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In a previous paper@P. Constantin, E. Grossman, and M. Mungan, Physica D83, 409 ~1995!#, we have
studied in detail the dynamics of three inelastically colliding particles moving on an infinite line. The present
paper addresses the effect of boundary conditions by investigating both analytically and numerically the
dynamics of three particles confined to a ring. Using the methods developed in@P. Constantin, E. Grossman,
and M. Mungan, Physica D83, 409~1995!#, we reformulate the dynamics as a billiard in an equilateral triangle
with nonspecular reflections laws. There are three sharply distinct regimes:~i! perfectly elastic collisions,~ii !
slightly inelastic collisions, and~iii ! strongly inelastic collisions. In particular, in the limit of the inelasticity
going to zero, the asymptotic motion in case~ii ! does not reduce to case~i!, i.e., perfectly elastic motion is a
singular limit. For motion on the line in the strongly inelastic regime, particles can either cluster, undergoing
infinitely many collisions while their relative separation goes to zero~inelastic collapse!, or they can separate
after a finite number of collisions~escape!. The confinement to a circle, while greatly enhancing the occurrence
of clustering, does not completely eliminate the existence of other asymptotic states. In fact, there exists a
fractal set of initial conditions for which collisions proceed indefinitely without clustering.@S1063-
651X~96!01006-9#

PACS number~s!: 46.10.1z, 03.20.1i, 05.45.1b, 47.53.1n

I. INTRODUCTION

Inelastic collisions of particles on a line or in the plane
have been studied with increased interest over the past sev-
eral years@1–5#. It has been observed that due to the energy
loss in successive collisions, these systems can evolve into a
clustering state in which the number of collisions per unit
time increases without bound, while the mean free path goes
to zero. This phenomenon has been termed ‘‘inelastic col-
lapse’’ @3# and is qualitatively akin to the behavior of one
inelastic ball bouncing repeatedly off the ground.

The occurrence of inelastic collapse on a line depends on
the number of particles present and on the coefficient of res-
titution r . Specifically, for three particles on a line it has been
shown @1–3,6# that collapse can occur whenr is below a
critical value r cr5724). In a previous work@1#, we have
analyzed the dynamics of this system, both above and below
the critical r value. The aim of this paper is to investigate
how the dynamics is changed when the system is confined to
move on a ring, i.e., when periodic boundary conditions are
imposed.

In Sec. I A, we formulate the dynamics of three particles
on a line in a way suitable for extension to the ring. For
motion on the line, the dynamics is equivalent to a billiard in
a semi-infinite wedge, while confining the system to a circu-
lar configuration generates a billiard in an equilateral tri-
angle. In either case, the reflections are not specular.

In Sec. II we examine the quasielastic regime~r.r cr!.
Section II A provides an overview of the types of behavior
observed in this range ofr values. Secs. II B and II C con-
centrate on specific cases of interest.~i! The completely elas-
tic caser51: Here, the reflection laws turn out to be specu-
lar, and we have a conventional billiard in an equilateral
triangle. ~ii ! The nearly elastic case,r512e ~in particular,
the behavior ase→0!: Numerical findings suggest that the

asymptotic dynamics for theser is governed by a strange
attractor.

The most immediate consequence of imposing periodic
boundary conditions on the three particles is the elimination
of escape; all initial conditions give rise to an infinite se-
quence of collisions. Section III examines the strongly in-
elastic region~r<r cr!. It turns out that almost all initial con-
ditions result in inelastic collapse, but nonetheless there does
exist a fractal set of initial data that generates a sequence of
infinite but non-collapsing trajectories.

A. A review of inelastic collisions and motion on a line

In @1#, we obtained an analytic description of the dynam-
ics of three inelastically colliding particles confined to move
on an infinite line. The inelasticity is parameterized by the
coefficient of restitutionr as

v282v1852r ~v22v1!, ~1.1!

wherev1,2 andv1,28 are the velocities before and after a bi-
nary collision. The completely elastic case occurs whenr51
and energy is conserved, whereas atr50, the collision is
completely inelastic and the particles emerge stuck together.
Equation~1.1! and conservation of momentum allow us to
express the velocities after a binary collision in terms of
those before

S v18v28D 5S ~12r !/2 ~11r !/2

~11r !/2 ~12r !/2D S v1v2D , ~1.2!

where we have assumed that the particles have equal masses.
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When viewed in the plane of relative separations~x12 and
x23! the dynamics of three inelastically colliding particles is
equivalent to the motion of a nonoptical billiard within a
semi-infinite wedge~see Fig. 1!. Collisions of the particles

correspond to reflections at the boundaries of the wedge,
which represent the linesx1250 andx2350. Between these
walls, the trajectory moves along a straight line whose gen-
eralized slopesn is defined as

sn52
dn11

dn
5H v32v2

v22v1
for trajectories emerging from thex2350 axis

v12v2
v22v3

for trajectories emerging from thex1250 axis.

~1.3!

Using expression~1.2! for the change in the velocities due to
a binary collision, we obtain the mappingf 1 :sn→sn11 that
describes the change in the slope upon reflection

sn1152
r

b1sn
[ f 1~sn!, ~1.4!

whereb51/2(11r ).
The initial data of the system is now reduced to a distance

d0P[2`,`] and a slopes0P[2`,`]. The latter, via~1.4!,
generates a sequence of slopes,si,0, i51,2,3,..., that ter-
minates with the smallestn such thatsn.0. Such a slope
corresponds to a trajectory that is moving away from both
the x12 and thex23 axes, and hence no further collisions can
occur. Depending onr , we see two distinct regimes@1–3#:

~I! The strongly inelastic regime, r<r cr5724): For this
range ofr values, the mapping~1.4! has two real fixed points
s2* ,s1* ,0; s2* is unstable, whiles1* is stable, with a basin
of attraction consisting of all initial slopess0.s2* . Thus the
sequence of slopes generated by such ans0 approaches the
fixed points1* and the series does not terminate. In the bil-
liard picture, such an infinite sequence corresponds to a tra-
jectory zigzagging into the origin, while the corresponding
motion in configuration space is such that the relative sepa-

rations of the particles go to zero. We refer to these states as
asymptotic bound states. Fors0,s2* , the sequence is not
drawn to the fixed point; eventually the slope assumes a
non-negative value and the series terminates, indicating that
the particles are all moving away from each other. We call
such states asymptotic free states.

