PHYSICAL REVIEW E VOLUME 53, NUMBER 6 JUNE 1996

Motion of three inelastic particles on a ring
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In a previous papefP. Constantin, E. Grossman, and M. Mungan, Physica3D409 (1995], we have
studied in detail the dynamics of three inelastically colliding particles moving on an infinite line. The present
paper addresses the effect of boundary conditions by investigating both analytically and numerically the
dynamics of three particles confined to a ring. Using the methods develop@d @onstantin, E. Grossman,
and M. Mungan, Physica B3, 409(1995], we reformulate the dynamics as a billiard in an equilateral triangle
with nonspecular reflections laws. There are three sharply distinct regimeerfectly elastic collisionsii)
slightly inelastic collisions, andiii) strongly inelastic collisions. In particular, in the limit of the inelasticity
going to zero, the asymptotic motion in cage does not reduce to cas, i.e., perfectly elastic motion is a
singular limit. For motion on the line in the strongly inelastic regime, particles can either cluster, undergoing
infinitely many collisions while their relative separation goes to Z@relastic collapsg or they can separate
after a finite number of collision@scapg The confinement to a circle, while greatly enhancing the occurrence
of clustering, does not completely eliminate the existence of other asymptotic states. In fact, there exists a
fractal set of initial conditions for which collisions proceed indefinitely without clusterif$1063-
651X(96)01006-9

PACS numbgs): 46.10+z, 03.20+i, 05.45+b, 47.53+n

I. INTRODUCTION asymptotic dynamics for theseis governed by a strange
attractor.

Inelastic collisions of particles on a line or in the plane The most immediate consequence of imposing periodic
have been studied with increased interest over the past seboundary conditions on the three particles is the elimination
eral yeard1-5]. It has been observed that due to the energyf escape; all initial conditions give rise to an infinite se-
loss in successive collisions, these systems can evolve intod/ence of collisions. Section Il examines the strongly in-
clustering state in which the number of collisions per unitelastic region(r=<r,). It turns out that almost all initial con-

time increases without bound, while the mean free path goegitions result in inelastic collapse, but nonetheless there does

to zero. This phenomenon has been termed “inelastic colEXist a fractal set of initial data that generates a sequence of

lapse” [3] and is qualitatively akin to the behavior of one INfinite but non-collapsing trajectories.
inelastic ball bouncing repeatedly off the ground.

The occurrence of inelastic collapse on a line depends on
the number of particles present and on the coefficient of res-
titution r. Specifically, for three particles on a line it has been

shown[1-3, that collapse can occur whemis below @ jes of three inelastically colliding particles confined to move

critical valuer,=7-4v3. In a previous wor1], we have o5 an infinite line. The inelasticity is parameterized by the
analyzed the dynamics of this system, both above and below,efficient of restitutiorr as

the criticalr value. The aim of this paper is to investigate
how the dynamics is changed when the system is confined to L
move on a ring, i.e., when periodic boundary conditions are v2
imposed.

In Sec. | A, we formulate the dynamics of three particles,

on a line ":] aliwayhsugable f_or gxtenglor; to the E“g ('j:(_)rnary collision. The completely elastic case occurs wherl
motion on the line, the dynamics is equivalent to a billlard in, 4 energy is conserved, whereasr at0, the collision is

a semi-infinite wedge, while confining the system 10 a CirCu-;omp|etely inelastic and the particles emerge stuck together.

lar configuration generates a billiard in an equilateral ”i'Equation(l.l) and conservation of momentum allow us to

angle. In either case, the reflections are not specular. express the velocities after a binary collision in terms of
In Sec. Il we examine the quasielastic regitme-r.).  those before

Section Il A provides an overview of the types of behavior
observed in this range of values. Secs. II B and Il C con-
centrate on specific cases of inter¢gtThe completely elas- (U 1)

A. A review of inelastic collisions and motion on a line

In [1], we obtained an analytic description of the dynam-

vi=—Tr(vy—vq), 1.1

wherev; , andv , are the velocities before and after a bi-

(1—=r)/2 (1+r)/2
(1+r)/2 (1-r)/2

tic caser =1: Here, the reflection laws turn out to be specu-
lar, and we have a conventional billiard in an equilateral
triangle. (i) The nearly elastic case=1— € (in particular,

the behavior as—0): Numerical findings suggest that the where we have assumed that the particles have equal masses.

!

Uo U2

(vl), (1.2
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When viewed in the plane of relative separatiéng and  correspond to reflections at the boundaries of the wedge,
X,3) the dynamics of three inelastically colliding particles is which represent the lines;,=0 andx,;=0. Between these
equivalent to the motion of a nonoptical billiard within a walls, the trajectory moves along a straight line whose gen-
semi-infinite wedggsee Fig. 1 Collisions of the particles eralized slopes, is defined as

U3~V . . . .
3 72 for trajectories emerging from th&,;=0 axis
oo U1 ) v2m 13
" dy | vg-v '
; 1 72 for trajectories emerging from th&,,=0 axis.
UVp—U3

Using expressiofil.2) for the change in the velocities due to rations of the particles go to zero. We refer to these states as
a binary collision, we obtain the mappirfg:s,—s,,1 that  asymptotic bound states. Feg<s* , the sequence is not
describes the change in the slope upon reflection drawn to the fixed point; eventually the slope assumes a
non-negative value and the series terminates, indicating that
Syiq=— b-:s —f(s,), (1.4 the particles are all moving away from each other. We call
n such states asymptotic free states.
(I) The quasielastic regime>tr,: In this regime the
whereb=1/2(1+r). _ _ recursion(1.4) has no real fixed points and asye [ —%,]
The initial data of the system is now reduced to a distancgenerates a sequence that terminates after a finite number of

dge[—=,] and a slopesy e [ —,]. The latter, via(1.4),  reflections. Thus in this regime we have only asymptotic free
generates a sequence of slopgs;0,i=1,2,3...,that ter-  gtates.

