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Collective oscillations in microtubule growth
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Large groups of microtubules are observed to undergo coherent oscillations in length. This process is
suspected to be important to the mechanism of cell division. We propose a model, related to the bounded-
unbounded transition of microtubules proposed by M. Dogterom and S. LéPisrs. Rev. Lett70, 1347
(1993], which is in good agreement with experiment$1063-651X96)04306-1

PACS numbdis): 87.15~v, 05.40:+j

Collective oscillations in out-of-equilibrium systems are well known Belousov-Zhabotinsky oscillations. These oscil-
fascinating problems, and were subject to intense studies ilations can provide a biological clock at the molecular scale
the past decade. These oscillations have been observed for the cell (for a review, seg¢2]). Many numerical simula-
many biological systems, which are known to be far fromtions were performed by different authd,12,13 to ex-
equilibrium. An important example is the growth of groups Plain these oscillations, but the results are, until now, unsat-

of microtubules, which show oscillations duriimyvitro ex-  isfactory. The most complete work to our knowledge is the
periments. These oscillations are suspected to play a roene performed by Marx and Mandelko@3], where they
during the cell cycld?2]. conclude that the basic ingredients of dynamical instability

Microtubules (MTs) are long, rigid polymers made of are not by themselves sufficient to explain smooth, large
a— 3 tubulin dimers, and form a great part of the cytoskel-scale oscillations observed in experiments.
eton of all eukaryotic cells. They are essential for transport We show in this paper that the dynamical instability alone
phenomena in the cell, where they are used as rails by mds sufficient to explain oscillations: recently, Dogterom and
lecular motors like dynein. They also play a crucial role dur-Leibler [1] proposed a simple statistical model for MT dy-
ing cell division, when the microtubule network is dis- hamics, and they pointed out a bounded growth to un-
mantled and assembled again in a short lapse of time. Thigounded growth transition in MT&ee below; observed by
last behavior is believed to be related to the so-catlgd  several authorkl4,15. We will show that this model, modi-
namic instability first observed by Mitchison and Kirshner fied to take into account the GTP-tubulin consumption can
[3], and was intensively studied during the last decddea givc_a rise to large sustained oscillations, as observed in ex-
review, see[4]). The term dynamic instability means that pPeriments.
under certain circumstances, MTs switch randomly between Let us present the model. Followingl], we denote
a growing(+) and a shrinking(—) state. In the(+) state,
MTs adsorb free GTP-tubulin from solution and increase in
length. Later on, this GTP-tubulin is hydrolyzed and trans-
formed into GDP-tubulin.(GTP stands for guanosine tri-
phosphate and GDP for guanosine diphosphsittnen a MT
switches to the(—) state, it loses its GDP-tubulin and de-
creases in length. The exact nature of the transition is not
known, but it has been proposed that there is a stabilizing
cap of GTP-tubulin on the ends 6f)-MTs. When this cap
is lost by fluctuations, MTs switch to the-) state and shrink ~ .
until the capture of a new stabilizing cap. The existence of
this cap is not yet proved. The dynamic instability has been
observed botlin vitro andin vivo [5-7]. 1

During a typicalin vitro experiment, tubulin and GTP are
added in a buffer at 4 °C. When the temperature is changed
to 37 °C, MTs nucleate and begin to grow. The mean length 1
of MTs (or the total density of polymgrgrows in a mono-
tonic fashion before reaching a plateau. However, when the 0 195 9250 375 500 625
initial concentration of tubulin is high enough and when p
there exists some mechanism to regenerate GTP-tubulin
(which can be achieved by an excess of free GTP or by FiG. 1. A typical numerical solution of evolution equations.
addition of some enzymgsthe polymer density oscillates ,, =01, v_=0.4, »=0.01, f_,=0.01, f=0.1, c*=100.9,
with time (see Fig. ], and the amplitude of oscillation can 4=0.05, =3, y=83.3. Lengths are measuredim and time in
become very largg8—11]. This means that individual MTs seconds. Concentration are joM. Order of magnitude off; v,
synchronize themselves and switch betwden and (—) obtained from Ref[14]. Bottom curve:c,=95; middle curve:
states in a coherent way. This behavior is quite similar to the,=110; top curvec,=150.
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p-(zt) the probability density for finding, at timg a MT  length, GTP-TU is consumed;; becomes smaller thacf
in the = state with a length betweenandz+dz. We can and MTs mean length decreases to reach the lexigiththe

write the detailed balance equations steady state solution. After a certain time, free GTP in the
B solution regenerates GTP-TU from GDP-TU produced by
IPp+=—Frpstip-—vidP., (@) shrinking MTs, c; then becomes greater tha$ and the
_ _ growth resumes. This cycle can be repeated many times. The
dP-=Ti-py =T p-Fv_dp-, 2) transition between the bounded and the unbounded regime

gives the system extreme sensitivity to small changes in pa-
rameter values, and it can be sufficient to induce sustained
oscillations.

