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Space of interactions with definite symmetry in neural networks with biased patterns
as a spin-glass problem
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We study the space of interactions of a connected neural network with biased patterns, when the synaptic
interactions satisfy a symmetry constraint. We show that the solution to the problem requires the calculation of
a quantityN(},, analogous to the thermodynamic potential of a multiply connected Ising model with site
dependent interactions, which maps the present problem into the spin-glass problem. By using a diagrammatic
expansion, we expresé() , formally as a functional of renormalized site dependent “propagat@g and
local “magnetizations”m; , which are determined from a variational principle. Calculatig,, in the single
site or Brout approximation we recover the theory of Thouless, Anderson, and RAARY, while them;
satisfy TAP-like equations. In the impossibility of solving the equations, we analyze an approximate solution
that sums only tree diagrams and interpolates between the two known results of total asymmetry, finite bias,
and arbitrary symmetry with vanishing bias. The results show a small dependence on the asymmetry parameter.
[S1063-651%96)11006-0

PACS numbgs): 87.10+e, 64.10+h, 64.60.Cn, 05.56:q

I. INTRODUCTION independent but satisfy a symmetry constraint. This is a far
more complicated case becausefhequationg3) no longer
In her classical seminal world], Gardner proposed and decouple and in Refl2] the problem was solved only for
solved analytically the problem of calculating the fractionalunbiased patterns in a strongly diluted lattice with connectiv-
volume of the space of interactions that allows a set of patity C<In(N), within a replica symmetric and site indepen-
terns{ &/} to be fixed points of the dynamical equations, for dent theory.
a network of neuron§;=+1 located at sites=1 .. .N, In the present paper we study the space of interactions of
a connected network with arbitrary values@&N and with
(1) biased patterns, when the interactighsand J;; are linked
by a symmetry constraint. We show that the solution to the
problem requires the calculation of a quantity), analo-
where the primed sum indicates the restrictiof#d. In Eq.  gous to the thermodynamic potential of a multiply connected
(1) the asymmetric interaction; # J;; satisfy the spherical |sing model with site dependent interactions, which maps the

1«
sa<t+1>=sgrh—ﬁ2j JiSi()—T,

condition present problem into the long range spin-glass prodi@m
1 that was studied by means of diagrammatic methods by
NE’ Jj2: 1 (2)  Sommerg4].
J

We follow the diagrammatic techniques of R¢f] to-
) , ) ether with the inclusion of Lagrange multipliers that insure
andT; is an arbitrary threshold. The prob]em thep consists ot o conservation of the local identigle, generalizing the
calculating the volum_e of the space of interactidfssuch derivation of Thouless, Anderson, and PalnfBAP) equa-
that the set oN equations tions[5] by Southern and Youn]. The linked cluster theo-
rem allows us to express formally() , as a functional of
1 . . “ iy ,
§i’t=sg{—z,3ij§f‘—'ﬂ Ci=1...N 3) renorma[lzeq site depen.dent propaga.torﬁ-}ij and Ioca!
\/N i “magnetizations” m;, which are determined from a varia-
tional principle. We show that within a single site approxi-
are simultaneously satisfied for every patt¢gf}, where mation NQ, is given by TAP-like free energy while the
E==x1 andu=1, ... p. We callb=(¢&") the pattern’s m; satisfy TAP-like equationg5].
bias. In the case ofinbiasedpatterns these equations accept the
The elegance and simplicity of Gardner's method stemsdrivial, explicitly site independent, solutiom;=0 and our
from the fact that whed;; andJ;; are independent variables results coincide with those obtained in REZ]. Given the
the N equations(3) also decouple and the volume in phaseimpossibility of solving the equations for finite bias>0, we
space for each set of interactiods starting with a given analyze an approximate solution that interpolates between
value ofi can be calculated exactly either for biased or un-the two results in Refd.1] and[2] when »=0b+#0 and»
biased patterngl]. +0,b=0, respectively.
In a subsequent work2] a more general problem was  The paper is organized as follows. We describe the model
treated, namely that the interactiofis andJ;; are no longer in Sec. Il, while we present in Sec. Ill a rigorous diagram-

1063-651X/96/58)/6361(10)/$10.00 53 6361 © 1996 The American Physical Society



6362 ALBA THEUMANN 53

matic analysis to derive TAP-like equations. In Sec. IV we
present the results for the approximate interpolating local ©<>
field, and we leave Sec. V for discussions.
i
Il. DESCRIPTION OF THE MODEL (a) (b)