minates with the smallest such thats,>0. Such a slope
corresponds to a trajectory that is moving away from both _ _ _
the x,, and thex,3 axes, and hence no further collisions can B. The equations of motion on the circle

occur. Depending on, we see two distinct regimdd —3]: By an extension of the above method, the dynamics of
(I) The strongly inelastic regime=r =7—4v3: For this  three particles on a ring can be considered as a billiard in an
range ofr values, the mappin@L.4) has two real fixed points  equilateral triangle. If the circle has unit circumference, the
s* <s%<0; st is unstable, whiles?. is stable, with a basin triangle has edges of length one, its sides representing the
of attraction consisting of all initial slopes>s* . Thus the  linesx,,=0, X,5=0 andxs;=0 (see Fig. 2 The vertices are
sequence of slopes generated by suclspaapproaches the the intersections of these lines and hence correspond to triple
fixed points% and the series does not terminate. In the bil-collisions. Each vertex is uniquely labeled by the middle
liard picture, such an infinite sequence corresponds to a trgarticle in such a grouping.
jectory zigzagging into the origin, while the corresponding Consider a pair of successive collisions. This pair will
motion in configuration space is such that the relative sepahave a middle particle, one which is involved in both colli-

(312)

(123) Xu=0 (231)

FIG. 2. (a) The configuration spacéb) The corresponding bil-
liard. Collisions between two particles correspond to reflections,
and hence at each side of the triangle, one of the relative separations

FIG. 1. The variable conventions for a billiard moving in a is zero. The vertices are the three possible cyclical arrangements of
semi-infinite wedge. This system is equivalent to three particleshe particles when touching. Each vertex is uniquely labeled by the
moving on an infinite line with relative separatiorg, and x,3. middle particle.

dn+l o= 0
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UVji—Uj

Sijﬂ]k:vk_vj . (16)

Thus the line segmemﬁ)dij is well determined by the point
of emergencel;, and the generalized slofsg_ j -

As long as the collisions proceed in a way thaemains
the middle particle, the particles do not experience the
boundedness of their configuration space and hence the dy-
namics is identical to that occurring on the infinite straight
line. This situation breaks down when the outer particles
collide with each other. At this point, one of these outer
particles becomes the middle particle. In the billiard this cor-
responds to a trajectory changing corners. Therefore, given a
line segment described by the pas,(d,), there are two
distinct possibilities for the subsequent segmept (,d,, ;1)
| (see Fig. 4 given in terms of §,,d,)), these are as follows.

d, x,=0 For case I
Snr1=f1(sn)=—r/(b+s,)
FIG. 3. The variable conventions for a billiard trajectory in the (1.7a
equilateral triangle. dnt1=—dyS,.

sions; label itj. There will also be two outer particlésand

k such that the first particle collides withi, then withk (of  ©" c2¢ Il

coursei # j #k). Denote the distance between partigleand Spr1=fi(—1—s)=—r/(b—1—s,)

k (i andj) at the time of the firstsecondl collision by d;, (1.7b
(dj;). Associate with this pair of successive collisions a di- dyy1=1+d,s,.

rected line segment in the biIIiamﬂ)dij as shown in Fig. 3.
Proceeding in this manner, the successive collisions on thé order to derive the recursion for the slope(in7b), note
circle generate a billiard trajectory within the triangle. Fur-the following. When both the incident and reflecting slope
thermore, each line segme«hﬁ)d”— has a generalized slope, &€ gxpr_essed with respeqt to the same corner, the reflec_tlon
S i, given by law is given byf,(s), as dlscusse_d in Se_c. A and seen in
=ik case |. For case Il, where the trajectory is changing corners,
dij we can still make use of,(s) if the incident slope is re-
Sijﬂjk:_df1 (1.9 expressed in terms of the new corner. This re-expression
Ik corresponds to a permutation of the velocitiegir6). One
which is, again, related to the velocities of the particles befinds thats,——1-—s,, and thuss,,,;=f;(—1—s,) for
tween the two collisiongcf. Eq. (1.3)]: case |l

FIG. 4. Given a segmens ,d,), there are two possibilities for the next type of step. For type I, the trajectory remains in the same corner
(the middle particle does not changwhile for type Il, the billiard shifts to a different cornéthere is a new middle partigle
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FIG. 5. Long-term behavior of the billiard as a functionrofFor a fixedr, the trajectory is allowed to evolve for2Ll0° bounces from
random initial conditions and the last 200 distandeare plotted versus on the vertical axis(a) The full range ofr values. Notice that for
r<r, collapse always occurs in the simulations. Thus the distances all go to zero at largésgm&ec. 1)l (b) Replot of(a) for r>r,,
the horizontal axis has been rescaled to highlight the appearance of the pseudoperiodic windews, agc) Plot of the last 200 slopes.
The vertical axis is actually tar(s).

Given a segments(,,d,), the question whether to pro- the corners. The above description does not distinguish
ceed via | or Il is determined by assuming that | is appliedamong the three corners of the billiard, which is natural as
twice and checking to see @, , is a permissible distance, the particles themselves are indistinguishable.

i.e., between zero and one. In other words,

Zy=—0n+18041= —(—dpsp)[—r/(b+s,)] (1.9 Il. THE QUASIELASTIC REGIME:  r>r
and if z, € (0,1), the evolution proceeds via |, indicating that A. The guasielastic regime in genera(1>r>r)
the corner has not changed. Conversely, i [0,1], there is Simulations of three particles confined to a ring indicate
a change of corner, and the system evolves under Il. the existence of two types of long-term behavior in the

Thus the two-dimensional recursion for the motion of g ,asjelastic regime—fuil exploration of phase space or some
three inelastically colliding particles on a rin@r one  gort of pseudoperiodic orbit. In the billiard picture, the

nonspecular billiard in an equilateral triangle given by former corresponds to a trajectory that “fills” the triangle,
_ with no a priori limits on the possibles andd values. The
S, r/i(b+s,)\ . ) - .
f, al= Cds if 0<z,<1 latter case appears as a trajectory that visits only certain parts
St n n=n of the triangle, i.e., certain finite ranges ®fandd values.
= 1.9 Numerically, which type of asymptotic trajectory occurs
o1

seems to depend only an not on initial conditions.

Figure Fa) visualizes this dependence. The horizontal
o ) o ) axis is the coefficient of restitution. For eack: (0,1), the
and the initial data for this recursion is a pair system evolves from the random initial conditions fot 0°

bounces. Theal values for the last 200 reflections are then
(So,do) such thatso=0do< (0.1), plotted againstr. If r is such that the trajectory fills the
and d,= —sodg e (0,1); triangle,d is seen to appear anywhere within its permissible
domain,(0,)). If, however, the value produces a pseudope-
in particular, this guarantees thg{<<O for all n. Note that riodic orbit, d is observed to be limited to select regions of
we exclude trajectories that are incident on or emergent frorthis domain.