~II ! The quasielastic regime r.r cr : In this regime the
recursion~1.4! has no real fixed points and anys0P[2`,`]
generates a sequence that terminates after a finite number of
reflections. Thus in this regime we have only asymptotic free
states.

B. The equations of motion on the circle

By an extension of the above method, the dynamics of
three particles on a ring can be considered as a billiard in an
equilateral triangle. If the circle has unit circumference, the
triangle has edges of length one, its sides representing the
linesx1250, x2350 andx3150 ~see Fig. 2!. The vertices are
the intersections of these lines and hence correspond to triple
collisions. Each vertex is uniquely labeled by the middle
particle in such a grouping.

Consider a pair of successive collisions. This pair will
have a middle particle, one which is involved in both colli-

FIG. 1. The variable conventions for a billiard moving in a
semi-infinite wedge. This system is equivalent to three particles
moving on an infinite line with relative separationsx12 andx23.

FIG. 2. ~a! The configuration space.~b! The corresponding bil-
liard. Collisions between two particles correspond to reflections,
and hence at each side of the triangle, one of the relative separations
is zero. The vertices are the three possible cyclical arrangements of
the particles when touching. Each vertex is uniquely labeled by the
middle particle.
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sions; label itj . There will also be two outer particlesi and
k such that the first particlej collides with i , then withk ~of
courseiÞ jÞk!. Denote the distance between particlesj and
k ~i and j ! at the time of the first~second! collision by djk
(di j ). Associate with this pair of successive collisions a di-
rected line segment in the billiarddjkdW i j as shown in Fig. 3.
Proceeding in this manner, the successive collisions on the
circle generate a billiard trajectory within the triangle. Fur-
thermore, each line segmentdjkdW i j has a generalized slope,
si j→ jk , given by

si j→ jk52
di j
djk

, ~1.5!

which is, again, related to the velocities of the particles be-
tween the two collisions@cf. Eq. ~1.3!#:

si j→ jk5
v j2v i
vk2v j

. ~1.6!

Thus the line segmentdjkdW i j is well determined by the point
of emergencedjk and the generalized slopesi j→ jk .

As long as the collisions proceed in a way thatj remains
the middle particle, the particles do not experience the
boundedness of their configuration space and hence the dy-
namics is identical to that occurring on the infinite straight
line. This situation breaks down when the outer particles
collide with each other. At this point, one of these outer
particles becomes the middle particle. In the billiard this cor-
responds to a trajectory changing corners. Therefore, given a
line segment described by the pair (sn ,dn), there are two
distinct possibilities for the subsequent segment (sn11,dn11)
~see Fig. 4!; given in terms of (sn ,dn), these are as follows.
For case I:

sn115 f 1~sn!52r /~b1sn!
~1.7a!

dn1152dnsn .

For case II:

sn115 f 1~212sn!52r /~b212sn!
~1.7b!

dn11511dnsn .

In order to derive the recursion for the slope in~1.7b!, note
the following. When both the incident and reflecting slope
are expressed with respect to the same corner, the reflection
law is given by f 1(s), as discussed in Sec. I A and seen in
case I. For case II, where the trajectory is changing corners,
we can still make use off 1(s) if the incident slope is re-
expressed in terms of the new corner. This re-expression
corresponds to a permutation of the velocities in~1.6!. One
finds that sn→212sn , and thussn115 f 1(212sn) for
case II.

FIG. 3. The variable conventions for a billiard trajectory in the
equilateral triangle.

FIG. 4. Given a segment (sn ,dn), there are two possibilities for the next type of step. For type I, the trajectory remains in the same corner
~the middle particle does not change!, while for type II, the billiard shifts to a different corner~there is a new middle particle!.
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Given a segment (sn ,dn), the question whether to pro-
ceed via I or II is determined by assuming that I is applied
twice and checking to see ifdn12 is a permissible distance,
i.e., between zero and one. In other words,

zn52dn11sn1152~2dnsn!@2r /~b1sn!# ~1.8!

and if znP(0,1), the evolution proceeds via I, indicating that
the corner has not changed. Conversely, ifznP” [0,1], there is
a change of corner, and the system evolves under II.

Thus the two-dimensional recursion for the motion of
three inelastically colliding particles on a ring~or one
nonspecular billiard in an equilateral triangle! is given by

S sn11

dn11
D55 f IS sndnD5S 2r /~b1sn!

2dnsn
D if 0,zn,1

f IIS sndnD5S 2r /~b212sn!
11dnsn

D otherwise

~1.9!

and the initial data for this recursion is a pair

~s0 ,d0! such thats0,0,d0P~0,1!,

and d152s0d0P~0,1!;

in particular, this guarantees thatsn,0 for all n. Note that
we exclude trajectories that are incident on or emergent from

the corners. The above description does not distinguish
among the three corners of the billiard, which is natural as
the particles themselves are indistinguishable.

II. THE QUASIELASTIC REGIME: r>r cr

A. The quasielastic regime in general„1>r>r cr…

Simulations of three particles confined to a ring indicate
the existence of two types of long-term behavior in the
quasielastic regime—full exploration of phase space or some
sort of pseudoperiodic orbit. In the billiard picture, the
former corresponds to a trajectory that ‘‘fills’’ the triangle,
with no a priori limits on the possibles andd values. The
latter case appears as a trajectory that visits only certain parts
of the triangle, i.e., certain finite ranges ofs andd values.
Numerically, which type of asymptotic trajectory occurs
seems to depend only onr , not on initial conditions.

Figure 5~a! visualizes this dependence. The horizontal
axis is the coefficient of restitution. For eachrP(0,1), the
system evolves from the random initial conditions for 23106

bounces. Thed values for the last 200 reflections are then
plotted againstr . If r is such that the trajectory fills the
triangle,d is seen to appear anywhere within its permissible
domain,~0,1!. If, however, ther value produces a pseudope-
riodic orbit, d is observed to be limited to select regions of
this domain.

