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Using the method of constraints proposed by S. F. Edwards and A. G. Goddy®dys. A5, 965(1972);
5, 1188(1972], we do a complete calculation of the canonical partition function of a freely jointed ¢Ra@
from its classical Hamiltonian. We show how the constraints reduce the phase space of an ideal gas of
monomers to the phase space of a FJC, and how they permit one to find the canonical partition function. By
using this function, it is possible to study thermodynamical properties of FIC’s and to build other thermody-
namical ensembles via Laplace transforms. Thus we define a grand canonical ensemble where the monomer
number of the FIC can fluctuate; in this ensemble, the FJC of infinite length is the asymptotic state at low and
high temperatures. The critical exponentsand v for FJC’s are calculated and found to be equal to the
Gaussian polymer exponents. Connections between the properties of FJC’'s and random walks on regular

lattices are also discussd&1063-651X96)07106-]

PACS numbegps): 36.20—r, 05.40+j

[. INTRODUCTION simplest possible geometrical constraints, namely, bonds
with constant lengths. Thus a FJC is made up(Mf-1)

In the statistical theory of polymers, the first systemmassive points, linearly and freely jointed Bylinks of con-
which has been studied is the ideal polymer. When the destant length(Fig. 1). This freely jointed chain was first stud-
gree of polymerization of the polymer is large, the polymer'sied by Kramers in 19467], and since then by many others
end to end distance has a Gaussian distribution. This fact cd8—12. If we remove the constraints, we will have an ideal

be very well understood with the help of the central limit
theorem[1]. The Gaussian model of a polymer is very useful
because it retains important characteristics of the polymers,
and allows one to interpret and calculate some of the critical
exponent$2,3]. The values of these exponents can serve as a
reference for more realistic models of polymers. This ideal
model is thus used as a reference model for the study of
macromolecules and polymers, in the same way as the ideal
gas is used as a reference model for the study of real gases
and liquids[2-6].

However, the description of an ideal polymer, based on a
Gaussian distribution, or a random walk on a regular lattice,
does not provide a direct relationship to the fundamental
laws of statistical physics, especially the relationship be-
tween the Hamiltonian of the polymer and the canonical par-
tition function. The present work aims at filling this gap.

To achieve this aim, we will use the simplest possible
polymer model, the freely jointed chaiRJC), which we will
also dub the ideal ghost polymélGP). This latter name
seems to be a pleonasm in consideration of the customary
use of the term “ideal” in polymer physics. In fact, in mod-
els of macromolecules and polymers, the interactions be-
tween monomers are taken to @ chemical and physical
interactions(such as excluded volume effects, electrostatic
interactions, et¢.and (2) geometrical constraints which de-
fine the structure and the geometry of the molecule.

The freely jointed chain has two major characteristics; it
is a ghost polymer and an ideal polymer. By “ghost,” we
then mean that there is interaction neither between the bonds
nor between the monomers of the polymer. In this sense, the
FJC is different from a polymer at i&point[6], but some of

(a)

the physical properties, independent of the ghost characteris- FIG. 1. Conformations of a freely jointed chain in three dimen-
tic, will be common to both systems. For ideal we take thesions:(a) N=20; (b) N=500.
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gas of (N+1) distinguishable monomers. The geometricalinstance, in binary mixture§or a review se¢17]) or liquid
constraints transform the system @i-+1) distinguishable crystals[18,19. Finally, in order to compare the FJC model
monomers into a macromolecule by changing the topologwith other ideal polymer models, we compute the critical
of the phase space associated with {Ner1) monomers. exponentsy and v associated with the FJC. They are found
The study of the thermodynamical and statistical propertie$0 be equal to the critical exponents of the Gaussian polymer.
of the macromolecule is equivalent to the study of an ideal In this work,d is the dimension of the space containing
gas in this modified phase space; this is the point of viewthe polymers. It is taken to be a real number greater than or
adopted in the late 1960s by the Soviet scH6ol3]. At the ~ €dual to 2. Comparison with random walks on a regular lat-
beginning of the 1970s, Edwards and Goodyear put forwan?ce does not lead to any serious problems of interpretation as

a study of the dynamics of a polymer using the microcanoni-o"d asd has an integer value. Whenh takes noninteger

cal ensemble and expressing the geometrical constraints wiff?lulfz tge rgndomd walks Taéobg ll definZD]. Recbgntt
the help of Dirac distribution§9]. The main purpose of the work by Bender and co-workef20,21] permits one, subjec

present work is to compute the canonical partition function™® topological regularity22], to extend the model to nonin-

of the FJC and to study its equilibrium thermodynamicalteger dimensions of space.
properties, especially the equilibrium states of a FJC which

can exchange monomers with an infinite ideal gas of mono- Il. REDUCTION OF THE PHASE SPACE
mers. BY CONSTRAINTS
The present work is organized as follows. In Sec. I, we