S —r/(b—1-s
f”( ”) ( ( ) otherwise

d,) |\ 1+d.s,
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FIG. 5 (Continued.

Forr=r, all the computer generated initial conditions corner; if n is even the trajectory alternates between two
result in collapse ¢—0). Forr>r, there seems to be a corners; if it is odd, it rotates among all three. Note that the
large pseudoperiodic window nes# 1, another at ~0.17,  first window (n=3) does not quite conform to this pattern.
and there are more at lowewvalues greater thar, . In fact, As discussed above, the motion of the billiard within a
Fig. 5(b) shows a section of Fig.(& rescaled to highlight corner is equivalent to the motion of three particles on a line;
the positions of some of these windows. Figute)ds a plot  the middle particle remains the same so the constraint of the
equivalent to Fig. &), but instead ofl on the vertical axis, circular geometry is not felt. On a line, for eachrr, there
tan *(s) has been plotted. It is clear that the period of theseyists an upper bound,,.(r) on the number of collisions
special orbits increases _asqlegreases. For all the windows nat can occur before escapg]. On the circle, this limit
(except that near=1), d is limited to values that are nearly qresponds to the maximum number of collisions that can

one or nearly zero, i.e., all the reflections occur close to th%ccur within a corner. The function,.(r) can be used to
corners of the triangle. If we examine the trajectories fromfinol r such that ifr.e[r () n”fl s the maximum
n: n+1:'n/s

the Wlnd(_)W atr~0.17, we find that they consist _of five number of collisions that may occli]
bounces in a corner, the last of which moves the trajectory to
another corner, where there are again five bounces. The tra-
jectories then return to the original corner and the pattern
repeats. The position along the walnd hence the slopes

of the reflections in each corner vary slightly from cycle to
cycle, but stay within a confined range. This is what we ) )
mean by a pseudoperiodic orbit. This pattern turns out to be NUS, for example, the trajectories that occur neai0.17
typical of the trajectories in all the windows. For example, could only exist forr <r,. In fact, we find numerically that
nearr =0.12, the trajectories always undergo six reflectionshe upper boundaries of the windows are given by thgse

per corner and this time visit all three corners of the triangle’ Vvalues just below, produce pseudoperiodic orbits with
before repeating. We can summarize our computational uri?+ 1 reflections per corner whilevalues just above, pro-
derstanding of these pseudoperiodic trajectories as followsluce trajectories that fill the phase space. The linking of
label the windows byn, where near=1 is n=3, near these pseudoperiodic regions to a well understood sequence
r=0.17 isn=4, nearr =0.12 isn=>5, etc.; then the trajec- of r values leads us to believe that there are a countably
tories in thenth window always haven+1 reflections per infinite number of such windows in the range (r,,1).

=1+tar?

n ™ _
(1+r,)? ﬁ) n=3,45.... (2.1
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(n=8) n=7 (n=6) (n=5) (n=4) (n=3)
(c) coefficient of restitution r
FIG. 5 (Continued.
B. The elastic casgr=1) intervals,|=(—1,0) andl’=(—<,—1). (For convenience,

In this section we analyze the recursions for the casé~ ~1 has begn _eXC|l_Jded, as It generates a SImp!e Six-
r=1. It can be shown that the construction of Sec. | B re-Seégmented periodic trajectory with=—1 for all n that is
duces the dynamics of three perfectly elastic particles on §relevant for our purposgsWe see thaf (1) =f,(1)=1",
circle to a billiard with specular reflections. The results wef1(1")=(02), and f,(1")=1. Thus, if we consides,el,
derive could be shown perhaps more easily using converthere are only two possibilities fa, . , € 12 sy ="f50f1(Sp)
tional analysis of specular billiard systems. However our moor s, ,=f,°f,(s,); which mapping is selected depends on
tivation is to extend some of the techniques used here to thg,. Denote these byA andB, respectively. Then in the bil-
caser # 1 where the reflections are no longer specular. It idiard, these “two steps” appear as in Fig. 6, and we can
therefore instructive to study the elastic case using recursiorsonsider the dynamics as an evolution undeand B
(1.9.

Forr=1,b=1/2(1+r)=1, and recursion§l.9) become

(—1«1+sm —d,s,

if 0<z,=
—dys ! " 1+s
(Sn+1): n=n n (2.2) A B
dnsa 1/s, .
1+d,s, otherwise,
with dy e (0,1) andsy e (—20,0) such that-dysye(0,1). Let
us denote the mappings byf, andf,, respectively,

fi(s)=—1/(1+s),

fo(s)=1/s. FIG. 6. The two types of maps that comprise the motion when
r=1. TypeA is composed of, followed by f,, while typeB is
Now note thats, e (—=,0) can be partitioned into two open two successive applications &f .



53 MOTION OF THREE INELASTIC PARTICLES ON A RING 6441

( —-1-s, ..BM™(ATAT)™2BM(ATAT)M. .. | (2.6
dns for A, where 0,1 . .
1+ 1:_ " W znel0.1] The action ofA"A™ can be calculated explicitly fror2.5);
(Sn+2) _ Sn noting thatA~ is applied first, therA™, giving
dn+2 Sp ( 1)
for B, where z,¢[0,1]. ip-. [ Znra|_ [0t (00~
14+d+— n¢[0,1] ATA": Un+4) Yoy |- 2.7
\ Sn
2.3

The dynamics generating the seri€s6) is essentially a

Note that these equations imply that, giveye |, the only translation ofz by o,—1 around the unit circle and thus is
values thats,c| can assuméwheren is even ares, and "€ dimensional. It is not difficult to show that andm; of

—(1+5sp). (2.6) are limited by the valuer,
As the quantityz,=—s,d,/(1+s,) is what determines
whether the next step is aor aB, we look at the evolution 1<n,< + 1= "Ny
of z, under(2.3), oo—1
1+s, 1smi=<[[o0]]= Mnax

A (1-z,),

Sn where[[ ] is the least integer function. Since the dynamics
of z is a circle map, the sequence pfvalues[and hence
(2.6)] is periodic whenever the translational sHift,—1) is
The only dependence ons, is through a factor rational,.i.e.,.s0 is rationa!. This can be 'intuiti\(ely understoqd
o,=—(1+s,)/s,. These recursions can equivalently be by C(_)n3|der|ng the_ part|_cles on the ring. _Slnce_ they collide
written in terms of g,,0,) using(2.3 elas_tlcally and_ are identical, the situation is equwalen_t_to the
particles passing through each other, and the quasyitig

B:zy,=—(1-2,).

on(1—2,) then just the relative rotation rates of the three particles.