The problem we want to solve is the calculation of the
volume in phase space occupied by interactidnghat sat-

i
isfy the dynamical equations: ,OJ

§."E CijJijéi>« 4 (c) (d)
j#i !

where the bond occupation varialilg =C;; , with probabil-
ity distributions

C C
P(Cij) =g o(Cii—D+| 1— /| 4(Cip, (5
and without loss of generalityl] we setT;=0. /\
The interactionsJ;; in Eq. (4) are not symmetricJ;;

#J;;, and are subject to the spherical constraint ()

’

E o 2 J (6) FIG. 1. Diagrammatic expansion b}, . A single line joining
|J |J . . . 0 . - ey
sitesi andj stands forG;; and a dot linkingr legs at sitej stands
for a generalized cumulant average in E47).
and to the symmetry constraint
whereb is the bias.
2 C.J _EE 3.3 =nC 7 In the following we will omit, for simplicity, the bond
i = ijvji= 7 (7 . P
variableCj;, and it is understood that a sum over thes
_ . implies also a bond average, according to E$.and (7).
For =0, there is no correlation betweely and J;i,  The volumeV in the space of thd;; of solutions of Eq(1)
while for »=1 we recover the symmetnc situation subject to the constraints in Eqﬁ) and(7) is [1]
‘]ij :in .

The patternd ¢/}, u=1...p in Eq. (4) are independent Ji
random variables with the probability distribution V=H J 1;[ dJin 0 f{‘; —(ijj“— K
i J#1 s IEall
e
(M- 2
Pol£f)= seogi L0l D+ A&+ DL @ <o 3 9-c|o 3 a0 ] 10

then ¢/)?=1 and
To average over th&* we use the replica method and we

obtain[1], by using the integral representation of the Heavi-
(0= [ agrpueng=annn=b, (@  InArDl by using the ineoralrep

V,=(V")= OCH d\y; H dxmex% E X3 #J) 1;[ H dJ ex;{E Q N)

K a,pm,) —oa,p,j

el

where the replica index=1 ...n and u W
t,,=§ (X8 +X2,39). (13)

etN={ expl —i—=, therer ) | 12
: X ! \/_OEJ e o (12 The bracket in Eq(12) indicates an average over the inde-
pendent variableg/ at each site that take valuesl with
The sum in Eq(12) is over all pairs(i,j),i#]j, and the probability distribution in Eq(8).
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Ill. FORMAL EXPRESSION FOR
From Egs.(8) and(12) we obtain

eNQM:eXF<—Zi Vi)f H [Po(fj)dgj]

* — 0

xex;{ 2 ££G ,,), (14)

with

i
Gi=—=th—2v;5

\/6” iYj

and where we introduced the identiB vi[gf—l]zo into
the exponential. They; are Lagrange multipliers that will
insure that the identity is preserved on the average procedure
and will be chosen to minimizal() , . This is a generaliza-
tion of the method used by Southern and Yo(iépto derive
TAP equations. From now on the prefix.™ is not written
explicitly unless it gives rise to confusion.

Introducing Eq.(8) into Eq. (14), we recognize that
N, corresponds to the free energy of a multiply connected g 2. Tree diagrams that vanish automatically whenO.
Ismg model with site dependent interactiongJ;;

= —(|/\/_)t in the presence of a “magnetic field?, and  \yhich gives from Eq(20)

this problem has been analyzed dlagrammat|cally by Som-

mers [4] in the study of the Sherrington-Kirkpatrick3] _ _ 29
model for a spin glass. We follow here a related procedure m; =tanfr;). 22
more appropriate to our problem that we describe in some
detail for unfamiliar readers. We start by shifting variables in

t“=0 (15)

The next task is the calculation df(2, in Eq. (18). We

Eq. (14) can use the cumulant expansiofi, to write
&=mi+m, (16) ) (—1) k
NQ, = 2 <[2 G, 77,} > (23
where them; will be determined self-consistently below and k=1 a c
we obtain
where( ) indicates an average over the probability distribu-
1 . .
_Z vi— Eizj Gﬂmimj—; (rj—)m, tion in Eq. (20).
cos = P(n;)d»;](), (29
oS 10 g . = [ T teemdmio