’ Following Edwards and Goodye4®], we express the
study the reduction of phase space of a systeniNof 1) eometrical constraints with Dirac distributions. These dis-
ideal and indistinguishable monomers under the action of th&ip tions reduce the phase spagef an ideal gas ofN+1)

geometrical constraints expressed via Dirac distributions,,onomers to the restricted phase spaggof the FIC. First
The Dirac distributions allow us to express the partitionine monomers within the polymer have to become distin-

functiohn as g‘” in(;tegrr]al over the fulrl].pha_se space rather thaguishable. Nevertheless, in the polymer an indistinguishabil-
over the reduced phase space which is topologically morgy, remains due to the fact that one can label the monomers

complicated. In this way we will derive two nonintegrated jn one direction or the other. A memory effect is induced by

analytical expressions for the partition fu_n_ction. In Sec. lll, e geometrical constraints imposed on the system. This ef-
the temperature dependence of the partition function is eXe, may be interpreted as follows. At any point of the phase

tracted. We show that the partition function is the product ofg aceg,..;, the monomer numberddremembers that its left

a function depending on the temperature and the degree g4 right neighbors are, e.g., the monomersl) and(i +1),
polymerization, for which a closed analytical expression is,egpectively. It is possible to reverse the labeling, so that the

obtained, and a function depending only on the degree gf,mper of allowed permutations for the monomerspjg is
polymerization. The latter is expressed as an integral '”VOIVany 21, whereas the number of allowed permutations is

ing Bessel functions. Sections IV and V are devoted to th N+1)! The memory effect results in a factoN+1)1/2! in
study of this integral. In Sec. IV, we present an analyticali,e partition function. Thus it becomes impossible to distin-
study by series expansions of the exponentials appearing {,ish the beginning of the polymer from its end. We will see

the integral. These series expansions permit us to explore gt the Feynman rules associated with the polymer initiator
analogy between quantum mechanics and polymer physics,q polymer terminator are the same.
via Feynman formulation rather than via the Fokker-Planck 14 se Dirac distributions in the partition function with-

equation[1,6,9. Then, by using a method close to conven-,+ 3y dimensionality problem, we have to pay attention to
tional renormalization theory and similar to the decimationy,air actions and meaning. The Dirac distributions are de-

method proposed by de Genrlds}, 3,6, we give analytical  finaq in such a way that for a physical observahlghere is
approximations, involving hypergeometric functions, for theia gimensional equation

partition function of the FJC. In Sec. V, we perform a nu-

merical study of the integral using a Monte Carlo algorithm

together with an importance sampling method. Comparison fd”A5(A)=1=>[5(A)]=[A]_"- 1)

of the numerical results with the analytical results of Sec. IV

is made and an interpretation is given for the odd-even 0sso with the normalizatiorfl) of the Dirac distribution, the
cillation effect observed in polymef45,16: The agreement probability distribution of the FIC i derived from that in
between the numerical and analytical results hlgh'lghtS th@he spacepe by expressing the geometrica| constraint as a
quality of the analytical approximations for the partition pjrac distribution must be multiplied by a constant having

function of the FJC. dimension such that i the distribution will be dimension-
From the known canonical partition function of the FJC, less]cf. Eq. (1)].

we can derive its thermodynamical and statistical properties. For the FJC, the constraints on the bonds are