FIG. 5. Long-term behavior of the billiard as a function ofr . For a fixedr , the trajectory is allowed to evolve for 23106 bounces from
random initial conditions and the last 200 distancesd are plotted versusr on the vertical axis.~a! The full range ofr values. Notice that for
r<r cr collapse always occurs in the simulations. Thus the distances all go to zero at large times~see Sec. III!. ~b! Replot of~a! for r.r cr ,
the horizontal axis has been rescaled to highlight the appearance of the pseudoperiodic windows asr→r cr . ~c! Plot of the last 200 slopes.
The vertical axis is actually tan21(s).
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For r<r cr , all the computer generated initial conditions
result in collapse (d→0). For r.r cr , there seems to be a
large pseudoperiodic window nearr51, another atr;0.17,
and there are more at lowerr values greater thanr cr . In fact,
Fig. 5~b! shows a section of Fig. 5~a! rescaled to highlight
the positions of some of these windows. Figure 5~c! is a plot
equivalent to Fig. 5~b!, but instead ofd on the vertical axis,
tan21(s) has been plotted. It is clear that the period of these
special orbits increases asr decreases. For all the windows
~except that nearr51!, d is limited to values that are nearly
one or nearly zero, i.e., all the reflections occur close to the
corners of the triangle. If we examine the trajectories from
the window at r;0.17, we find that they consist of five
bounces in a corner, the last of which moves the trajectory to
another corner, where there are again five bounces. The tra-
jectories then return to the original corner and the pattern
repeats. The position along the walls~and hence the slopes!
of the reflections in each corner vary slightly from cycle to
cycle, but stay within a confined range. This is what we
mean by a pseudoperiodic orbit. This pattern turns out to be
typical of the trajectories in all the windows. For example,
nearr50.12, the trajectories always undergo six reflections
per corner and this time visit all three corners of the triangle
before repeating. We can summarize our computational un-
derstanding of these pseudoperiodic trajectories as follows:
label the windows byn, where nearr51 is n53, near
r50.17 isn54, nearr50.12 isn55, etc.; then the trajec-
tories in thenth window always haven11 reflections per

corner; if n is even the trajectory alternates between two
corners; if it is odd, it rotates among all three. Note that the
first window (n53) does not quite conform to this pattern.

As discussed above, the motion of the billiard within a
corner is equivalent to the motion of three particles on a line;
the middle particle remains the same so the constraint of the
circular geometry is not felt. On a line, for eachr.r cr there
exists an upper boundnmax(r ) on the number of collisions
that can occur before escape@1#. On the circle, this limit
corresponds to the maximum number of collisions that can
occur within a corner. The functionnmax(r ) can be used to
find r n , such that if rP[ r n11,r n), n11 is the maximum
number of collisions that may occur@7#

16r n
~11r n!

2 511tan2S p

n D n53,4,5,... . ~2.1!

Thus, for example, the trajectories that occur nearr;0.17
could only exist forr,r 4 . In fact, we find numerically that
the upper boundaries of the windows are given by theser n :
r values just belowr n produce pseudoperiodic orbits with
n11 reflections per corner whiler values just abover n pro-
duce trajectories that fill the phase space. The linking of
these pseudoperiodic regions to a well understood sequence
of r values leads us to believe that there are a countably
infinite number of such windows in the rangerP(r cr ,1!.

FIG. 5 ~Continued!.
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B. The elastic case„r51…

In this section we analyze the recursions for the case
r51. It can be shown that the construction of Sec. I B re-
duces the dynamics of three perfectly elastic particles on a
circle to a billiard with specular reflections. The results we
derive could be shown perhaps more easily using conven-
tional analysis of specular billiard systems. However our mo-
tivation is to extend some of the techniques used here to the
caserÞ1 where the reflections are no longer specular. It is
therefore instructive to study the elastic case using recursions
~1.9!.

For r51, b51/2(11r )51, and recursions~1.9! become

S sn11

dn11
D5H S 21/~11sn!

2dnsn
D if 0,zn5

2dnsn
11sn

S 1/sn
11dnsn

D otherwise,

~2.2!

with d0P(0,1) ands0P(2`,0) such that2d0s0P(0,1). Let
us denote thes mappings byf 1 and f 2 , respectively,

f 1~s!521/~11s!,

f 2~s!51/s.

Now note thatsnP(2`,0) can be partitioned into two open

intervals,I[(21,0) andI 8[(2`,21). ~For convenience,
s521 has been excluded, as it generates a simple six-
segmented periodic trajectory withsn521 for all n that is
irrelevant for our purposes!. We see thatf 1(I )5 f 2(I )5I 8,
f 1(I 8)5(0,̀ ), and f 2(I 8)5I . Thus, if we considersnPI ,
there are only two possibilities forsn12PI : sn125 f 2+ f 1(sn)
or sn125 f 2+ f 2(sn); which mapping is selected depends on
zn . Denote these byA andB, respectively. Then in the bil-
liard, these ‘‘two steps’’ appear as in Fig. 6, and we can
consider the dynamics as an evolution underA andB

FIG. 5 ~Continued!.

FIG. 6. The two types of maps that comprise the motion when
r51. TypeA is composed off I followed by f II , while typeB is
two successive applications off II .
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S sn12

dn12
D55 S 212sn

11
dnsn
11sn

D for A, where znP@0,1#

S sn

11dn1
1

sn
D for B, where zn¹@0,1#.

~2.3!

Note that these equations imply that, givens0PI , the only
values thatsnPI can assume~wheren is even! are s0 and
2(11s0).

As the quantityzn52sndn/(11sn) is what determines
whether the next step is anA or aB, we look at the evolution
of zn under~2.3!,

A:zn1252
11sn
sn

~12zn!,

B:zn1252~12zn!.

The only dependence onsn is through a factor
sn[2(11sn)/sn . These recursions can equivalently be
written in terms of (zn ,sn) using ~2.3!

S zn12

sn12
D5H S sn~12zn!

1/sn
D for A, where znP@0,1#

S zn21
sn

D for B, where zn¹@0,1#.

~2.4!

Hencesn takes only two values,s0 or 1/s0, which are both
positive fors0P(21,0). Without loss of generality, we as-
sume thats0.1 ~this is merely a statement that we label the
first sP(21/2,0) as the initial condition! and distinguish be-
tweenA1 andA2, so that the recursions~2.4! are now com-
prised of three maps

A1~when zn,1 and sn5s0.1!:

S zn12

sn12
D5S s0~12zn!

1/s0
D ,

A2~when zn,1 and sn51/s0,1!:

S zn12

sn12
D5S ~1/s0!~12zn!

s0
D , ~2.5!

B~when zn.1!: S zn12

sn12
D5S ~zn21!

sn
D .

From ~2.5! it is clear ~i! that as long asz,1, the system
evolves under an alternating sequence ofA1 andA2 steps;
~ii ! that sincez can become larger than one only through an
A1 step,B steps can be preceded by anA1 ~but never an
A2!; and~iii ! that a series ofB steps, which acts to reducez,
will continue untilz is less than one, at which point the next
step must be anA2, since theB sequence was initiated with
anA1 step ands does not change underB. From these three
facts, we conclude that the sequence of maps must assume
the form

...Bm2~A1A2!n2Bm1~A1A2!n1••• . ~2.6!