] cosh 7)

while ( ). means a cumulant average aig ;) a sum over
bonds. The detailed analysis of the cumulant expansion in
) 1 Eq. (23 is left for the Appendix, while we discuss here the
eNQu=f I1 [P(nj)dnj]exp< _EZ Gy n 771), (18  main results.
! b NQ/, is given by the series of diagrams in Fig. 1, where a
dot linking r legs at sitej stands for a “generalized cumu-
=g 2 m: GIJ , (19  lant” average shown in EA7) for r>1, while a single line
joining sitesi andj stands for (- 1)G{} . Now G is allowed
from Eq. (15). The condition{#;)=0 insures that the tree

where

e’ diagrams in Fig. 2 with renormalized vertices automatically
P(m)= femmacostir)y 07~ (2= M) vanish.
Following standard methods in many body thef8y we
+8(m;+ (1+my));. (200 may write a renormalized expansion by defining a full propa-

. . ... _gatorG;; shown in Fig. that satisfies Dyson’s equation
Them;’s are determined self-consistently from the condltlong g 9. %) Y d

<7]j>:f d#n;P(7;)7;,=0, (21 Gii:Gin—"kZI GGy (25
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where the self-energy;;; is given by the diagrams that can- 5NQ;L

not be separated into two parts by cutting an internal line 5G.. =0 (28
i

shown in Fig. 8b).

Now NQ;L can be expressed as a functi@) of the ma-  when Gj; and;; are given by Eqgs(25) and(27), respec-
trix propagatorG with elementsG;; tively. These equations are formally exact. Meaningful ap-
1 proximations that respect the stationarity principle are ob-
r__ 1 -1 = -17_ 1 tained by approximatingl® in Fig. 4. We discuss here the
NG, == 2TrloglG, Gl+ 5TMEG, 1 - 2 NP (G} results in the single site or Brout approximatif®], when
(26)  N® is approximated by the family of single site “star” dia-
grams shown in Fig. 5, which we calld .

andN®({G}) is the sum of skeleton diagrams shown in Fig. The detailed calculation in the Appendix gives from Eq.

4, where a double line stands for the full propagaggr in

N All
Eq. (25). The self-energy.; is given by (AL1)
COSKTk—kaGkk)“
SNO({G}) Nb = 1+mZ)Gy+lo .
2”2 ({=} (27) ss Ek ( k) kk g COSf’(Tk)
9G;j (29)
and NQ/’L satisfies the stationarity condition By introducing Eqs(26) and (29) into Eq.(17) we obtain
Nﬂiszzj: {=vj+7mj— 3 [(1+m)In(1+m)+(1—m)In(1—m;) +(1+m?)G;j; +log costir; —2m;G};)
—log costir))]} - 12 Gimim;+ 3T{ G, 'G]— 3Tr logl G, *G]—N logcoslir). (30)
|
The stationarity condition in Eq(27) gives ;= 6;2;, We also requireN(} ,(ss) to be stationary with respect to
where variations inm; ,
ONQ3Z®
ONDs ) s —Gj;)[m,—tank 7,—2m;G;;)]=0 (32)
EJ:W—(LLm )—2mjtant 7j—2m;G;;]. (31

J)
and with respect to variatiori§] in v;

= =i— j + SNQSS , .
By, 1M1 Co2] i

O +mj[tanr'(TJ)_tanr(TJ_ZmJG“)]
+

=0. (33
% From EQq.(32), m; in Eq. (22) is a stationary point if
S Gji={[1-G°2] 'G%;;=0 (34)
which gives from Eq(31)
Q (1-m?) (39
2 QSKll: —— -+ —+ .. J %rldvintroducing Eq(35) into Eqg.(33) we obtain the equation
i

A more convenient form is derived from E@4) with the
help of Egs.(15) and(36):

—-GO - —
KQ| 4. {[1-G"2] =1 (36)
(b)

FIG. 3. (a) Diagrams for the full propagatds;; . (b) Diagrams 2,,.:_2 [1_(302]71tﬂ. . (37)
for the self-energyy, . I Jck = &k ki
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+ . . . .

FIG. 4. Series of skeleton diagrams . Double lines indi-
cate a full propagatoG;; as in Fig. 3a).