In Sec. VI, we begin the study of these properties in the

canonical ensemble for a system of FJC’s. Then, considering ad((ri_,—r;)?—a?), (2

the FJC as a gas dN+1) monomers, we can build the

microcanonical and the grand canonical ensembles bwherea is the multiplicative constant. Bonds with a constant
Laplace transforms. In the grand canonical ensemble the lovength induce, from a dynamical point of view, a relation
and high temperature states are FJC’s of infinite length. Thibetween the conjugate momenta associated with the degrees
reentrant behavior is similar to the reentrant behavior of thef freedom of the syster®]. This classical mechanics effect
less ordered phases observed in other systems, such as, i®rone of the major difficulties encountered in simulations
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using the molecular dynamics method for the study of com- 1 1 N B N

plex molecules when some degrees of freedom are frozenQ,(\‘d)zzm J IT dr.dp, exp( ~om > Dﬁ)
(se€[23,24], and for a review25]). In the FJC, the distribu- Prest N=0 n=0

tion (2) induces the dynamical constrair] (10)

S(Di_1=P) - (Fi_1—11)) 3) where the factog results from the indistinguishability effect
yolPi-17Pi =1 A discussed above. The topology @t may be complicated;
wherey plays the same role as in particula}r, it depends on the _value ab.f With' the'r'nethod
The two constantsy and @ must be related to physical of constraints, the_domaln of mte_gratlon S|mp!|f|es at the
parameters of the system. To do so, a convention concernirfgPense of a modification of the integrand. With the con-
the canonical partition function must be chosen. A plausibleS antsa anq v as determined above the partition function
choice, in view of the symmetry properties of the systemWHten in ¢ is
appears to be to take the partition functii?(T,L) of a 1 1
particle in a box of length. in a space of dimensiod, equal Q=5 —~roa (haz)Nf drodpg
to the partition functionQ *1)(T,L) of a particle moving 2h ¢
ona h;/persphere of radilisin a space of dimensiofd+1). N
QW(T,L) is given by

X nl;[l dundpné(uﬁ— a2) 5((pn_ pn—l) . Un)

1 B
Qo(Tb=14 fo“’)dr I ex;{ om " )

,8 N
xexp< 5 2 pﬁ), (1D
2m 7=o
mL2 dr2
:(—2277'3;1 ) - (4 where the bond vectors are defined by
Uu,=r,—r,—, for 1sn<N. (12

andQ(ed')(T,L) is given by
In the next section, we factorize the temperature depen-

) 1 B dence in the partition functiofll).
QYW)(T,L)= e e(d_l)dr dp ex;{ ~ 5 pz). (5) P @y

I1l. DEPENDENCE ON TEMPERATURE
With use of the Dirac distribution the latter can be written OF THE PARTITION FUNCTION OF A FJC

, 1 To extract the dependence on temperature in the partition
QY (T.L)=— a?’f o drdp &(r’=L?é(p-r) function of the FJC, the integration over all momenta must
h R be done, and the variables chosen such that the nonintegrated
part of the partition function depends only dh As in Sec.
% ex;{— ﬁ pz)_ (6) I, th_e dynamical constraints are expressed through their
2m Fourier transforms

Use of the Fourier transform of the dynamical constraint, 1 [+
S(pa—Pn 1) u= 5 [ a0,

1 [+
5-r=—f dQ exp(jQp-r), 7 .
(D=5 | 40 e®ifpn “ XX Qaln: (Pa—Pn_]. (13
gives Using the propertys (A\x) =(1/\|)8 (x) of the Dirac distri-
bution and replacingl3) in (11), we obtain
/ ay [ mL2 d'-1)/2 N N 5
QY NT,L)=—5 <—2) (8 () 1 1(h Uy
hL* \ 27 Bh Qn Zmz z fdronﬂl du,d! ¥—1
Thus, withd’=d+1, in order to have
N N ﬂ N
(d) —ld+1) - 2
QY(T,.L)=QE M(T.L), © x| 11 dﬂnf dpo [ dpy exn( om 2 Ph
the equalityay=hL? is required. To satisfyzthe dimensional N
equation(1), dimensional analysis gives=L“ and y=h. Of 4 n
course, by choosing another convention for the partition Jngl Qntin: (Pn=Pn-1) |- (149

functions, for instance, by taking a hypersurface with a dif- . _ o
ferent geometry or by taking a different radius for the hyper-The integral ovep, is a Gaussian integral,
—-1/2

sphere, other relations could be obtained for the constants A
fdx exp — IXIAX+JIX) = det( Z) exp(3J'A™ 1)),

andvy.
in the canonical ensemble is defined by the integral (15

With the conventior(9), the partition function of the FJC
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where
X=(Pn)o<n=N"
J=J[— QU {(QqUn—QpiqUns )}, Qnun],  (16)
A=(BIm)(In+1®1q),
ANTY2 (2| dN+D2
de<5” :< B ) ' 17
and