, 1o, for A, where z,€[0,1] When this is rational, there is periodic behavior. Conversely,
( ”*2): in the generic case wher®, is irrational, we do not see

On+2 (Zn_l for B, where z,¢[0,1]. r_epea_ting orbits, but rather quasiperiodic behayipr. To quan-

On tify this, let us say that at each moment of collision we take

(2.9 a snapshot of the system. In this picture, two particles are
next to each other and the third particle is elsewhere on the
ring. Let & denote the smallest distance between the pair and
the third particle as measured along the ring. Compiling a list
of & values from collision to collision, a probability distribu-
tion is obtained. For rationa,, the orbit, and hence thé
values, are periodic, and the distribution is a collection of
spikes. However, wheg, is irrational, the distribution will
be smooth and moreover uniform betwe@n0 and 5=1/2.
Regarding the billiard, this is equivalent to saying that the
oo(1-2,) trajectories _have equal probabiljty of leaving a side at any
—( Vo " ) point along its length. These points of emergence are dense
0 along each side, and hence the resultant trajectory appears to
fill the triangle. In terms of the mappind..9) in the (s,,d,)
plane, the distribution ofs is merely the distribution of

Henceo, takes only two valuesy, or 1/oy, which are both
positive forsye (—1,0). Without loss of generality, we as-
sume thatop>1 (this is merely a statement that we label the
first se (—1/2,0) as the initial conditionand distinguish be-
tweenA™ andA~, so that the recursion®.4) are now com-
prised of three maps

Af(when z,<1 ando,=0y>1):

Zn+2)
On+2

A~ (when z,<1 ando,=1/op<1):

min (d,,,1—d,).
Zn+2):((1/0'0)(1_2n)) oy
Tn+2 %o C. The nearly elastic regime(r=1—¢€)
_ Znio (z,—1) The general examination of the quasielastic regime in
B(when z,>1): Onia) | oy | Sec. Il A showed that the dynamics of the billiard wheis

near but not equal to one is pseudoperiodic and strikingly
From (2.5 it is clear (i) that as long ag<1, the system distinct from that when the particles are elastic. Figure 7
evolves under an alternating sequenceé\ofandA~ steps;  shows both the uniform distribution expected for the elastic
(i) that sincez can become larger than one only through ancase as well as the distribution éfobtained numerically for
A" step,B steps can be preceded by Af (but never an  €#0. Not only is the evenness of the=1 case lost, but there
A7); and(iii) that a series oB steps, which acts to reduze  seems to be a region df values that is forbidden entirely.
will continue untilz is less than one, at which point the next The corresponding trajectory in the triangle is confined to a
step must be aA ", since theB sequence was initiated with stripelike region(see Fig. 8 in which the impacts on the
anA™ step andr does not change undBr. From these three sides are either very close to a corfgw & is nearly zerg, or
facts, we conclude that the sequence of maps must assurpeactically in the middle of the opposite sideo & is nearly
the form one halj. Numerically, the formation of this stripe is robust,
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25 — 11— side of it. When the two outer particles are near the center
pm] —em one, they are not hitting it simultaneously; rather the center
r=085 — one rattles quickly back and forth—it bounces against one,
then the other, then the first one again—before the outer
particles move away to the other side of the ring where they
. bounce off each other and return to the center particle to
repeat the procedsee Fig. 9. In the billiard, the stripe tra-
jectory can be decomposed into two simple building
blocks—call themT for tooth andF for flip—as shown in
Fig. 10. The tooth corresponds to the series of collisions
shown in Fig. 9, while the flip is the trajectory that appears

______________________________________ when the collision order during rattling changes.
1 1 1 | | 1

probability

0 Comparing Fig. 4 and Fig. 10 demonstrates that the tooth
0 005 01 015 02 025 03 035 04 045 05 and flip are written
6 = min(d,1 - d)
Sn Sn
FIG. 7. The probability distributions fof=min (d,,1—d,) for T<dn) - f“°f'°f”°f'<dn) (2.83
r=1 andr=1-¢=0.85. Notice the clear distinction in the shape
of the curves. This difference is maintained for mtinzeroe less n Sn
than approximately 0.27. The peaks become more diffusg the F d, =fuefiefyefy d,) (2.8D
region of forbiddend's shrinkg as e gets larger. Fore=1-r
=0.15, we haves<0.14 or 5=0.43. Thus our numerical findings suggest that a trajectory in the
stripe region can be represented symbolically by a series of
i.e., for all random initial conditions that we have tried, after 1 S andF’s
some transients, the trajectory will settle into this sort of path TN ETM 2 E T ETVE - - - 2.9

and stay there. Thus this stripe seems to correspond to some

attractive, stable region of phase space. and simulations show that the integers range from 0 to

A close inspection of the simulations shows that the strip&;gme maximum value,,,, which depends oe=1-r.
in the billiard is produced by some very simple dynamics of  since numerical evidence indicates the robustness of the
the three patrticles on the ring. If we are in.a reference fra.m%tripe, we can observes,d) not after each collision, but after
such that the particles’ total momentum is zero, the stripgachT"F step. While this approach cannot describe fully all
corresponds to one particle remaining relatively still as theyossible trajectories within the triangle, it turns out that it
others bounce back and forth almost symmetrically on eitheggeg provide a complete description of the behavior once a
trajectory has settled into a stripe. We have not proven that
the stripe is globally attracting, but we can nonetheless show
that the mappindg"eF has an invariant region in thes,d)
plane, and thus the stripe is a stable, self-contained region of
phase space. Numerics show that this stripe region exists for
€s0.27.