The action ofA1A2 can be calculated explicitly from~2.5!;
noting thatA2 is applied first, thenA1, giving

A1A2: S zn14

sn14
D5S zn1~s021!

1/s0
D . ~2.7!

The dynamics generating the series~2.6! is essentially a
translation ofz by s021 around the unit circle and thus is
one dimensional. It is not difficult to show thatni andmi of
~2.6! are limited by the values0

1<ni<F F 1

s021G G115nmax

1<mi<@@s0##5mmax

where@@ ## is the least integer function. Since the dynamics
of z is a circle map, the sequence ofz values@and hence
~2.6!# is periodic whenever the translational shift~s021! is
rational, i.e.,s0 is rational. This can be intuitively understood
by considering the particles on the ring. Since they collide
elastically and are identical, the situation is equivalent to the
particles passing through each other, and the quantitys0 is
then just the relative rotation rates of the three particles.
When this is rational, there is periodic behavior. Conversely,
in the generic case wheres0 is irrational, we do not see
repeating orbits, but rather quasiperiodic behavior. To quan-
tify this, let us say that at each moment of collision we take
a snapshot of the system. In this picture, two particles are
next to each other and the third particle is elsewhere on the
ring. Let d denote the smallest distance between the pair and
the third particle as measured along the ring. Compiling a list
of d values from collision to collision, a probability distribu-
tion is obtained. For rationals0 , the orbit, and hence thed
values, are periodic, and the distribution is a collection of
spikes. However, whens0 is irrational, the distribution will
be smooth and moreover uniform betweend50 andd51/2.
Regarding the billiard, this is equivalent to saying that the
trajectories have equal probability of leaving a side at any
point along its length. These points of emergence are dense
along each side, and hence the resultant trajectory appears to
fill the triangle. In terms of the mapping~1.9! in the (sn ,dn)
plane, the distribution ofd is merely the distribution of
min (dn,12dn).

C. The nearly elastic regime„r512e…

The general examination of the quasielastic regime in
Sec. II A showed that the dynamics of the billiard whenr is
near but not equal to one is pseudoperiodic and strikingly
distinct from that when the particles are elastic. Figure 7
shows both the uniform distribution expected for the elastic
case as well as the distribution ofd obtained numerically for
eÞ0. Not only is the evenness of ther51 case lost, but there
seems to be a region ofd values that is forbidden entirely.
The corresponding trajectory in the triangle is confined to a
stripelike region~see Fig. 8! in which the impacts on the
sides are either very close to a corner~sod is nearly zero!, or
practically in the middle of the opposite side~so d is nearly
one half!. Numerically, the formation of this stripe is robust,
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i.e., for all random initial conditions that we have tried, after
some transients, the trajectory will settle into this sort of path
and stay there. Thus this stripe seems to correspond to some
attractive, stable region of phase space.

A close inspection of the simulations shows that the stripe
in the billiard is produced by some very simple dynamics of
the three particles on the ring. If we are in a reference frame
such that the particles’ total momentum is zero, the stripe
corresponds to one particle remaining relatively still as the
others bounce back and forth almost symmetrically on either

side of it. When the two outer particles are near the center
one, they are not hitting it simultaneously; rather the center
one rattles quickly back and forth—it bounces against one,
then the other, then the first one again—before the outer
particles move away to the other side of the ring where they
bounce off each other and return to the center particle to
repeat the process~see Fig. 9!. In the billiard, the stripe tra-
jectory can be decomposed into two simple building
blocks—call themT for tooth andF for flip—as shown in
Fig. 10. The tooth corresponds to the series of collisions
shown in Fig. 9, while the flip is the trajectory that appears
when the collision order during rattling changes.

Comparing Fig. 4 and Fig. 10 demonstrates that the tooth
and flip are written

TS sndnD5 f II+ f I+ f II+ f IS sndnD ~2.8a!

FS sndnD5 f II+ f I+ f II+ f IIS sndnD . ~2.8b!

Thus our numerical findings suggest that a trajectory in the
stripe region can be represented symbolically by a series of
T’s andF ’s

...Tn̄n13FTnn12FTnn11FTnnF••• ~2.9!

and simulations show that the integersnn range from 0 to
some maximum valuenmax which depends one512r .

Since numerical evidence indicates the robustness of the
stripe, we can observe (s,d) not after each collision, but after
eachTn+F step. While this approach cannot describe fully all
possible trajectories within the triangle, it turns out that it
does provide a complete description of the behavior once a
trajectory has settled into a stripe. We have not proven that
the stripe is globally attracting, but we can nonetheless show
that the mappingTn+F has an invariant region in the (s,d)
plane, and thus the stripe is a stable, self-contained region of
phase space. Numerics show that this stripe region exists for
e&0.27.

Trajectories can now be represented as a sequence of
points in the (sn,dn) plane where (sn11,dn11)5Tnn

+F(sn,dn) andnn is itself a function ofsn anddn. For con-
venience, instead of working in terms of (sn,dn), define
d 1

n52sndn; in the (sn,d 1
n) plane, the simulations demon-

strate that the region of interest is near~21/2,1/2!. A typical
trajectory is shown in Fig. 11~a!. Notice that for a givensn,
there is both an upper and lower bound on the valuesd 1

n can
assume. The former is due to the fact thatdn,1, so
d 1

n52sndn,2sn. The latter bound exists because these
(s,d1) are plotted when the next step is a flip. From~2.8b!
we see that the first map in a flip isf II , i.e., thez associated
with (sn,dn) must be greater than one or less than zero.
The latter is not possible in this region, but the former
implies that 1,zn52rsndn/(sn1b)5rd 1

n/(sn1b), so
d 1

n.(sn1b)/r .
The next step is to look at the dependence ofnn on

(sn,d 1
n). Given an (sn,d 1

n), we can compute the correspond-
ing nn by applyingF followed by a series ofT’s until z is
greater than one or less than zero. If each (sn,d 1

n) is labeled
by the appropriatenn , the continuity of theT andF maps
ensures that the plane is divided into distinct cells, each cor-

FIG. 7. The probability distributions ford5min (dn,12dn) for
r51 andr512e50.85. Notice the clear distinction in the shape
of the curves. This difference is maintained for allnonzeroe less
than approximately 0.27. The peaks become more diffuse~i.e., the
region of forbiddend’s shrinks! as e gets larger. Fore512r
50.15, we haved&0.14 ord*0.43.