N N—1
m
%JtA‘1J=—E(E Q23— (Qnun)-(9n+1un+1))-
n=1 n=1
(18

To integrate over, the box which contains the polymer
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N ma2 N
xf 11 dQnexp<——2 Qﬁ)
n=1 B =1
N
I1 dd,e03-1)
n=1

ma? "
xex;{— ( Z (Qnan)'(9n+1an+l))}
B \nm1
(21)

The last equation shows how the dynamical constraints in-
duce a coupling between the bond vectors. The integration
over the set of variable§l,} is not straightforward.

Defining

N
u<d>=J IT dd,s02—1)
n=1

(22

ma® ("
Xexr{_ ( 2 (Qnﬂn)'(ﬂn+lan+1)>
,3 n=1

andx=(ma?/B)Qy_,Qy, the integral overy is

is assumed to be larger than the typical size of the polymer.

After integration over all the momenta and ovgrEq. (14)
becomes

@ 1 1 h N 2mm d(N+1)/2
N =z o |24 VT

N-1

— nZl mnun)-mmum)) } (19)

The definition

1
O =3 Un (20)

allows us to work with dimensionless bond vectors.

The integrand in(19) is always positive; permutation of

(X)—f dln6(05—1)exp(xUy_1- Uy), (23

X
Z9(x)= P duNf du exgdxu(1—02)]
JOC

X exp(xUy -1 - Uy), (24
(d) _L faﬂmd fdA
29 (x)= 27} Juin r exp(xr) U

X exg —x(riZ—Oy_1-Uy)]. (25)

In Egs.(23)—(25), the Dirac distribution has been expressed
through its Fourier transform, the order of integrations has
been permuted, and we have setu+ « with « such that
(u+a)f],2\‘—aN_1l]N>O

The integral oveldy is Gaussian, with the result

(@) X[ )"
z (x)=2—7TjL_jwdr ﬁ) ex;{x r+ } (26)
1 x (27|92 [2a+j=
) ____<_ f dw(w) 92
( ) 2 ) X 2a—j ( )
X 1
X ex E W+ (27)
1 20 d/2
ZD(x)= R (-) I dr—1)(X). (28)

the order of integrations and use of the property The functionl ,(x) |s the modified Bessel function of the

JT(x)g(x)8(x)dx=f(0)fg(x) 5(x)dx gives

27Tm) d(N+1)/2
d

B

N
Va

Q<d>:E 1 (h
N 2h(N+l)d 2

first kind. The mtegrat )(x) is independent of the direction

of Uy_4, but depends ofi)y_; and Q. The integrals over
each bond are independent and the integral over the bpnd
produces a factoBy(1), the surface of a sphere with a unit
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radius in a space af dimensions. The dependence @nis
included in the integral over the bong. Equation(22) can
be written in the form

ma2\(N-D

28

d(N-1)/2(N=1)
1T (QQn)* 92

n=1

U@=5y(1)

278

X ——=
ma

a2

m
X dre-1)| = Qnnsa]-

3 (29

6301

Using this transformation i632), the nonintegrated part be-
comes

N N
I = f n[ll dwnlde[Ja(W)]l( I1 (092

n=2
N n-1
—1)P
X'(d/z—l)(wn) P( nzz pl;[l(w(n o) Y wh
—wi). (35

A particular case of this result has been obtained by Stani order to identify the contribution t@ () from each bond,
ley [26] for a chain of classical isotropic spins with nearestwe set

neighbor interactions. Stanley’s result is recovered if gl

are taken to be equal. In this cadé” is proportional to the
partition function obtained by Stanley. If some other sets of
{Q,} values are chosen, partition functions of different spin

systems can be obtained; for instance, if we Qg for

n#i andQ, #Q, the partition function of a classical isotropic and

spin chain with an impurity spin on the sités obtained. In

spin systems, the coupling between spins results from the
magnetic field induced by the spins. In the FJC, the coupling
between bond vectors results from the dynamical constraints

induced by the bonds.
Use of the transformed variables

ma®

B

leads to an integral which depends ronly. After straight-
forward simplifications, the partition functiof21) becomes