Trajectories can now be represented as a sequence of
points in the 6",d”) plane where ¢'*!d""1)=T"
oF(s",d”) andn,, is itself a function ofs” andd”. For con-
venience, instead of working in terms o0§"(d”), define

1=-—s"d”; in the (s”,d]) plane, the simulations demon-
strate that the region of interest is néarl/2,1/2. A typical
trajectory is shown in Fig. 1&). Notice that for a givers”,
there is both an upper and lower bound on the vatlesan
assume. The former is due to the fact thd#t<1, so
di=-s"d"<-—s". The latter bound exists because these
‘ (s,d;) are plotted when the next step is a flip. Fr¢8b
| we see that the first map in a flip fg, i.e., thez associated
| with (s”,d”) must be greater than one or less than zero.
' ! The latter is not possible in this region, but the former
] implies that z"=-rs"d"/(s"+b)=rdj/(s"+b), so
0.43 di>(s"+b)/r.
The next step is to look at the dependencengfon

FIG. 8. Ten thousand bounces in the trajectory of a billiard at(S",d1). Given an §",d), we can compute the correspond-
r=0.85. We have used random initial conditions, but removed thdNg n, by applyingF followed by a series off’s until z is
first 200 bounces, as they are transients. Once the system begins @éeater than one or less than zero. If eaghd)) is labeled
stripe behavior, it continues indefinitely. The limits 6nas seenin by the appropriaten,,, the continuity of theT and F maps
Fig. 7, have been marked on this plot. ensures that the plane is divided into distinct cells, each cor-
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—

FIG. 9. The motion in configuration space
that corresponds to the stripe in the billiard pic-
ture. The series of collisions that give rise to the
tooth (T) trajectory are shown explicitly. Step
is not really part of this tooth, but rather the first

2 2 segment of the next onghe equivalent of). A
1 3 1 3 flip would be similar, but the last three collisions
would be 23, 12, 23rather than 12, 23, 12

responding to a different, [see Fig. 1b)]. Notice that a B=(1—¢€)?/[1-2 sinh ¢)+ 2 sinkf()],
typical trajectory does not visit all suah, cells. How(and

why) the trajectory is limited ta,=0,1,... N4 Will be dis- B
cussed later in this section. However, simulations allow us to y=—s*| 1+ E) —B(1—€l2)/(1—e).
computen ., at \giriOUSE (see Fig. 12 the data show that
—1

Nmay Scales ag =~ as e—0. _ From (2.10), the linearization is of the form

Numerical observation of the stripe has lead us to con-
siderT"F as the basic recursion. For smallthe region of s k(n,) — g™l 0 s?
interest in the ¢”,d7) plane is near(—1/2,1/2 and has a drti] = nV a1l gy
width in thes” direction that scales roughly @ Returning ! p(ny) p(n,) B ! (2.12

to the analytic expressions fdrandF (2.8), we can look at

eachn, cell gives readily determined from(2.10 and (2.11). By comparison
with the exact analytic expressi@R.8), it can be shown that
s'tlagr — g™t (gV 4+ 145%) the error introduced by the linearizati¢®.10 is of ordere*

(2.10 or smaller. The linearized mapping is itself rather involved,
due to the complex dependence of the coefficientseon
However some conclusions can still be drawn merely from
the form of the mapping2.12.

For instance, we expect to find a fixed point in each

- i) ar— B cell. Indeed, solving the recursion

l-€¢/ a—p

S

n,+1_ pn,+1 (
a+ i ) « b ) ds
1-€ a—pf

a—’y-l—S*(a—Z— lfe)

dI+l%—d‘1}ﬁn”+l+ﬂnV

1- 8"
1-B

+y +a(l+s¥)

+g”

either analytically using the linearized méh10 or compu-
o ) tationally (using the full recursions and Newton’'s method
where, as noted abova, is itself a function ofs” anddi. e discover that there is one such fixed point per egotell
The parameters in the above equations are all just functiong,, n, between zero and a maximum valm{é‘axthat depends
of on e[see Fig. 11b)]. It is important to note that™ >n, ..,
wheren,,,, is the biggesh, observed in a stable trajectory
[see after Eq(2.9)]. In fact, the analytic formula enable us to
, (2.1)  calculaten™  for small e and observe how it scales as-0

= —1+2\1+3le~2\3e 12 (2.13

This provides an upper bound on,,.
The linearized expression also provides information about
a=e*?, the stability of the fixed points in the limit of smail Equa-

e(2—¢€)
8(1l—e¢)

$=sinh !

s*=(1—€l2)/[sinh ¢) —cosh ¢) — 1],
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0.505 |- y

& 0.5 -
0.495 I~ -
0.49 - .
FIG. 10. The two types of motion that comprise the stripe. The 1 ) A . .
tooth (T) only uses two of the corners, while the flig) visits all -0.51 -0.508 -0.506 -0.504 -0.502 -0.5
three. (@) o
tion (2.12 shows that each fixed point has a stable and un- 0.51
stable direction(0,1) and[B—a, a+(B/1—¢)], respectively,
with corresponding eigenvalues- g™** and —a"", 0.505

wherea and B are as defined in Eq2.11). For e>0, a>1
>B>0. The existence of these competing stable and unstable
directions within eacim, cell draws the trajectory toward the 4
unstable directions into a linelike formation. Thus we do not
expect a full exploration of the phase space plane. Calculat-  0.495
ing numerically the fractal dimension of the set of points
comprising the trajectory in thes{,d {) plane under repeated
application ofT"»F [Fig. 11(a)], we find that the dimension

0.5

0.49

is roughly 5/3, rather than two. -0.51 0.508  -0.506  -0.504  -0.502 0.5
The presence of the fixed points and their location explain (b) s

why the actual number of distinet, cells visited by a tra-

jectory (0 is less than the number of fixed poirts’,). 0.51

Because the eigenvalues,8™*! and —a"+*!, are nega-

tive, a givenn, cell is stretched, contracted, and rotated un- 0.505
der the mapl"»F [see Fig. 1{c) for some examplgsThus

a point in that cell can be mapped into several neighboring
regions, as well as back into the original cell. What deter-
mines whether a region is visited regularly by a typical tra-
jectory is not so much where it is mapped to, but where it is 0.495
mapped from. For example, in Fig. (£}, n,=8 is mapped

into the cellsn,=5, 6, 7, and 8, and henag,=9 has no 0.49

sources from a lowen, cell. Meanwhile,n,=7 is mapped

inton,=4,5, 6, 7, and 8, thus,=8, is in fact fed into from -051 -0.508 0506 -0504  -0.502 -05
a lower n, cell. Thus any trajectory starting in,=9 or () s

higher can only decreader, at best, hold constgnits n,
value, while for lowem,,, the values can move up or down.  FIG. 11. A trajectory in the §",d}) plane fore=0.1(r=1-¢
Hence stable trajectories will be trapped in the region below= 0.9).(a) This is a sample of the long-term behavior of a trajectory
n,=9. Thus, in this examplée=0.1), n., is eight. In gen- with random initial conditiong5000 point$. (b) The same trajec-
eral:n.is the greatest, such that a section of the(—1)  tory as in(a), but here then, regions are outlined and the fixed
cell is mapped into the, cell. Using the analytic forms, we points marked by stars. Notice that the number of regions visited by
v . ’ . . . .
can quantify this condition, and thus write an expression thaf'® rajectory(nmsy) is less than the number of regions for which