If we expand Eq(37) to second order in (1/_)t“ we obtain
(38)

2yj%2k —th(1-m)—=t,

which gives from Eq(19) and Eq.(22);

i " te -
m;=tan T—\/—Ez mktkj—mJE \/_]k(l mk)\/_Eth

(39

What we obtain in Eq(39) are TAP equation$5] for a
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Nﬂff]sp=§j: [7m,— & (1+m;)In(1+m)

~3(=m)in(1=m)] - Etk,mkm,

Zt (1-m)th(1-mZ)—N log cosfir),

(40)

which we recognize also as TAP free enef§y;, which has
an extremum when thm;’s are given by Eq(39).

We went through a detailed and lengthy calculation of
1, in order to exhibit the complexity and unsolubility of the
problem. If we recall that from Eq13) the “interactions”
t/; depend on the variables; andJ;j that must be integrated
in turn, we realize that it is hopeless to try to solve E2f)
exactly for nonvanishing values of the bilas

A particularly simple result is obtained fambiasedpat-
terns. By settindo=7=0 in Eq. (39) we see that it accepts
the trivial, site independent solutiom;=0 which gives in
Eq. (40

1
NQZS(b=O)]Sp=— Ekj t"ijtﬁ(, (41

and introducing Eq(41) into Eq.(11) we recover the result

of Ref.[2]. This indicates that, within the range of validity of
Eq. (39), the result in Ref[2] is not restricted to extremely
diluted systems. This conclusion deserves a more extended
analysis of the contributing diagrams that we reserve for the
last section.

The problem for biased patterns reaches another level of
complexity. Forr# 0, Eq.(39) does not accept a site inde-
pendent solution; then the fundamental assumption of site
independence made in R¢R] breaks down. Given the im-

spin glass with long range site dependent interactionpossibility of obtaining a rigorous result, we present in the

BIj=—(iIC)tf.

By mtroducmg Eqs(34)—(36) into Eg. (30) and expand-
ing logG ™G to second order intf; as in Eq.(38) we
obtain at the saddle point

©+8

i F e e e

FIG. 5. Series of diagrams foMd . in the single site approxi-
mation.

next section a simple approximation fbmsS in Eq. (40),
where we consider only tree diagrams Wlth single unrenor-
malized bonds and sites as in Fig. 2 and the single unrenor-
malized bubble in Fig. (t). This approximation reproduces
the results of Ref.2] for b=0,7# 0 and those of Refl1] for
n=h=0,b<1. The singular behavior of physical quantities
whenb approaches unity differs from the results in Réf
because the problems are not exactly the same, even when

n=0.

IV. APPROXIMATION

In Eqg. (39) we obtained a set of coupled nonlinear equa-
tions for the site dependent “magnetizations” or effective
biasm;. In order to decouple these equations we approxi-
mate the right-hand side of E(B9) by

(42)

i
mjztanr{ T_b\/_E; t{jjl

In this way we break correlations by replacing the self-
consistent fieldr; at every site by an effective field produced
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by neurons with “unperturbed” bials, hence we expect this

to be a sensible approximation for small valuesof
Introducing Eg.(42) into Eqg. (40) and approximating
m,~b we obtain

i
ff__ -
NOS sz: In cosr{f \/6b§k: t
—(1—b2)2i2 (tf)?>—Nincosh 7). (43)
4C1 ki .
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5 1+sb 5 e~ (12x 1 (50)
= —_— Z— —q,
o2 V2mH(xs)
dz
Dz= ——e (127 (51)
2w
H(x)=f Dz. (52
X

The expression for 10g in Eq. (46) reproduces the result

As we discuss more extensively in the last section, this apof Ref. [1] when 7=r=x=0, except for the expression for
proximation amounts to sum tree diagrams with single un+ _that coincides with Gardner’s only far<1. It reproduces

renormalized bonds and vertices as those shown in Fig.

he result of Ref[2] for arbitrary symmetry parametey

and to consider Only the two sites unrenormalized bubble ”wvhenb: 0, hence we consider it to be a sensible mean field

Fig. 1(c).

The calculation ofV,, in Eq. (11) follows according to
standard procedurg4,2]. As in Ref.[1] we define the order
parameter

(44)

1
,_Czk ik

denominated “ferromagnetic bias” and as in RE2Z] the
order parameters far # B:

1
q= EEK NN

. (45
h= EEK JaIb.

The order parameters in Eqg4) and (45) are explicitly

approximation for the volume of the space of interactions
with arbitrary symmetry that have biased patterns as fixed
points of the dynamic equations.