1/2

Yn= Oy, (30

Q<d>=s v m di2) (1 2((d=1) 1y g2]N(d=1)/ J(d)
N d 47T2ﬁﬁ2 2 Bﬁz N
wheref=h/27 and
(N—-1)
(1—d/2)

J(Nd)=f H d7n( H (Yn¥n+

N
X'(d/2—1)(7n7n+1))exp< —ngl Yﬁ) (32

All the temperature dependence is explicitly contained in

(31), whereas the integr&B2) contains all the nontrivial de-

pendence oM. The main difficulty in computing the latter

integral comes from the coupling betweenand v, ;.
For the transformation

Op= Yn-1Yn for 2=n=N,
(33

1= Y1,
the Jacobian matrix is triangular, giving the Jacobian

N n-1

defda(w)]=I1 I1 (0@-p)" (34

N—-1
Av=| 11 (on-p) " (36)
fﬂ):ANf dwng\llidIZ)l(dmfl)(wN)
N—-1
p
xexp( —p]:[l (w(szp) )= wﬁ) (37
For the Bessel function, we use the representation
(x/2)* J
_ (p—1/2) oxt
L= T | T e
(38)

IV. ANALYTICAL STUDY OF J({

In this section, devoted to the degree of polymerization,
we try to compute the functiod{{’ for all values ofN. The
computation is made by extracting the contribution of each
bond toJ (.

By series expansion of the exponentials, each integral is
transformed into a sum over the natural numbers. There are
(N—1) sums of that kind for a FIC wittN bonds. These
sums show thad ! can be expressed in terms of a special
function having the special valugfor its arguments. If one
were able to find an analytical form for this function, then
one would have found an analytical form for the partition
function of a FJC. Unfortunately, this function is directly
related to the multiple hypergeometric functions, so that an
analytical form of the partition function of a FIC can easily
be obtained only for small values &f. On the other hand,
the series expansion oY is useful to exhibit the analogy
between polymer physics and quantum mechanics via the
Feynman formulation. Usually, this analogy is demonstrated
by using the Fokker-Planck equation for the probability dis-
tribution function of the end to end distan¢#,6,9,27; it
may also be described via Green’s functi¢fi$ This anal-
ogy enables the use of methods closely related to the con-
ventional renormalization of the full propagat®8] to de-
rive various approximations fo}(Nd).
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To test the analytical approximations derived in this secwhich, after a straightforward integration, leads to
tion a Monte Carlo algorithm described in the next section is
used to obtain numerical results (. The agreement be- o
tween the approximate analytical results of this section and . (q) (E }) i I'(n+1/2) (l "on o
the numerical results of the next section will show the reli- N~ \2/12) &5 nl T(n+d/2) | 4] "N-1¥N-1-
ability of the theoretical approach. (43
The present section is divided into five subsections. In
Sec. IV A, we make the series expansionXif’. In Sec.  Substituting(43) into (35), f (!, is extracted as
IV B, we define the function related t{". This function
can be defined in several ways depending on the number of g2 .
variables the special valugis assigned to. The series expan- .y _ (1| 1 1 T(n+12) (1" A
250 nl T'(n+df2) \4) "N-17N-1

sion ofJg’) is composed ofN—1) sums; thus the function 'N-1~ {2
giving J(® will be a scalar field on a Euclidean space of
dimension(N—1). In Sec. IV C, we write the Feynman rules

for the computation of (. In Sec. IV D, we use these Feyn- (1/2)(92=1) 1 2 des2
man rules to develop the conventional renormalization and xp([d_l]/z)r(l/z) fﬁldthl(l_tN—l)
derive approximations. Finally, in Sec. IV E, we compute

J(® exactly for small values oR.