. . . f|X . nyo
describes the scaling of,,, as e—0: there exist fixed pointgn;,,). (c) The action of the mafg"~F on

two n, regions:n,=7 (horizontal shadingand n,=8 (vertical
Na~ 24612 (2.14 shading.

which is consistent with the data obtained by examining actrapped into a fractal region of phase space and generates a
tual trajectories at various (see Fig. 12 stripe in the triangle. Therefore the behavior in #w%0 re-

In summary, the asymptotic behavior of the dynamics ofgime does not approach that for the elastic case, and the limit
three particles moving on a ring changes sharply when their—1 is singular. There is no analytic evidence to show that
collisions become slightly inelastic. While for the case ofthis stripe corresponds to a globally attractive region of
totally elastic particles, the phase space that is explored comphase space, although simulations suggest that its formation
sists of fours values and allde(0,1) (a strictly one- is robust. On the other hand, by studying the map associated
dimensional spage numerical simulations indicate that in with the stripe {"eF) and its linearized versio(®.10 in the
the presence of inelasticity0<e<0.27) the system is (s”,d]) plane we have been able to understand the dynamics
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40 n—1

dn:dO_]._.[ (_Sj)
j=0

30

indicating that in this case both the separatiahs and
Z,= —d,;1S,+1 Will decrease monotonically to zero. In par-
ticular, this implies thatz, e (0,1) for all n and indeed all
subsequent mappings must lbg i.e., there is no corner
change and the trajectory zigzags into the original corner.
One therefore arrives at the following:
Proposition 1 Letr=<r,. If the evolution(1.9) generates
N . | | a segment &,,d,) whose slope _satisfiesnzs’i, then the
0.004  0.006 0.008 0.01 0.02 0.03  0.04 0.0 subsequent trajectory collapses in the corner associated with
€ that segment.
On the other hand, #,<s* , the trajectory evolves vi§
FIG. 12. A comparison of simulational and analytic values for until z¢ (0,1) and there is a corner change via nfgpof
Nmax &S a function ofe. The crosses are values obtained by exam-(1.9). Let 5‘6 denote the slope right after thiegh corner

ining typical trajectories over foapplications of">F. The solid  change, letC denote the evolution of the slope within a
line is the analytic expressiof.14): Npa~2.4¢ Y2, given corner,

Nmar 20

of the trajectories once they have settled into the stripe re- C:sk,  =f1(s)=—r/(b+s¥ (3.3
gion and to show that they will remain there.
and, assuming that the trajectory undergogshounces in
lll. THE STRONGLY INELASTIC REGIME:  r<r,, the kth corner, denote bp the corner changing step,

In Sec. | it was pointed out that motion restricted to any D:sg"t=fp(sh)=—r/(b—1-s). (34
corner of the billiard is governed by the dynamics on the
infinite line. Thus forr<r, the corners of the triangle can The evolution of the billiard is then described by the se-
become attracting. A ray incident onto a corner will eitherquence
zigzag into the origiricollapse or eventually leavéescapg
If the latter occurs, the trajectory is then incident onto one of
the other two corners and the same options are present. For

. _ k * k
motion on the ring, the question therefore arises whether a can be re_ad|ly shown fr_orf8.3_) thgt, for_ P <Sp<S-, S
initial conditions will eventually result in collapse. IS monotonically decreasing with, i.e., with repeated appli-

In this section it will be shown that the answer dependscat'onS ofC. This continues until & step occurs, the con-

entirely on the initial slopes. For<r, there is a set of dition for which is either
slopes that generate trajectories that will never collapse, but
continue to change corners indefinitely. This set turns out to
be fractal and its dimension at=r, will be estimated.

The motion within a corner is described byof (1.9

...DC"k+2DC"+1DC"*...

(i)ZX<0esk<—b,
(i) ZX>1=—b<sk<—1/2,

where—b<sK< —1/2 is a necessary, but not sufficient, con-
Sn+l)=fl(sn)=(_r/(b+5n)). (31) dition forzlrfl>_’]__
dn+1 dn —Spdy Consider(i) first. The ste@D maps the interval = (—,
) —b] into [-1,0. Recall that the domain of attraction of the
Forr<rq=7-4v3, the mapf,:s,—s,, has two real fixed fixed points is[s* ,0)C[—1,0). Owing to the monotonicity
points given by of D in I, there exists ase | such thatf,(s)=s* and thus
b s_par_titionsl into the disjoint intervalsl = (—o,s] and
st=—(-1x\1-47p), (3.2 1 9=(s,—b] Which are mapped unde!D into [s*,0) and
2 [—1s*), respectively. Fron{3.4) we find that

where b=(1+r)/2 and »=r/b? Note that—1<s* <s* — b 2
<0. Heres* is unstable and? is stable, with a basin of S=35 (1_ ot V1_4’7)
attraction €*,0).