FIG. 8. Ten thousand bounces in the trajectory of a billiard at
r50.85. We have used random initial conditions, but removed the
first 200 bounces, as they are transients. Once the system begins the
stripe behavior, it continues indefinitely. The limits ond, as seen in
Fig. 7, have been marked on this plot.
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responding to a differentnn @see Fig. 11~b!#. Notice that a
typical trajectory does not visit all suchnn cells. How ~and
why! the trajectory is limited tonn50,1,...,nmax will be dis-
cussed later in this section. However, simulations allow us to
computenmax at variouse ~see Fig. 12!; the data show that
nmax scales ase

21/2 ase→0.
Numerical observation of the stripe has lead us to con-

siderTn+F as the basic recursion. For smalle, the region of
interest in the (sn,d 1

n) plane is near~21/2,1/2! and has a
width in thesn direction that scales roughly ase2. Returning
to the analytic expressions forT andF ~2.8!, we can look at
Tn+F in the limit e→0. Linearizing this recursion within
eachnn cell gives

sn11's*2ann11~sn111s* !

~2.10!

d1
n11'2d1

nbnn111bnnFa2g1s* S a222
b

12e D G
1g

12bnn

12b
1a~11s* !S a1

b

12e D ann2bnn

a2b

1snS a1
b

12e D ann112bnn11

a2b
,

where, as noted above,nn is itself a function ofsn andd 1
n.

The parameters in the above equations are all just functions
of e

f5sinh21F e~22e!

8~12e!G , ~2.11!

s*5~12e/2!/@sinh~f!2cosh~f!21#,

a5e4f,

b5~12e!2/@122 sinh~f!12 sinh2~f!#,

g52s* S 11
b

12e D2b~12e/2!/~12e!.

From ~2.10!, the linearization is of the form

S sn11

d1
n11D 5S k~nn!

m~nn! D 1S 2ann11 0

r~nn! 2bnn11D S sn

d1
nD ,

~2.12!

where the expressions fork(nn), m(nn), andr(nn) can be
readily determined from~2.10! and ~2.11!. By comparison
with the exact analytic expression~2.8!, it can be shown that
the error introduced by the linearization~2.10! is of ordere4

or smaller. The linearized mapping is itself rather involved,
due to the complex dependence of the coefficients one.
However some conclusions can still be drawn merely from
the form of the mapping~2.12!.

For instance, we expect to find a fixed point in eachnn
cell. Indeed, solving the recursion

S sd1D5Tnn+FS sd1D
either analytically using the linearized map~2.10! or compu-
tationally ~using the full recursions and Newton’s method!,
we discover that there is one such fixed point per eachnn cell
for nn between zero and a maximum valuenmax

fix that depends
on e @see Fig. 11~b!#. It is important to note thatnmax

fix .nmax,
wherenmax is the biggestnn observed in a stable trajectory
@see after Eq.~2.9!#. In fact, the analytic formula enable us to
calculatenmax

fix for small e and observe how it scales ase→0

nmax
fix 52112A113/e'2A3e21/2. ~2.13!

This provides an upper bound onnmax.
The linearized expression also provides information about

the stability of the fixed points in the limit of smalle. Equa-

FIG. 9. The motion in configuration space
that corresponds to the stripe in the billiard pic-
ture. The series of collisions that give rise to the
tooth (T) trajectory are shown explicitly. Stepe
is not really part of this tooth, but rather the first
segment of the next one~the equivalent ofa!. A
flip would be similar, but the last three collisions
would be 23, 12, 23~rather than 12, 23, 12!.
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tion ~2.12! shows that each fixed point has a stable and un-
stable direction,~0,1! and @b2a, a1~b/12e!#, respectively,
with corresponding eigenvalues2bnn11 and 2ann11,
wherea andb are as defined in Eq.~2.11!. For e.0, a.1
.b.0. The existence of these competing stable and unstable
directions within eachnn cell draws the trajectory toward the
unstable directions into a linelike formation. Thus we do not
expect a full exploration of the phase space plane. Calculat-
ing numerically the fractal dimension of the set of points
comprising the trajectory in the (sn,d 1

n) plane under repeated
application ofTnn+F @Fig. 11~a!#, we find that the dimension
is roughly 5/3, rather than two.

The presence of the fixed points and their location explain
why the actual number of distinctnn cells visited by a tra-
jectory ~nmax! is less than the number of fixed points~nmax

fix !.
Because the eigenvalues,2bnn11 and 2ann11, are nega-
tive, a givennn cell is stretched, contracted, and rotated un-
der the mapTnn+F @see Fig. 11~c! for some examples#. Thus
a point in that cell can be mapped into several neighboring
regions, as well as back into the original cell. What deter-
mines whether a region is visited regularly by a typical tra-
jectory is not so much where it is mapped to, but where it is
mapped from. For example, in Fig. 11~c!, nn58 is mapped
into the cellsnn55, 6, 7, and 8, and hencenn59 has no
sources from a lowernn cell. Meanwhile,nn57 is mapped
into nn54, 5, 6, 7, and 8, thusnn58, is in fact fed into from
a lower nn cell. Thus any trajectory starting innn59 or
higher can only decrease~or, at best, hold constant! its nn
value, while for lowernn , the values can move up or down.
Hence stable trajectories will be trapped in the region below
nn59. Thus, in this example~e50.1!, nmax is eight. In gen-
eral:nmax is the greatestnn such that a section of the (nn21)
cell is mapped into thenn cell. Using the analytic forms, we
can quantify this condition, and thus write an expression that
describes the scaling ofnmax ase→0:

nmax'2.4e21/2, ~2.14!

which is consistent with the data obtained by examining ac-
tual trajectories at variouse ~see Fig. 12!.

In summary, the asymptotic behavior of the dynamics of
three particles moving on a ring changes sharply when their
collisions become slightly inelastic. While for the case of
totally elastic particles, the phase space that is explored con-
sists of four s values and alldP(0,1) ~a strictly one-
dimensional space!, numerical simulations indicate that in
the presence of inelasticity~0,e&0.27! the system is

trapped into a fractal region of phase space and generates a
stripe in the triangle. Therefore the behavior in theeÞ0 re-
gime does not approach that for the elastic case, and the limit
r→1 is singular. There is no analytic evidence to show that
this stripe corresponds to a globally attractive region of
phase space, although simulations suggest that its formation
is robust. On the other hand, by studying the map associated
with the stripe (Tn+F) and its linearized version~2.10! in the
(sn,d 1

n) plane we have been able to understand the dynamics

FIG. 10. The two types of motion that comprise the stripe. The
tooth (T) only uses two of the corners, while the flip (F) visits all
three.