+ o0
2n 2 2
. . X _
A. Series expansion of] " fﬁx don-10y=; eXp(—AN-10N-1

In the relation(37) definingf (!, the Bessel functions are
expressed with their representati(@8); this gives

+tn-10n-1), (44)
" (1/2)(61/271) +o
N :F([d—l]IZ)F(1/2) ANJ_ doy and becomes, after integration ouay_ 4,
! 32 A2 2 a2 = n
« (1_t’%‘_1)<d 2= ANORT ONIN- 10ty . (@ 1 (1 1 I'(ng+1/2) [1\™ 2n,
-1 N-17212) &Zo ny! T(ny+d/2) \4) "Nt
(39
Since in (39) the integrand is always positive and the 1 d 1-(2 @32
value off (¢’ finite, the integration orders can be permutated. x| dtn-a(17 )
The integral overwy is Gaussian; thus
(1/2)%2 jl 2 1 gzm-1 2
(d__ 7 12 \(d=3)2n—t3_,/4A N-1
W1y Jo -t e T R Py 1> |
_pdt _
(40 (45)

The factor Ay defined in(36) and stemming from the
Jacobian(34) is exactly cancelled by a factofAZ=|Ay|
=Ay coming from the Gaussian integration. Starting from
(40), we may either put40) into (35) to extractf (), and
make the Gaussian integration oway_,, or make a series "
expansion of the exponential ¢£0) and integrate ovety,_,.  fN-1=
In this section the latter way is chosen, while the former will
be used in the next section. Since the integral is convergent

Expanding the exponential i@5), taking the derivative, and
integrating gives

_(1)d/2(1)d/2 “ 1 T(n;+1/2)

2] \2] o ny! T(ny+d/2)

both ways must lead to the same result. From the definition 1\M/1\"m 1 1
of Ay (36), the following relation holds: X|{=| =] = —_
4 4) 2 n5=0 (Np+ny—1)!
1
— =A% 0. (41)
Ay NN [2(ny+ny)—1]0 [1\"2 T(ny+1/2) [ 1 |2%
(2n,)! 4] T(n,+di2) | Ay_;

The series expansion of the exponential gives

d/r2 o
f(d>=&z RSN From the relation
N TT([d-11/2) & nt \4) A2

(46)

1 22n
« [ dna-gye o, 42 (2mi= " nir (), 7
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it follows that f(d) B 1 d/21 * 1 I"(n1+ 1/2) 1\M/1 d/2
N-1712) 2% ny! T(ny+d/2) (4] |2
[2(ny+ny)—1] 4™ 1 T(np+ny+1/2)
(Na+n=1)I2ny)! 2 (ny! T(ny+112) % 1 1 D(nytnt1/2) (117 "2 on 02"
(48 2/ ny! T(ny+di2) |4 "N 2¥Nn-2
and so with use of relatiofd1) the second sum is found to (49
be The method is repeated unNl—p=2; thus
|
fa_ 1\dN=D21\(N"D 2 1 P(ny+1/2) [1\"t S 1 T(ng+n,+1/2) [1\"2
2 7\2 2 7o ny! T(ng+di2) 4] Zo ny! T(n,+d2) |4
i ir(npl+np+1/2)(1)”pm - 1 F(nN3+nN2+1/2)(E)“N—2 - 1
n,=0 Np! I(n,+d/2) 4 nnp=0 Nn-2! I'(ny_»>+d/2) 4 nna=0 Nn-1!

F(nN,2+nN,l+l/2) 1 MN-1 2nN_1 2nN-1
T Tlny+d2)  \a] P 0

Finally, by definition off () andJ (),
+ o0
JP=1= f do,f5 exp(— wd), (51)

with [ Zdw,2™* exp(-w?)=T(ny_;+3), which closes the expansion. Thus the series expansidi{'bfs

Jo_ (L <Nl>(3 INTDR S L T(ng+12) (1) 1 T(ng+np+172) })”zm o 1 T(np-g+ny+1/2)
N 2 2 n=o Ni! I'(nyg+d/2) \4] =0 ny! T'(ny+d/2) 4 n,=0 Np! I'(ny+d/2)
X 1 S 1 TI(ny_ztny_p+1/2) (l)nNz ‘ 1 I'(ny-2tny-111/2)
nN72:0 nN,2! F(nN,2+d/2) 4 nN*lZO anl! r(nN,1+d/2)
XT L)L) 52
nN_1+E Z . (52