The motion on the circle will in general be a sequence ofand thus, for <r, s'is, in fact, between-1 and—b. One
mapping f, and f,, of (1.9 depending on the value of therefore obtains
z,=—rs,d,/(b+s,) (1.8). Consider a segment of the trajec-  Proposition 2 If sKe (—,—b], the next step i®, i.e., a
tory described byg,,d,) and assume that e (0,1) so that corner change. Furthermore,df e | 2= (—o,s], thensk**
the next map idf,. If s,>s*, the slope will move mono- [s*,0) and by Proposition 1 the trajectory collapses in the
tonically towardss’ under repeated applications 6f and  new [(k+ 1)" corner. Conversely, a sufficient condition for
hences, e (—1,0) for alln. Meanwhile, from(3.1) it is seen  the trajectory not to collapse in this new corner is
that spelf=(s,—b].
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Consider now(ii), the second possibility for a corner sg will lie in either 17* or I * for somen, . If the trajectory is

change. Here, i6Xe (—b,—1/2), one must look at thd¥

value to determine itﬁ is actually greater than one. If it is,

the resultingD step will map b,—1/2) into (—2,—-1), a

to be noncollapsing, it is necessary tisgte | ; .
Denote by3? the subset of initial slopes$ in |9 that
remain uncollapsed after the first corner change. Then

subset ofl 2. Thus by Proposition 2, the trajectory immedi- 39=19n(C"D) " 1(19). Consider therefore the following
ately undergoes anothBr step and is moved to a new corner recyrsion:

in which it must collapse. If, on the other

C maps (b,—1/2) into (—%,—2), also a subset of %,

Therefore, by Proposition 2, the next step affemust be a
D and the trajectory will collapse in the corngrtakes it to.

These two results are summarized as

Proposition 3 If sﬁe(—b,—1/2), then the subsequent
trajectory will collapse after at most two more corner

changes.
Note that Proposition 3 is, again, independendéf

hand,
ske(—b,—1/2) butdk is such thatzX is not greater than
one, the next step must iz A short calculation shows that

30, ,=3N(C"D) X3P, (3.9

J

with 3 3=19. Note thats? is a monotonically decreasing
sequence of setéi.e., 33039239..), and hence define

j
30=lim2P=lim N 37, (3.9

j—© j—>:x:i:0

Next extend the set3°Cl? to its C preimages:
3"=C""(29 yielding

Now consider the preimages bf and!{ underC

2: U EnC|f.
n=0

1n=C (1) ={s|f(s) <13, (3.53 (310

If=C"(19)={slfi(s) e I?}. (35D By construction,3, is the set of all pointss, such that if
spe 2, thens,e X for all n. What remains to be shown is
that this set is nonempty. This can be done by explicit con-
struction of C™D.

The solution of the slope recursidd:s, ,,=f4(s,) for

r<r.andsyel Ul is given by

Since f, is monotonic in b,0), the setd { and |} are
mutually disjoint (i.e., IgNI"=0 for all m, n and
12N T=17N1{=0 for all m#n). Letting

and ;= U I,

le=U I 3.6 )
n=0 n=0 2r coth t(xg+1—n)]\~
it readily follows that:
—coshl -
| Ul = (—o0,8%). (3.7) Wheret=cosh (1/2{7n) andb and 7 are as defined after

Eq. (3.2. The initial point is parameterized by, e (0,2)
In the discussion leading to Proposition 3 it has also bee@nd hence
shown that ¢ b,—1/2)C 1! and therefore Propositions 1-3 5
can be summarized as So=— il (
Proposition 4 Consider a trajectory defined by its seg- b
ments 6,,d,). (@ If s,e[s*,0) for somen, the trajectory
collapses in the corner associated with that segméntlf
s, e l., the subsequent trajectory collapses after at most tw
more corner change$c) The trajectory will never collapse
in any corner if and only ifs,el; for all n. Moreover, the
symbolic sequences for trajectories of the typa@sand (b)
are of the form

-1

_cotr[t(x0+1)] —s(x0)
T2 T =5(x).

coth(t) (312

The functions(x) is one to one, and thus one can equiva-
ntly consider the dynamics of which then becomes a
translation, i.e.,
C:Xpy1=Xp— 1. (3.13
In order to characterize the sdt$ and| { of (3.5, the fol-

C*DC™DCk-1-- - lowing are needed:

—1 _ —

whereas for(c) the sequences are of the form s (=b=1,

...C"+1DC™DC™-1D- - - s™Y(—=)=0,

all the n,’s being finite. s 1i(s)=x<1,

Proposition 4c) establishes the necessary and sufficient

condition for the noncollapsing trajectories and shows how o 1—(r/b)
the set of initial slopes giving rise to these is to be con- coth(tx) = -1+ ———=
structed. Assume an initial segmensd(dd) such that V(14 =7

sgel;. From(3.5D and(3.6), sj 17° for some uniquen,,
indicating that it will taken, C steps to maps$ into sﬂo
e1?. Without loss of generality, assume therefafe |

and denote byC" the projectionl ;—1 9. By Proposition 2,
the next step i®. SinceD mapsl { into 1;Ul, by (3.6, 3.7

and one finds that, in the representation,
If={x|n+x<x=n+1},

le={x|n<x=n+x}.
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P ] £ e

FIG. 13. The functionh(x) for r=0.07<r.. The monotonic
branches oh(x) (only the first few are show for clarifypecome
steeper and more densely packedxasx. Shown in bold are the
subintervalss, | of points that will be mapped int&J under the
action ofh(x).

Denote byg(x) the function corresponding to the mapping

D in the x parametrization. Them:(x,1]—(0°) can be
decomposed into its integer pam{x) and the remainder
A(x) such that

g(x)=n(x)+A(x), (3.19

wheren is a positive integer and<0A(x)<1. Denote by
h(x) the function that corresponds @'-D in the x param-
etrization, sch:(x,1]—(0,1] and from(3.13 and(3.14) it is

seen that

h(x)=A(X). (3.19

The function g(x) and henceh(x) is straightforwardly
worked out, yielding

coth{t[g(x)+ 1]} = 1+ coth(tx) —coth(tx). (3.16)

Note that this function is defined o] only. It is readily
verified that lim_,5-g(x) =« andg(x) is monotonically de-
creasing on X,1). Forr=r,, g(x) takes a particularly
simple form:

xZ

GerlX) =X— 14 >
with x=1/#/3. Figure 13 shows a plot di(x) for a typical
value ofr<ry,.

