrostatic field G. Results for the magnetic fields
J In the regionz< —I behind the conducting wall, the mag-
- WE}\(r;gd,—i-oo), z<0 netic field is
E= ; (52 B .(r-0) Bﬁ(lE(ng)
r’ =—eb—| T r! ] o0
_WE)\(r;f—d,_m), o<z e,B EYABY N d

is generated by a surface charge

o1
+22 ~Ex(ri&gizn )
n=1

1
0= 77 Ed2=04)~E,(2=0-)]

il o1

+ep—|22 —E\(r; &y 12n—271, )
dy\ A=1 A

1 Ny

T 2m (- £ YR AT (53

, z<—lI, (59

Jd (1
=e,8(9—y(XEx(r;§d,+oo)
which is precisely of the form of the surface charge terms
appearing in Eqg47) and(48). Accordingly, it is possible to  where the first term involving- e8 comes from(47) and the
read off the magnetic field by relating the field functions of second involving+ e8 comes from(48), and thex compo-
the form(50) and(51) through the surface char@g3) to the  nent of £ is understood ag,=vt. In the region—1<z<0
discontinuities(47) and (48). inside the conducting wall, the magnetic field is

|

I w1
+eﬁ5< 22, BT gzn ,—oc))

Ee<r,§d>+ngl [Ee(r, & on) T Ee(r & g-2n)]

Be”B(r,t)ZﬂX[Z

©

g1 1
_elgW XE}\(r;§d,+f>0)+2nzl § Ex(Fi&asan, +0)

- a1
Ee(r’gd)+,§1 [Ee(r,&qs2n) T Ee(r € q—2n)] } —GBW(XE)\(F;gd,‘f’OO)

=ﬁx|2
a1 1

—2eB2 —| LENTiaian + %)~ TEA(TE aon =) |, —1<2<0 (55
=1 dy \ A A

where the expression has been rewritten to assure the convergence of the infinite series. In the<tegiofrént of the

conducting wall, the magnetic field is
g1 1
Bep(r0=BX{Eelr &) TE (1.6 @)} —eB 0} YENTIE =) 422 TENTIE g on, =)

J 1

J |1
=.3><{Ee(r,§d)+Ee(f,§d)}—eB@[ XE)\(r;gda_m)} , 0<z (56)

We can check our resuli®4), (55), and(56) for the mag- steady currents where the results correspond to familiar ex-
netic field by verifying that they satisfy Maxwell's equations perimental situations. For example, the case of a sequence of
in all space. Also, in the limit in which the conducting wall charges moving one after the other suggests a steady current
becomes infinitely thick— o, the results go over to those of whose magnetic field is known to penetrate through a good
Ref. [1]. conductor withu=1 as though the conductor were not

present.
Il. LIMIT OF A LINE CHARGE MOVING PARALLEL

TO ITS LENGTH B. Electric fields of a moving line charge

A. Limit of a steady current A line charge moving parallel to its length can be ob-

By adding the point charge solutions obtained above, ontained by starting with a point charge gf=i(vt+x')+kd
can obtain limiting configurations involving line charges andrather than ag;=ivt+kd, replacing the charge by Adx’
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where\ gives the charge per unit length, and then integrat{25), (26), and(27), we see that the only electric fields aris-
ing in x’. From Eg.(23), the surface charge on the front ing in this case are from the static fields
surface of the conductor becomes that appropriate for a linEe(r,£&;) + E_e(r,&-g), so that we recover the static line
charge\, while the first-order terms, which are oddxndo charge limit with no electric field inside or behind the con-
not contribute in the integral. Since on the back surface theluctor.
surface charge is entirely odd & the surface charge at
z=—| vanishes in this line charge limit.

Similarly, the electric field existing in the line charge limit ~ The magnetic field involves integrals of the following
has no contribution from the terms oddxn Thus from Eqs. forms. Terms arising from the curl equation involve

C. Magnetic fields of a moving line charge

S N —j(z—d)+ky ~ epl—j(z—d)+ky](x' —x)
f_mdx BX Ee(rigd)_eﬂf_mdx [(X_Xr)2+y2+(z_d)2]3/2_ [y2+(z_d)Z][(X_X/)2+y2+(Z_d)2]1/2 N
_ 2ep[—j(z—d)+ky]
- y2+(Z_d)2 (57)
Terms introduced from the divergence equation involve
> 01 » (., Ky _2i(x=x")y
f_mdx W(xEA(r-fdanoo) —J_mdx [ (XX )2y (2= )72 [(x—x )2+ y° P2
i(x—x")y(z—d)[3(x—x")?+3y?+2(z—d)?]
LX) TP (= x) Py (2= d) 7]
B j(z=d)[—(x=x")?+y?%]
(=X 24 y2 P (x= X2+ y?+ (z+d) 2] 72
B jy*(z—d) +i[(X—X’)2—y2] 5g
[ X 2yl X2 y2r a2 [xozey ) P