Let us complete dynamical Eq€l)—(4) to take into ac-
ount(i) the consumption of GTP-TU by growing MT§j)
the production of GDP-TU by shrinking MT#iji ) the regen-
eration of GTP-TU from GDP-TU by the action of free GTP
in the solution(GTP + GDP-TU — GDP + GTP-TU). As
the adsorption of GTP-TU by+) MTs and the release of

wheref , _ is the catastrophgswitch from(+) to (—)] fre-
quency,f_ , the rescugswitch from(—) to (+)] one,v ;. the
MT speed in growing and _ in shrinking state.

These equations have to be supplemented by boundar
conditions. Two cases can be considerg@dNucleation on
stable centrosomesij) spontaneous nucleations. In c4ge
the probability of empty centrosomes is denotedsfty and
the rate of nucleation by. Then one hafl]

as=—0v,p+(0t)+v_p_(01), (3 GDP-TU by (—) MTs take place only at the ends of MTs,
they are respectively proportional to the total number of
vs=v,p,(0}). (4) growing and shrinking MTs. Then, kinetic equations for the

L concentrationkt andcp of GTP-TU and GDP-TU simply
In case(ii), given spontaneous nucleation at ratone  read
simply has

v=0v,p.(0}). 5 &tcT=—7v+f0 p+(zt)dz+acp, 9

This can be formally considered as the limit of cen-
trosome nucleation whes—%, v—0 andvs= v (note that o
in this casep.. has to be considered as the concentrations of dCp=yv_ fo p-(z,t)dz—acp, (10)
MTs with their length betweerm andz+dz ands refers to
the concentration of empty sifes

The above equations have a steady state solutio
p+-=A.exp(-=z/), where

Where v=cmi/a in the case of nucleation on centrosomes
(with c,,; the centrosome concentratjoor 1/a in the case of
spontaneous nucleatiora is the length of MTs units
ViV (=6 A); a is a phenomenological parameter corresponding

/= T o (6)  to the regeneration rate of GTP-TU from GDP-Teither
Ul Tl due to the presence of an excess of free GTP or to enzymatic
1 proces$ which will be assumed to be time independent. In
Al=— , (7)  the case of regeneration from free GTdPactually depends
/Atvifo)tolv on the concentration of free GTRee), but when Cyee

largely exceeds the tubulin concentrati@s in most experi-
mentsg, a can be assumed to be approximately constant over
the interesting time scale. In the above expressions, we have
neglected spatial dependence of the concentratignand

Cp, assuming a fast diffusion of species. We will discuss this
point further. As the total number of tubulin dimers in the
ﬁolution is conserved during the growth and is equal to the
Initial number of tubulincy put in the solution, we also have

a conservation equation

A=A v, lv_. (8)

[In the case of spontaneous nucleation, Ef). has to be
changed toA, =v/v, .] As pointed out by Dogterom and
Leibler, this solution does not exist when
v.f_,>v_f,_. In this latter case, MTs grow in an un-
bounded regime: Their average length increases linearly i
time and their length distribution becomes a moving Gauss
ian in the long time limit.

A remark should be made at this point. As demonstrated
by many experiments, all stochastic parametefsu( , ) CrtCp+yL=Co, 1D
depend on the GTP-tubuli{@TP-TU) concentratiorc;. So,
a variation incy can provoke a transition between a boundedwhereL = [,2z[p,(z,t)+p_(zt)]dz is the mean length of
and an unbounded growth regime. The key point of our osMTs.
cillation model is here: We suppose a dependence of stochas- Taking into account the dependence of dynamical param-
tic parameters ol such that there exists a critical concen- eters oncy, we search again for a steady state solution of
tration of GTP-TU,c*, separating an unbounded growth Egs.(1)—(3), (9)—(11). The expressions given by Eq$)—
(cr>c*) and a bounded growthc¢<c*) regime. If at the (8) r_emain valid. U;ing these. solutions in E¢9)—(11), we
initial time, cy(t=0)<c* , MTs grow in a monotonic fash- OPtain a self-consistent solution fog
ion to reach a plateau, which corresponds to the steady state
solution (see below. If, however,cr(t=0)>cT, the MTs

o= 2, 2
grow rapidly in an unbounded regime. As they increase their CrmCo= 7Y a O HATA)) (12
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wheref’+_=é?f+_/acT|cT;Gr and g (which is an implicit