FIG. 11. A trajectory in the (sn,d 1
n) plane fore50.1(r512e

50.9).~a! This is a sample of the long-term behavior of a trajectory
with random initial conditions~5000 points!. ~b! The same trajec-
tory as in ~a!, but here thenn regions are outlined and the fixed
points marked by stars. Notice that the number of regions visited by
the trajectory~nmax! is less than the number of regions for which
there exist fixed points~nmax

fix !. ~c! The action of the mapTnn+F on
two nn regions: nn57 ~horizontal shading! and nn58 ~vertical
shading!.
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of the trajectories once they have settled into the stripe re-
gion and to show that they will remain there.

III. THE STRONGLY INELASTIC REGIME: r<r cr

In Sec. I it was pointed out that motion restricted to any
corner of the billiard is governed by the dynamics on the
infinite line. Thus forr<r cr the corners of the triangle can
become attracting. A ray incident onto a corner will either
zigzag into the origin~collapse! or eventually leave~escape!.
If the latter occurs, the trajectory is then incident onto one of
the other two corners and the same options are present. For
motion on the ring, the question therefore arises whether all
initial conditions will eventually result in collapse.

In this section it will be shown that the answer depends
entirely on the initial slopes. Forr<r cr , there is a set of
slopes that generate trajectories that will never collapse, but
continue to change corners indefinitely. This set turns out to
be fractal and its dimension atr5r cr will be estimated.

The motion within a corner is described byf I of ~1.9!

S sn11

dn11
D5 f IS sndnD5S 2r /~b1sn!

2sndn
D . ~3.1!

For r<r cr5724), the mapf 1 :sn→sn11 has two real fixed
points given by

s6* 5
b

2
~216A124h!, ~3.2!

where b5(11r )/2 and h5r /b2. Note that21,s2* ,s1*
,0. Heres2* is unstable ands1* is stable, with a basin of
attraction (s2* ,0).

The motion on the circle will in general be a sequence of
mapping f I and f II of ~1.9! depending on the value of
zn52rsndn/(b1sn) ~1.8!. Consider a segment of the trajec-
tory described by (s0 ,d0) and assume thatz0P(0,1) so that
the next map isf I . If s0.s2* , the slope will move mono-
tonically towardss1* under repeated applications off I and
hencesnP(21,0) for alln. Meanwhile, from~3.1! it is seen
that

dn5d0)
j50

n21

~2sj !

indicating that in this case both the separationsdn and
zn52dn11sn11 will decrease monotonically to zero. In par-
ticular, this implies thatznP(0,1) for all n and indeed all
subsequent mappings must bef I , i.e., there is no corner
change and the trajectory zigzags into the original corner.
One therefore arrives at the following:

Proposition 1. Let r<r cr . If the evolution~1.9! generates
a segment (sn ,dn) whose slope satisfiessn>s2* , then the
subsequent trajectory collapses in the corner associated with
that segment.

On the other hand, ifsn,s2* , the trajectory evolves viaf I
until z¹(0,1) and there is a corner change via mapf II of
~1.9!. Let s0

k denote the slope right after thekth corner
change, letC denote the evolution of the slope within a
given corner,

C:sn11
k 5 f 1~sn

k!52r /~b1sn
k! ~3.3!

and, assuming that the trajectory undergoesnk bounces in
the kth corner, denote byD the corner changing step,

D:s0
k115 f 2~snk

k !52r /~b212snk
k !. ~3.4!

The evolution of the billiard is then described by the se-
quence

...DCnk12DCnk11DCnk...

It can be readily shown from~3.3! that, for2`,s0
k,s2* , sn

k

is monotonically decreasing withn, i.e., with repeated appli-
cations ofC. This continues until aD step occurs, the con-
dition for which is either

~ i!zn
k,0⇔sn

k,2b,

~ ii !zn
k.1⇒2b,sn

k,21/2,

where2b,sn
k,21/2 is a necessary, but not sufficient, con-

dition for zn
k.1.

Consider~i! first. The stepD maps the intervalI5(2`,
2b] into @21,0!. Recall that the domain of attraction of the
fixed points is@s2* ,0),@21,0). Owing to the monotonicity
of D in I , there exists ans̄PI such thatf 2( s̄)5s2* and thus
s̄ partitions I into the disjoint intervalsI c

05(2`,s̄] and
I f
05( s̄,2b] which are mapped underD into @s2* ,0) and

@21,s2* ), respectively. From~3.4! we find that

s̄5
b

2 S 12
2

b
1A124h D

and thus, forr<r cr , s̄ is, in fact, between21 and2b. One
therefore obtains

Proposition 2. If sn
kP(2`,2b], the next step isD, i.e., a

corner change. Furthermore, ifsn
kPI c

05(2`,s̄], then s0
k11

P@s2* ,0) and by Proposition 1 the trajectory collapses in the
new [(k11)th] corner. Conversely, a sufficient condition for
the trajectory not to collapse in this new corner is
sn
kPI f

05( s̄,2b].

FIG. 12. A comparison of simulational and analytic values for
nmax as a function ofe. The crosses are values obtained by exam-
ining typical trajectories over 106 applications ofTn+F. The solid
line is the analytic expression~2.14!: nmax'2.4e21/2.
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Consider now~ii !, the second possibility for a corner
change. Here, ifsn

kP(2b,21/2), one must look at thed n
k

value to determine ifzn
k is actually greater than one. If it is,

the resultingD step will map (2b,21/2) into ~22,21!, a
subset ofI c

0. Thus by Proposition 2, the trajectory immedi-
ately undergoes anotherD step and is moved to a new corner
in which it must collapse. If, on the other hand,
sn
kP(2b,21/2) but d n

k is such thatzn
k is not greater than

one, the next step must beC. A short calculation shows that
C maps (2b,21/2) into ~2`,22!, also a subset ofI c

0.
Therefore, by Proposition 2, the next step afterC must be a
D and the trajectory will collapse in the cornerD takes it to.
These two results are summarized as

Proposition 3. If sn
kP(2b,21/2), then the subsequent

trajectory will collapse after at most two more corner
changes.

Note that Proposition 3 is, again, independent ofd n
k.