The saddle point equations fqr x, andM are obtained
by extremizing loy in Eq. (46), and they are

2 2
q—2hx+qx? (1+Sb)f e~ (12xs
——— =« Dz V1— ,

[1-x7] s=2il 2 V2mH(xs) a
(53
h—2x+hx?>  r2
TR TR o
while we get forM
B,=B._. (55)

Due to the particular scaling in E¢44) for the ferromag-

replica symmetric and site independent. We show in the ApP€tic bias, we obtained also as in REf] that the volume
pendix the detailed calculations and mention here only thélépends oM only throughxs in Eq. (48), and Eq.(59) is
results. By introducing into Eq11) the order parameters in trivially satisfied wherb=0. In this limit Eqs.(53) and(54)

Egs.(44) and (45) by means of a5-function representation,

together with EQq.(43), we obtain for loy in the limit
n=0

ogv= o) Ao i1- g2
ogV=—- WJM”[( —q)°(1—x9)]

2 1+sb
_ + E ( 25 )JDzInH(XS)

T Tmgx ’
(46)
where
—h
x=’17_—q, (7)
_ 1 1 \/_
XS_\/]_—Tq W[K—SMb(l-FSb)]—I’-FZ qr,
(48)
r=x[B,+B_], (49

where we introduced the notation fer= =1

reduce to the equations of Gardner, Gutfreund, and Yekutieli
in Ref.[2].

The critical storage capacity is obtained whga 1 and
h= 7, keepingx in Eq. (47) finite. We obtained from Egs.
(53 and (54) two coupled equations faw, and x., where
the value ofM. is obtained from Eq(55). We show in Figs.
6 and 7 the results fo, andM for k=0 as a function of
the biasb for different values of the symmetry parameter
7.
When b is close to unity the equations can be solved
asymptotically and we obtain

M~—(1-b?%?2In(1-b), (56)
[V 7+ I= 7P’
ac~ M . (57

V. CONCLUSIONS

The object of this paper is to analyze the volume of the
space of interactions in a neural network satisfying a definite
symmetry constraint as in EG7) and accepting a configura-
tion of biasedpatterns as fixed point of the dynamic equa-
tion.
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The problem for asymmetric interactionhj #Jji was A tree diagram withs sites ands— 1 bonds gives a con-
solved by Gardnefl], while the case of definite symmetry tribution
was studied by Gardner, Gutfreund, and Yekutieli only for

unbiasedpatterng2]. e I s-1
The main result of the present paper is that the bias in the T~y e > ; t] (58)
patterns acts as an internal field and introduces correlations !

that map the problem into the spin-glass problem, thus pre-

venting its solution. We show in Sec. Ill by means of rigor- where from Eq.(5) we introduced a facto€/N for each
ous diagrammatic expansions that to each site is associat%gcupied bond. From Eq13) we obtain

an order parameter or “effective biash; that satisfies TAP-

like equationg5] for a spin glass. Just like in the spin-glass

case the solution to these equations, if it could be found, is 1 L 1 Y
explicitly site dependent. However, for vanishing bias our \/_EEI( th~> x5, \/_EEk Jj=M, (59
equations accept the trivial solution;=0 for all j that is *

explicitly site independent, and the results of our theory co-

incide with those of Ref.2]. This seems highly surprising as \whereM is the ferromagnetic bias in E¢4).

the authors of this paper assert that their theory is only valid Introducing Eq. (59) into Eq. (58) gives T(s)

for extremely dilute networks witi<In(N), while we have ~(CIN)S"IMS~IN, then the tree diagrams give the correct

not made that assumption here. In order to understand thigoayior in the thermodynamic linit— <o for the fully con-
result we present a detailed analysis of the la¥gleehavior nected network WitrC= N.

of the unrenormalized diagrams that contribute to the TAP-
like expression foNQ;7 in Eq. (40), which should scale like
N in the thermodynamic limit. B. Tree of bubbles

A. Tree diagrams The single site diagrams in Fig. 5 together with the cor-
, i ) responding diagonal self-energy diagrams in Fig. 3 generate
The first term in brackets in Eq40) sums the unrenor- - the tree of bubblesshown in Fig. 6a). A typical diagram
malized tree diagranigl,7] shown in Fig. 2, where now each with s sites ands—1 doubly occupied bonds dsubbles

bare bond represenit;//C. gives a contribution

— o[ 3[eR

where we used the scaling in E(5) and they are well
scaled for anyC=<N. All these diagrams except the single
bubble with two sites vanish in the unbiased case, when
b=0. We conclude that within the single site approximation
we are summing diagrams that are well scaled in the thermo-
dynamic limit in the fully connected lattice.