;1 ;2 53 icT C function of Q1) is the Re)>0 root of the dispersion rela-
* tion corresponding to the free evolution of MTEgs. (1),
c .
o1 )]
C*

_U+U,q2+[Q(U7_U+)+f+,U,—f,+U+]q+QZ

+Q(f, _+f_,)=0. (15

Vi

vioo

Vo

Vo

£

] 1

/ By numerically solving Eq.(14), one can easily check
c yt o

03 that there exists a critical valug} , equal to that found by
numerical resolution of the whole evolution equations.
Re((?) changes its sign and becomes positive when
co>ch . The oscillation frequency near the transition is
given by Im2). (A similar result is also obtained in the case
of spontaneous nucleatidt7].)

Let us now compare some predictions of the present
model to experimental results. In a typical experimér{t)

. 2 is studied for various initial tubulin concentratiorts,. Our
Note that whertr—cy, 7“(A,+A_)—o, sothat Eq(l2)  yqqel is able to reproduce quite well the experimental re-

always has a solution. The graphical solution of this equationyjis ysing realistic values of the parameters. In particular,
is shown in Fig. 2. the three different regimeémonotonic, damped, and sus-
The time-dependent Eqd1)—(3), (9)—~(11) cannot be yineq oscillationsappear quite naturallysee Fig. L It is
solved analytically, and we have to use numerical method§peresting to note that the range of initial concentratign
Figure 1 shows a typical numerical solution of our model, forg, \yhich oscillations are observed lies in the range of un-
increasing values of the control parametgr(the initial tu- 1,5, ,nded growth according {d5].
bulin concentration At t=0, all MTs have zero length and  cayjieret al. [9] have also studied oscillations for various
Cr=Co. For simplicity, we assume that only one _of the_ dy- values of free GTP concentratian.e, fixing ¢y to a high
namical _parameters, sdy , is cr dependent. This choice 5,e. For weak value o0, L(t) Shows a maximum, and
was motivated by the work of Walket al. [16] who report e comes back to a small value. &g, increases, oscilla-
a strong dependence 6f _ on tubulin concentration. The +{jons appear. On the other hand, results published by Wade
explicit form of f. _ we take reads et al.[18] showed a monotonic increase of MTs mean length
in the presence of large amount of free GTP in addition to an
enzymatic regenerating of GTP-TU. In our modg),. does
fi—(cr)=H{1-tanf(cr—cy)/B]}. (13 not appear explicitly, but as a matter of fact, it controls the
restitution rate of GTP-TU from GDP-TUg (« increases
This particular choice is rather arbitrary, but it is not essenWith Cred). Supposecy>cy, anda is weak. At timet=0,
tial: the only fundamental ingredient is the critical depen-MTs are in the unbounded regime and their lengths begin to
dence of/ on ¢y nearc¥ . increase rapidly. During this growth, they consume GTP-TU
As shown in Fig. 1, for weak values of, (co<c%), the and after a timé,, cr becomes smaller thasf . The regime
growth is monotonic, and reaches a plateau after some timéWwitches to the bounded one, and the mean length of MTs
For co>c* , damped oscillations appear. The values of finaldécreases to reach the equilibrium value.cAis weak, there
plateau correspond to the solutions of Etp). Finally, when 1S @ little GDP-TU to GTP-TU transformation, not sufficient
c, becomes greater than a critical valgg, stable oscilla- © SWitch back to the unbounded growth: the mean length
tions are observed. There is a clear transition between aches a plateau a_ng remains constant. For larger value of
steady state and an oscillatory one, which corresponds to % € ¢an reach agaioy after the first maximum occurs and
Hopf bifurcation. To study this transition, we have per- 0Scillations reappear. On the other hand, for very large val-
formed a marginal stability analysis. Denotidg the solu- Ues ofa (much larger than other characteristic frequencies of
tion of Eq.(12), we have computed the temporal behavior ofthe model, the oscillating regime disappears again. The re-
a small perturbation; =G+ ecexp(t). If the amplification ~ 9eneration of GTP-TU s so fast in this latter case, that it
rate Ré()) is positive, the steady state solution is unstable Prevents a great decrease of the MTs mean length. Numerical
For »>f_, ,f,_, the complex frequenc§) was found to  Solutions of the model for increasing valuescofre shown
be a solution of17]: in Fig. 3. The appearance and disappearance of the oscilla-
tory instability can also be obtained through the linear stabil-
ity analysis[Eqg. (14)]. These results are in good agreement

FIG. 2. The graphical solution of the equatiop—cy=y(cy),
for various values ot,. y(cy) is the right hand side of Eq12).
The dashed part of corresponds to unstable solutions.