It follows immediately that

3;=30=3,Nh7I(Z), (3.17)

where from now on the superscripts Brwill be omitted for
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whereh; are the monotonic branches lofx),
hi(x)=g(x)—1,
withi=0,1,2.... ThusZ, of Eq.(3.17) is a finer partitioning
of each of the intervals ok into the disjoint intervals
111 .
3.2 given by
EI21I2:hi_21°hi_ll(EO)u
so that

* . .
i1.ip

U3

i1,ip=0

22:

At level n, we therefore have the partition

= U

i14ig,in=0

s i1iz-in

n

(3.183

with

3 H2inz i to. - ohy tohy X(3) (3.18h
and asn— o, the partitioning becomes more and more re-
fined, resulting in the fractal s&. 3 is nonempty and each
of its elements is uniquely defined by the infinite sequence of
integers{iy,i,,...} wherei;=0,1,2.... ThusX is uncount-
able, and the dynamics on it is given by a shift:
CnOD:{i1,i2,...}—>{i2,i3,...}.

The Hausdorff dimension & can be estimated following
Falconer8], noting that the generatohg ! are contractions
and bi-Lifshitz, i.e., satisfy

pilx=yl<Ih ' —h Hy)l=ailx=y| for all xyeZ3,

(3.19
with 0< pisql<1. In the case of a finite number of genera-
tors{hot,hi*,...,h,!} each satisfying3.19 and the sets
3, 1'2-!n peing disjoint, lower and upper boungls, andz,,

respectively, can be calculated for the Hausdorff dimension
dim 42. These are given by the solutions[&)

m m
> p"=2 =1,
i=0 i=0

(3.20
We will considerr =r, only, for which
= ! (3.213
P =3 2-13)2 '
S 3.21
9=30F )2 (3.21b

the sake of clarity. Figure 13, which displays the general

features of the functioh(x) for r <r,, shows thah *(Z,)
is a countable union of disjoint intervals to be denote®hy
with the labelingi=0,1,2... such that3? is the interval

From (3.20 and(3.2)), it follows thaty,, andz,, are mono-
tonically increasing inm and are bounded by 142,
z,<1. (Monotonicity follows from O0<p;<q;<1; for y,,,

closest tox=1, 31 is the next closest interval, etc. These z,,=1/2, the serie$3.20 diverge in the limitm— oo, while

intervals are

Eilzhiil(zo),

for v, zn=1, the series are less than one as can be readily
checked. The limit m— o exists for both bounds and these
are the lower and upper bounds on the Hausdorff dimension
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in the limit m—o. A numerical summation of the series amount of time. We found that which asymptotic behavior is
(3.20 for r=r, gives 0.72dim ;3% <0.79. selected depends only on the initial ratio of relative velocities
A similar analysis can be carried out forr,. In this  and is independent of the initial separations. The set of val-
case, the serie@.20 become asymptotically geometrically ues of this ratio for which the particles do not cluster is
decaying and thus converge rapidly. Solution$x@0 exist  fractal, and we have calculated bounds on its dimension for
for all m with 0<y,,, z,<1. Numerical estimates foy,,  the special case=r,.
and z, show that the Hausdorff dimension decreases as The other regime in which energy is dissipated is
r—0, which is what one might expect, since the mappings (r¢,1). While the above results were analytic, here we
h; ! become more and more contracting in this limit. mainly used computational techniques to obtain a description
In summary, we have shown that forsr,, there do of the long-term dynamics of the system. We saw the emer-
indeed exist initial conditionssg,dg) for which the trajec-  gence of pseudoperiodic trajectories in certain regions of this
tories generated never collapse into a corner. Moreoverange ofr values. These orbits only visit select regions of
whether an initial condition produces such a trajectory dephase space and correspond to trajectories that undergo a
pends entirely ors; and is independent af,. These initial  fixed number of reflections between each corner change. The
conditions for noncollapsing trajectories lie on a fractallocations(in r) of these windows seem to be connected to the
whose dimension we estimated for . r values at which the number of reflections allowed per cor-
ner increases by one. Since the dynamics within a corner is
equivalent to that of three particles on a line, these transi-
IV. CONCLUSION tional r values can be calculated analyticdlly]. The result-
ing sequence of’s (2.1) is countably infinite, and thus we
We have shown that the dynamiCS of three inelastica”yoe”eve that there are a Corresponding numbe’r@gions in
colliding particles on a circle can be treated as a biIIiard(rcr,l) for which the trajectories are pseudoperiodic. We
moving in an equilateral triangle with nonspecular reflec-stydied in some detail the orbit that goes with the first such
tions, thereby reducing the dynamics to a discontinuous maggindow, r € (~0.73,1). Because of the regularity of the tra-
ping of two variables. This procedure is in essence a fOfmUjectory, we were able to do analytic work to support the
lation of the equations of motion in a way manifestly humerical observations within thisregion.
invariant under Galilean transformations and the simulta- The C|ose examination of th|s near'y e|astic regime a|_
neous rescaling of all velocities. Its main adVantage is that |rowed us to focus on the transition between energy conser-
enables us to uncover regularities in the asymptotic dynamyation and dissipation. We found that the asymptotic behav-
ics that are otherwise difficult to observe. If the dynamicalior of perfectly elastic collisions and nearly elastic collisions
variables are taken to be absolute or relative velocities, patn the limit of the inelasticity becoming arbitrarily small is
terns can be masked by the fact that their magnitudes ajharply different. The main reason for this is that in the
decrease with each inelastic collision. Thus while it is Cer—former case, the dynamics iS essentia”y ohe dimensiona'; the
tainly true that in the long time limit, the energy will be motion is generated by a shift map on the unit interval and
dissipated from the system whenewvet 1, this paper has thys has zero Lyapunov exponent. In the latter case, the pres-
shown that there exists a wide variety of ways in which thisence of inelasticity produces stretching and contracting in
limit is approached. hase space and the dynamics is now two dimensional. In-
We have examined two separate regimes in which suckerestingly enough, when the collisions are sufficiently in-

dissipation occurs: the quasielastic case-r>r) and the  ejastic(r=<r ), we again recover one-dimensional dynamics.
strongly inelastic regiorr<r.). In the latter regime, two

distinct types of asymptotic behavior emerged: inelastic col-

!ap_s_e, Whe_re the num_ber of coII|_3|ons per unit time becomes ACKNOWLEDGMENTS
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Thus all possible collisions—particle 1 with particle 2, 2 with

3, and 3 with 1—continue to occur. Since the sum of the rela-
tive separations equals the circumference of the circle
(dqotdyst+da=1), there must always be at least one distance

of order one. Since the collisions are inelastic, the absolute
values of the particle velocities go to zero in the center of the
momentum frame, while the distances remain finite, thus the
time between collisions diverges.