s—1
~N, (60)

(a)

300

ol

200

(b)

100

00 02 04 06 08 10
b

FIG. 7. Critical storing capacity, (dimensionlessas a func-
(C) tion of the dimensionless bias for different values of the asym-
metry parameter; for the approximation in Eq(42). Full line,
FIG. 6. (a) Tree of bubble diagramgb) Ring diagrams.(c) broken line, and pointed line correspond 4#=0.2, »=0.4, and
Double ring diagrams. 7=0.6, respectively.
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10 showed in the Appendix how the ring diagrams can be ex-
M actly summed. This happens because in all these well be-
haved cases the interactiodg take randomly positive and
negative values, giving rise to cancellations, such as it hap-
pens in the present problem to have a finite valu®ah Eq.

(44).

Finally, we analyze an approximate solution where the
effective biasm; at each site is calculated by approximating
m~b,k#], in the local field at sit§. This approximation
amounts to sum only tree diagrams with single unrenormal-
ized bonds and vertices and it interpolates between the re-
sults of Ref[1] when=0,b#0 and those of Ref2] when
n#0,b=0. The results shown in Figs. 7 and 8 for the criti-
cal values of the storing capacity, and the ferromagnetic

00 05 10 biasM exhibit small deviations with the values of the sym-
b metry parametet.
FIG. 8. Ferromagnetic bialsl (dimensionlessas a function of ACKNOWLEDGMENTS

the biasb for different values ofy. Specifications are as in Fig. 7. . . o
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6(b). What is the error that we are committing with this
approximation? The estimate in R¢R] is that a ring dia-
gram withs sites ands bonds isO(C*?), thus diverging in a APPENDIX

connected lattice. It is claimed that the neglect of ring dia- we present here a detailed diagrammatic analysis of

grams withs=3 is only meaningful in the extremely dilute NQ,'L in Eq. (18). Following Horwitz and Calleti7] we can
limit C<In(N). The counting goes as follows: a ring diagram \yyite

with s sites ands bonds contribute

R(s)=

Ihla "

%) C_];EZ tip;iliz t Z tiZflis’ (61) NQ;L:I;l (_1)kSk[O]’ (Al)

where the sum is restricted te#i,#i5...#is. The pes- with
simistic evaluation of Ref[2] says that each summation

gives a factorO(N), then as a resuliR(s) would be , 1 o 7 Pij
O(C%?), from where stems their assertion that the theory is Sd v1= >, I ﬁ( Gjj W) In< exp( > i mi; >
only valid for extreme dilution. But if their counting were EEERU D ] () (A2)

correct, the ferromagnetic bias in Ed44) would be
O(4/C), while our results in Fig. 8 give a finite value for
M in agreement with the results in R¢1], thus showing the
correct scaling.

A lower bound toR(s) in Eg. (61) can be obtained by
decoupling the sums and approximating

whereZ ;) indicates a sum over bonds aRg are all posi-
tive integers subject to the restrictidy;;,P;; =k. The aver-
age over they;’s is to be taken with the probability distri-
bution in Eq.(20), that gives for the first three moments

s s (7;)=0,
, (62

C

N

S

C
R(S)f\“’« ~ NM

1

e

| (75)=1-m?, (A3)

where we used EQq(44). In this case we obtain that

R(s)~0(1) for s=3 and it would be negligible, not diver- <77].3>= —2mj(1—mj2),

gent, in the thermodynamic limit. The ring diagram with

s=2 scales differently and it gives the first contribution t0 otc  3nd we notice thaty[)+ 0 for r>1. We obtain for the
. ] .

the bubbles series. There are, however, two related problems.: 1« ms in the series in EgAL) recalling thatG? + 0
where these diagrams can be calculated and give a meaning- ' .

ful answer for a fully connected lattice: the spin-glass prob- 1
lem dlscus_sed in Re[.4_] and the H_opfl_eld model for a neural S,(0)= _2 G 72, (Ad)
network with hierarchical clustering in Rdf10], where we 29
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Calculation of the volume in the effective field approximation