Now consider the preimages ofI c
0 and I f

0 underC

I c
n[C2n~ I c

0!5$su f 1
n~s!PI c

0%, ~3.5a!

I f
n[C2n~ I f

0!5$su f 1
n~s!PI f

0%. ~3.5b!

Since f 1 is monotonic in (2b,0), the setsI c
n and I f

n are
mutually disjoint ~i.e., I c

nùI f
m50” for all m, n and

I c
nùI c

m5I f
nùI f

m50” for all mÞn!. Letting

I c5 ø
n50

`

I c
n and I f5 ø

n50

`

I f
n , ~3.6!

it readily follows that:

I cøI f5~2`,s2* !. ~3.7!

In the discussion leading to Proposition 3 it has also been
shown that (2b,21/2),I c

1 and therefore Propositions 1–3
can be summarized as

Proposition 4Consider a trajectory defined by its seg-
ments (sn ,dn). ~a! If snP@s2* ,0) for somen, the trajectory
collapses in the corner associated with that segment.~b! If
snPI c , the subsequent trajectory collapses after at most two
more corner changes.~c! The trajectory will never collapse
in any corner if and only ifsnPI f for all n. Moreover, the
symbolic sequences for trajectories of the types~a! and ~b!
are of the form

C`DCnkDCnk21•••

whereas for~c! the sequences are of the form

...Cnk11DCnkDCnk21D•••

all thenk’s being finite.
Proposition 4~c! establishes the necessary and sufficient

condition for the noncollapsing trajectories and shows how
the set of initial slopes giving rise to these is to be con-
structed. Assume an initial segment (s0

0 ,d 0
0) such that

s0
0PI f . From ~3.5b! and ~3.6!, s0

0PI f
n0 for some uniquen0 ,

indicating that it will taken0 C steps to maps0
0 into sn0

0

PI f
0. Without loss of generality, assume therefores0

0PI f
0

and denote byCn the projectionI f→I f
0. By Proposition 2,

the next step isD. SinceD mapsI f
0 into I føI c , by ~3.6, 3.7!

s0
1 will lie in either I f

n1 or I c
n1 for somen1 . If the trajectory is

to be noncollapsing, it is necessary thats0
1PI f .

Denote byS1
0 the subset of initial slopess0

0 in I f
0 that

remain uncollapsed after the first corner change. Then
S 1

05I f
0ù(Cn+D)21(I f

0). Consider therefore the following
recursion:

S j11
0 5S j

0ù~Cn+D !21~S j
0!, ~3.8!

with S 0
05I f

0. Note thatS j
0 is a monotonically decreasing

sequence of sets,~i.e.,S0
0.S1

0.S2
0...!, and hence define

S05 lim
j→`

S j
05 lim

j→`

ù
i50

j

S i
0. ~3.9!

Next extend the setS0,I f
0 to its C preimages:

Sn5C2n(S0) yielding

S5 ø
n50

`

Sn,I f . ~3.10!

By construction,S is the set of all pointss0 such that if
s0PS, thensnPS for all n. What remains to be shown is
that this set is nonempty. This can be done by explicit con-
struction ofCn+D.

The solution of the slope recursionC:sn115 f 1(sn) for
r<r cr ands0PI cøI f is given by

sn52
2r

b S 12
coth@ t~x0112n!#

coth~ t ! D 21

~3.11!

where t[cosh21(1/2Ah) and b and h are as defined after
Eq. ~3.2!. The initial point is parameterized byx0P(0,̀ )
and hence

s052
2r

b S 12
coth@ t~x011!#

coth~ t ! D 21

[s~x0!. ~3.12!

The functions(x) is one to one, and thus one can equiva-
lently consider the dynamics ofx which then becomes a
translation, i.e.,

C:xn115xn21. ~3.13!

In order to characterize the setsI c
n and I f

n of ~3.5!, the fol-
lowing are needed:

s21~2b!51,

s21~2`!50,

s21~ s̄!5 x̄,1,

coth~ t x̄!5211
12~r /b!

A~1/4!2h

and one finds that, in thex representation,

I f
n5$xun1 x̄,x<n11%,

I c
n5$xun,x<n1 x̄%.
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Denote byg(x) the function corresponding to the mapping
D in the x parametrization. Theng:( x̄,1]→(0,̀ ) can be
decomposed into its integer partn(x) and the remainder
D(x) such that

g~x!5n~x!1D~x!, ~3.14!

wheren is a positive integer and 0,D(x)<1. Denote by
h(x) the function that corresponds toCn+D in the x param-
etrization, soh:( x̄,1]→(0,1] and from~3.13! and~3.14! it is
seen that

h~x!5D~x!. ~3.15!

The function g(x) and henceh(x) is straightforwardly
worked out, yielding

coth$t@g~x!11#%511coth~ t x̄!2coth~ tx!. ~3.16!

Note that this function is defined on (x̄,1] only. It is readily
verified that limx→ x̄ g(x)5` andg(x) is monotonically de-
creasing on (x̄,1). For r5r cr , g(x) takes a particularly
simple form:

gcr~x!5 x̄211
x̄2

x2 x̄

with x̄51/). Figure 13 shows a plot ofh(x) for a typical
value of r,r cr .

It follows immediately that

S j[S j
05S0ùh2 j~S0!, ~3.17!

where from now on the superscripts onS will be omitted for
the sake of clarity. Figure 13, which displays the general
features of the functionh(x) for r,r cr , shows thath

21(S0)
is a countable union of disjoint intervals to be denoted byS 1

i

with the labeling i50,1,2,... such thatS1
0 is the interval

closest tox51, S1
1 is the next closest interval, etc. These

intervals are

S1
i 5hi

21~S0!,

wherehi are the monotonic branches ofh(x),

hi~x!5g~x!2 i ,

with i50,1,2,.... ThusS2 of Eq. ~3.17! is a finer partitioning
of each of the intervals ofS 1

i into the disjoint intervals
S2
i1i2 given by

S2
i1i25hi2

21+hi1
21~S0!,

so that

S25 ø
i1 ,i250

`

S2
i1 ,i2.

At level n, we therefore have the partition

Sn5 ø
i1 ,i2 ,...,i n50

`

Sn
i1i2 ...i n ~3.18a!

with

Sn
i1i2 ...i n5hin

21+•••+hi2
21+hi1

21~S0! ~3.18b!

and asn→`, the partitioning becomes more and more re-
fined, resulting in the fractal setS. S is nonempty and each
of its elements is uniquely defined by the infinite sequence of
integers$ i 1 ,i 2 ,...% where i j50,1,2,.... ThusS is uncount-
able, and the dynamics on it is given by a shift:
Cn+D:$ i 1 ,i 2 ,...%→$ i 2 ,i 3 ,...%.