The terms in(58) odd inx—x" all vanish by symmetry leaving

fw d 1E ) |y ky(x'—x) j(z—d)(X' —x)
e [ P ) R P o L T v [P LRV PR L
~ j(z=d)(x —x) R I
[y*+(z=d)IL(x—x)?+y?+(z=d)* 1" (x=x")>+y*| ,_
_ —2j(z—d)+2ky
- y2+(Z_d)2 (59)
Similarly, the integral
foc d E , dx’ 2j(z+d)—2ky 60
—_ — . — 0 =
Loy \WE e T g (60
is related to(59) by reversing the signs af andk.
Then in each of the regions, we find the magnetic field integral
J'w d ’lB _ 2\v —j(z—d)+ky 61
M Beplh )= g (61

which is precisely the magnetic field of a steady curdeat\v of a line chargex moving along its length with velocity
v=iv. In the case of the region<—1 behind the conducting wall wheg ; is given by(54), the integral involveg59). In
the case of the region<0z in front of the conducting wall wher8, 4 is given by(55), the integral involves a cancellation
between
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J':dx’ﬁx Ee(r,& o)
and

® a1 )
[ox sy fmuriaa]]

leaving the integral of the forrtb7). In the region—1<z<0 inside the conducting wall whe, ; is given by(56), there is
a similar cancellation of integrals:

o 0 J 1
J_ dx’' BX2Ee(r, &4 on1) cancelswithf_ dx’eﬁW(ZXE)\(r;géJrzmﬁoo)

f dX’' BX2Ee(r, & 4_on1) cancelswithf dx’(—eﬁ)@(szx(r;g’_d_zm,—00)),
and

0 © Jd 1
J dx’' BX 2E4(r, &) ishalfcanceledbﬁ’ dx’(—eﬁ)W(KEx(r;féan)),

leaving exactly the required resuil). Thus, in the limit of B. The approximations

a steady current, we recover the familiarly observed result tha solution for Maxwell's equations given here is not
that the magnetic field penetrates through a conducting wally ¢t put rather is a perturbation approximation. The terms
as though the wall were not present. retained in Maxwell's equations correspond to a power-
series expansion in the velocity rafb=uv/c for the passing
point charge. Thus we require the low-velocity condition

|B]<1. (63)

IV. DISCUSSION OF RESULTS
A. Retarding force on the passing charge

The charge passing the conducting wall gives rise to elec- Next we regarded the surface charge correciéh as
tric currents inside the wall. These dissipate energy in JOU'gma” Compared to the electrostatic surface Chaf@é,
heating. In order to satisfy the ideas of energy conservation
contained in Maxwell’'s equations, there must be an electric oM <0 (64)
retarding force on the passing charge. Indeed, the electric ) . ]
fields associated with the changes in surface charges beyofPmparing the expressions in E¢8) and(15), we see that
the electrostatic situation provide the required electric forcethis condition will be satisfied, provided

The electric field acting on the passing charge removes cnB
energy from the charge, which must be associated with a loss
of particle kinetic energy or with energy provided by an ex- d
ternal force on the particle. The power of the electric field o
the charged particle follows from E7) as

<1. (65)

nThis condition can always be achieved for fixedand d,
provided the particle velocity is made sufficiently small.

Pem=Fem V=CpB-€Ee 5(&4,t) On the other hand, we may also regard this as a small-
cnB distance limit on the separatiah of the point charge from
=cef—— _[ E_o(r,é g the conducting wall whes is set equal to 1. Since for good
2m Ix conducting metals the resistivity; is of the order of

» 2x10 8 ohm-meters, which correspon@i$1] to 2x 10 17
+ 22 E—e(f,§—d—2n|)] sec in_uns_sian units, the valua b_ecome%x 10~ cm, so
n=1 =g, thatq is limited by atomic dimensions. _
Finally, the correction to the surface charge involves a
sum over the images, so that we must require

cnB 9 | <
cnp (2 Ue(XayJ§d+2n|))

2 5 n=0

1 ” 1

nCZeZBZ
- (207 22, F2dT anT

o . (62

<|oe(X,y;€d)|. (66)

Indeed, the electric field is removing energy from the passing

charge. We note here that for fixeg and 8, the smallest Thus, in addition to the conditio(65), we must require that
retarding force occurs for an infinitely thick conducting wall I be not much smaller than the limit ah However, again
wherel —«. As| decreases, the perturbation approximationatomic dimensions are involved for good metallic conduc-
puts a limitation on how small can be. tors.
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C. Discussion of results for velocity fields field on the far side of a conducting wall is independent of
Our calculations show some results that are natural exte Eﬁ:lfr?gg:gtf“{% Sxtatneacno dn:jsuﬁér;gp\évﬁélé'ri 'ggﬁ]%eglgigxémif
sions of the_ qonclusmns founq in Ref4~3], and some that e wall. Furry[2] noted earlier that the penetrating magnetic
seem surprising. The algebraic rather than exponential faIIolﬁjeld was independent of the relative placement of the wall
of the electric and magnetic velocity fields inside and outsidgq 1o gpecial case of a thin perfectly conducting wall. Only
the conducting wall is consistent with earlier work. Thus theyhe gistance from the passing charge determines the character
velocity fields penetrate even good conductors to an extenit the magnetic field once any intervening plane conducting
that is not anticipated by those looking to a skin-depth apya| is present. One notes that the magnetic velocity field
proximation. beyond the conductor is not the same as that for a point
Inside the conducting wall, the electric and magneticcharge in vacuum. The conducting wall does modify the
fields depend upon the thickness of the wall. The magnetignagnetic field, but the modification is of a universal charac-
field and the volume currents inside the wall are independerter independent of the conductivity, thickness, and placement
of the conductivity of the wall. of the wall, provided all the approximation§3)—(66) are
Noteworthy in the results is the fact that the magneticvalid.
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