— 1 042 2712 1 0y2,,2 2
S(0)= ZZ (G T )get ngj (Gi) () i), In order to calculate the volume in phase space within the
(A5) effective field approximation in Sec. IV we introduce inte-
gral representations for the constraidtunctions and for
1 1 the relations defining the order parameters in E44) and
S3(0)=1—22i (GDA[ 7 1P)gct 1—22 (G n) (7)) (45). We assume here replica symmetry and site indepen-
. dence[2], but it is understood that the validity of this as-
0 02/ 212 ) sumption is limited to the effective field approximation in
+32k Gji (G X[ 771 o 7ic) Sec. IV and it does not hold for the general results in Sec. Il
g whenb# 0. By introducing Eq(43) into Eqg.(11) we obtain

1
+= > GIGRGU N nP) md), (AB) 1
7=k logv=—NCj 5

MP
E+7G—Fq—Hh+ —]

JC
i P2
4E-F+(G—H)

where now the sums are over sites.

Each of the terms in EqA4) to Eqg. (A6) may be repre-
sented by a diagram as shown in Fig. 1, where a single line
between sites and j represents(?-?j , a dot at sitej where

1
+ ZIn[(G—H)Z—(E—F)2]+

m “ears” enter (or closed lines and n lines stands for Ji FtH 1 F-H w0

({77 1™ 7 )gc, and the first “generalized cumulants” are 4E-F+(G-H) 4E-F—(G—H) ’

given by SP
(A12)

<[ 77j2]>gc: ( 77j2>,

where the variables should be taken at their saddle point

<[77]2 2>gc:<’714>_<’7j2 2 values. In Eq(A12) Q is given by
(A7) Q=|—i[<p<1>+ P+ 3 %(1+sb)f Dz InH(Xs)
(01 ge=(n5) = 3w mf) +2( )3, o
27 e () =), —%<1—b2>2[<1—q>¢+qw1—iszﬂo] INGS
sP

etc. ThenS,;(0) is represented in Fig(d), the two terms for
S,(0) in Figs. 1b) and Xc), to S;(0) corresponds to Figs.
1(d)-1(g), etc. ~

The diagrammatic series in Fig. 1 may be renormalized by Xs™
introducing the “propagator”

where

K+ ®—Mbs+i g(n—h)(l—bz)z

1 1/2
+2z] —2iW+ Eq(1—b2)2} )

Gj=G}+2 GG (A8)

k,I 1

represented in Fig. (8), where the “self-energy”2,, is X[_Zi\p+ 1(1—-q)(1-b??¥2
shown in Fig. 8b). Following standard methods in many

body theory[8], the quantityNQ/ can be written as the and the variablesp,®,,¥,w,V should be taken at their

stationary functional o65;; shown in Eq.(26). saddle point value that extremizé€d. We obtain at the

We now calculateN® g, the sum of single site “star” saddle point
skeleton diagrams shown in Fig. 5:

(A14)

i
®=-p(n—h)(1-b?)2—iMb?,
2
Nd)ss=; ®;, (A9)

—I_ _ __h2\2
where, from Eq(A4) to Eq. (A7), W=7(1-a)(1-b%9% (A15)

- |
(I)j:nzlm<[772]n>gc(eji)n:|Og<e7iszjj> (A10) Wzél_lq(l_bz)z,

and we obtain from Eq.20)

(1+5sb) o= (2%
—ip= f Dz
1 2

\/EH(XS)

COShiTI' _2m]G“)
cosh7))

s=*

2 2
(e7iCiiy= g1+ M)Gjj

(A11)
1

X 1
Introducing Eq.(A11) into Eq. (A10) we obtain Eq{(29). [-2i¥+ 3 (1-q)(1—b?)?]2

(Al6)
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while the expressions fow and ¢ are immaterial because where we called = —i@(5—h)(1—Db?) and from Eq(A16)
they drop fromQ at the saddle point. We obtain from Egs.
(A13) and (A14) (7—h) (1+sb) e (125
r= 5 f Dz\/_ . (A19
1( r2 Vl-qg's 2mH(xs)
Q=- 5[ n—h <1 (1+Sb)j bz In(XS)}’ We observe that, just like in Gardner's wdik], the aux-

(A17) iliary field P associated with the ferromagnetic bils ap-
pears multiplied byC~2? and drops out in the thermody-
namic limit. By solving the saddle point equations for

Y= 1 ( k—Mbs(1+bs) —r+z\/— E,F,G,H, we can recast lIdg in Eq. (A12) into Eq. (46) in
S _h2 ar., (A18) .
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