The Hausdorff dimension ofS can be estimated following
Falconer@8#, noting that the generatorsh i

21 are contractions
and bi-Lifshitz, i.e., satisfy

pi ux2yu<uhi
21~x!2hi

21~y!u<qi ux2yu for all x,yPS,
~3.19!

with 0,pi<qi,1. In the case of a finite number of genera-
tors $h 0

21 ,h 1
21 ,...,hm

21% each satisfying~3.19! and the sets
Sn
i1i2 ...i n being disjoint, lower and upper boundsym andzm ,

respectively, can be calculated for the Hausdorff dimension
dim HS. These are given by the solutions to@8#

(
i50

m

pi
ym5(

i50

m

qi
zm51. ~3.20!

We will considerr5r cr only, for which

pi5
1

3~ i1221/A3!2
, ~3.21a!

qi5
1

3~ i11!2
. ~3.21b!

From ~3.20! and~3.21!, it follows thatym andzm are mono-
tonically increasing inm and are bounded by 1/2,ym ,
zm,1. ~Monotonicity follows from 0,pi<qi,1; for ym ,
zm51/2, the series~3.20! diverge in the limitm→`, while
for ym , zm51, the series are less than one as can be readily
checked.! The limit m→` exists for both bounds and these
are the lower and upper bounds on the Hausdorff dimension

FIG. 13. The functionh(x) for r50.07,r cr . The monotonic
branches ofh(x) ~only the first few are show for clarity! become
steeper and more densely packed asx→ x̄. Shown in bold are the
subintervalsS 1

i of points that will be mapped intoS0
0 under the

action ofh(x).
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in the limit m→`. A numerical summation of the series
~3.20! for r5r cr gives 0.72,dim HS,0.79.

A similar analysis can be carried out forr,r cr . In this
case, the series~3.20! become asymptotically geometrically
decaying and thus converge rapidly. Solutions to~3.20! exist
for all m with 0,ym , zm,1. Numerical estimates fory`

and z` show that the Hausdorff dimension decreases as
r→0, which is what one might expect, since the mappings
h i

21 become more and more contracting in this limit.
In summary, we have shown that forr<r cr , there do

indeed exist initial conditions (s0 ,d0) for which the trajec-
tories generated never collapse into a corner. Moreover,
whether an initial condition produces such a trajectory de-
pends entirely ons0 and is independent ofd0 . These initial
conditions for noncollapsing trajectories lie on a fractal
whose dimension we estimated forr5r cr .

IV. CONCLUSION

We have shown that the dynamics of three inelastically
colliding particles on a circle can be treated as a billiard
moving in an equilateral triangle with nonspecular reflec-
tions, thereby reducing the dynamics to a discontinuous map-
ping of two variables. This procedure is in essence a formu-
lation of the equations of motion in a way manifestly
invariant under Galilean transformations and the simulta-
neous rescaling of all velocities. Its main advantage is that it
enables us to uncover regularities in the asymptotic dynam-
ics that are otherwise difficult to observe. If the dynamical
variables are taken to be absolute or relative velocities, pat-
terns can be masked by the fact that their magnitudes all
decrease with each inelastic collision. Thus while it is cer-
tainly true that in the long time limit, the energy will be
dissipated from the system wheneverrÞ1, this paper has
shown that there exists a wide variety of ways in which this
limit is approached.

We have examined two separate regimes in which such
dissipation occurs: the quasielastic case~1.r.r cr! and the
strongly inelastic region~r<r cr!. In the latter regime, two
distinct types of asymptotic behavior emerged: inelastic col-
lapse, where the number of collisions per unit time becomes
infinite while the particles’ relative separations go to zero,
and, alternatively, a nonclustering state in which the separa-
tions remain finite and the mean time between collisions
goes to infinity @9#. In both cases, the total energy in the
center of momentum frame goes to zero; however, in the
clustering state forr,r cr , this energy is dissipated in a finite

amount of time. We found that which asymptotic behavior is
selected depends only on the initial ratio of relative velocities
and is independent of the initial separations. The set of val-
ues of this ratio for which the particles do not cluster is
fractal, and we have calculated bounds on its dimension for
the special caser5r cr .

The other regime in which energy is dissipated is
rP(r cr ,1!. While the above results were analytic, here we
mainly used computational techniques to obtain a description
of the long-term dynamics of the system. We saw the emer-
gence of pseudoperiodic trajectories in certain regions of this
range ofr values. These orbits only visit select regions of
phase space and correspond to trajectories that undergo a
fixed number of reflections between each corner change. The
locations~in r ! of these windows seem to be connected to the
r values at which the number of reflections allowed per cor-
ner increases by one. Since the dynamics within a corner is
equivalent to that of three particles on a line, these transi-
tional r values can be calculated analytically@1#. The result-
ing sequence ofr ’s ~2.1! is countably infinite, and thus we
believe that there are a corresponding number ofr regions in
~r cr ,1! for which the trajectories are pseudoperiodic. We
studied in some detail the orbit that goes with the first such
window, rP(;0.73,1). Because of the regularity of the tra-
jectory, we were able to do analytic work to support the
numerical observations within thisr region.

The close examination of this nearly elastic regime al-
lowed us to focus on the transition between energy conser-
vation and dissipation. We found that the asymptotic behav-
ior of perfectly elastic collisions and nearly elastic collisions
in the limit of the inelasticity becoming arbitrarily small is
sharply different. The main reason for this is that in the
former case, the dynamics is essentially one dimensional; the
motion is generated by a shift map on the unit interval and
thus has zero Lyapunov exponent. In the latter case, the pres-
ence of inelasticity produces stretching and contracting in
phase space and the dynamics is now two dimensional. In-
terestingly enough, when the collisions are sufficiently in-
elastic~r<r cr!, we again recover one-dimensional dynamics.
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Thus all possible collisions—particle 1 with particle 2, 2 with
3, and 3 with 1—continue to occur. Since the sum of the rela-
tive separations equals the circumference of the circle
(d121d231d3151), there must always be at least one distance

of order one. Since the collisions are inelastic, the absolute
values of the particle velocities go to zero in the center of the
momentum frame, while the distances remain finite, thus the
time between collisions diverges.
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