QQ+a) _ oy with the above mentioned experiments and unify the appar-
v Qlvitv_)ta Q+f._+f_,+@w_—v)l/ ently contradictory results published by different authors.
Note that our model can clearly distinguish the role
1 played by the parametexg and «, in particular, that the
X 1=—], (14 S . L
/q oscillating regime occurs only for a limited range @f A
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FIG. 3. Numerical resolution of evolution equations for various ~ FIG. 5. Population distribution at different times during oscilla-
values ofa. Parameters are those of the top curve of Fig. 1, exceptory growth. Parameters are those of the middle curve of Figa)1.
for @. a: «=0.005; b:a=0.05; ¢:a=0.5. t=66.7% (first maximum); (b): t=91.4 (first minimum); (c):

t=500s ( final state.

schematic diagram which summarizes the various regime dfutions, for the growth corresponding to the middle curve of
growth as a function of, and « is shown in Fig. 4. Fig. 1. This captures the qualitative behavior observed by
The numerical resolution of evolution equations also al{9].
lows us to study the time-dependent length distribution of Before concluding, let us discuss one approximation of
MTs When oscillations appear, the length distribution ofour model. Here, the nucleation rate of MTs has been con-
MTs P(2)=p.(2)+p-(2) is an asymmetric Gaussian at sidered as constant. As shown by several autf®es[19]
times corresponding to maxima bft), which is the signa- and references therginin the spontaneous nucleation
ture of an unbounded growth. At times for whitl{t) is case, v is srongly c; dependent. This dependence will
minimum, a great proportion of MTs are in the) state and change the amplitude and increase the period of oscillations.
P(z) has a more complicated shape, intermediate between atowever, we have checked numerically that the behavior of
exponential and a Gaussian. Finally, when oscillations areur model does not change notably when an explicit depen-
dampedP(z) displays the exponential behavior correspond-dence ofv on c is taken into account and this factor alone
ing to the steady state solution. Figure 5 shows these distreannot explain sustained oscillatiofis?].
In conclusion, we have presented a minimal model of the

MTs to explain collective oscillations duririg vitro growth.
< go) This model does not take into account many features and
details. For example, when MTs shrink, they release oligo-
mers of GDP-TU which are broken later to free GDP-TU.

The chemical equation we used to modelize GDP-TU to

GTP-TU transformation is thus a very simplified one, but it

can be modified to take into account a more complete de-
- - v scription of MTs growth. But this will hide the key point of

our model: the MTs synchronization mechanism is con-
trolled by the bounded to unbounded transition.

Previous worl{ 13] concluded that to explain oscillations,
one has to add extra parameters to the ingredients of dy-
namic instability, or to take into account a memory effect

[ (long cap modegl We showed here that a simple statistical

! model such as that proposed by Dogterom and Le{dleis
sufficient to account for oscillations and there is no need to
add any extra parameter. The bounded—to—unbounded tran-

FIG. 4. Schematic diagram of different types of growth as aSition provides the extreme sensitivity of MTs to small
function of the initial concentration of tubulicy and the restitution ~ GTP-TU concentration variation. One can note that the syn-
rate of GTP-TUa. (I): monotonic growth(ll): damped oscillations ~ chronization of MTs oscillations in the whole space is a con-
and stabilization at a low polymer densitiftl ): sustained oscilla- sequence of the assumed homogeneity of the tubulin concen-
tion; (IV): damped oscillations and stabilization at high polymer tration. Actually, the diffusion lengths are finite. This may
density. The solid line corresponds to a Hopf bifurcation. induce dephasing of oscillations in different regions of space

a
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and may lead to pattern formation, as in the classicato explain spatial inhomogeneities and morphological bifur-
Belousov-Zhabotinsky scenario. Moving and stationary pateations.

terns have actually been observed during MT growth
[20,21]. It would be interesting to extend the present model

We would like to thank Dr. R.H. Wade for fruitful dis-

to take into account the spatial diffusion of species in orde€ussions.
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