(This relation can be seen as a propagation over a chain débr the hypergeometric function and
integer numbey.The relation(52) is far from simple, but has
the advantage of showing thaﬁ, is given by the particular “ 1 (n,a)
value; of a speC|aI function that we shall calk{’(x). The 1Fi(ase;x)= E nl (n,c)
series expansmn of this function is obtained fr¢52) by n=0 1= ATh
replacing: by x, imposing the constraim=3 ™7, on
the n;, and extending the sum overfrom 0 toe. In each

x", (54

for the degenerate hypergeometric function;

sum, the factog can be associated with an independent vari- I'(n+a)
able x;, theith component of a vectox in the Euclidean (n,a)= T(a) (55
space of dimensiofN—1). g’ (x) is, with this definition, a
scalar field. We will use this latter definition gf{" which is is the Pochhammer symb29], and
easier to manipulate, rather than the functional definition
where there is a constraint=3 (N Yn 1\ (N=D( 1\ dN=D22 19}/ p(1/2)| (N-D
ao-lp el
B. The scalar fieldg(d) (d/2) (56
The fieldg {’ can be expressed in terms of hypergeomet-
ric functions. The following definitions will be usetsee In each sum over the integer,, the factors §)" are
[29)): changed intox" wherex; is theith component of a vector
® of a Euclidean space of dimensi@d—1). With the previous
Fiabcex)=3 1 (n,a)(n,b) n (53  definitions, the series expansion B’ leads to the multiple

“, n (n,c) series expansion af " (x) according to
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“ 1 (n,1/2) 1 (ny+ny1/2) 1 (n,_,+n,,1/2)
gl @0 RS VN W™ 2,9 i, il S Lo AV SO
00=0"(0 2 sy %" g (mpdi D w9
= 1 (ny_zt+ny_21/2) - 1 (Ny_p+ny_1,1/2) ( 1)
X ) IN-2 Nn_q, = (XNo N-1,
o Tl (a2 eI 2 e | M g (o)

(57)

Derivatives of all orders at the origin of the scalar field (N—1) sites; with each site a multiplicity; and a weight
are thus known. They can be expressed with the help of th€l/n;!)[1/(n;,d/2)](x;)" are associated. On site 1, a propa-
derivatives of the hypergeometric functions. For examplegation is initialized with a multiplicityn; by a polymer ini-

the gradiant ofy (!’ at the origin is tiator (n;,3). This perturbation of the integer chain propa-
gates itself to site 2 with a propagator, + n,,3), from site 2
Ix, 1F1(1/2;d/2;0) to site 3 in the same way, and so on until the perturbation
@ @ : : reaches a polymer terminator on sitd—1) of the same
P 1
[Van'(X)]o=9gn (0) On., 1Fa(l2:di2;0) | (58)  form as the polymer initiatofny_4,3). The sum over all the

allowed propagations gives the behaviolNrof the partition
function of the FJC. This is, of course, closely related to the

dd i f all ord the directi f h fdecomposition with Green'’s functioi§,30]. The Feynman
and derivatives of all orders in the direction of each axis o rules associated with this propagation are, for the sites,
the Euclidean space at the origin are given by

dy,,, 2F1(1/2,1/27/2;0)

. 1 1
gN J(X)|y—0= g(d)(O)a:i' 1F1(1/2:d/2;0) opzam (X)P, (61)
for 1<isN-2,
(59)  and for the propagators,
N1 (0] 0= O () 5F 4 (1/2,1/2012;0) Propas
for N=1. —p=(n+P.5)=(p+n.3) (62
One can note that the value of the fig§" along each
axis of the Euclidean space is known, since, [fof<1, (one can observe that the propagators are not origrien
QN (x8)= g<d)(0) Fu(1/2:12:%)  for 1<i<N-2, EE: zglr)r/]rg.enmtmtor and the polymer terminator the rules are
(60) '
ON (Xn-18n-1) =GN (0) oF (112, 12012 ¢y 1)
for N—1. ®,.=(n,3)0,. (63

@
C. Feynman rules forJy The rules(62) and (63) preserve the symmetry by inver-

Equation(52) can be interpreted as a sum over all allowedsion of the labeling in the partition function. With the Feyn-
propagations on an integer linear chain. The chain is made ahan rules Eq(57) becomes

oN’(x) = g<"><0>2 E >N On,—On,+-On

NN-1

— 0,0

p—1 p ”N—z_.”N—l)'

(64)

The memory effect appears explicitly in the last equation. If one considers that each site is associated with an event and the
numbering of the sites with a discrete time, then the system will keep memory of the relative chronology of events but not of
the direction of time.

D. Calculations with Feynman rules

From the definitiong53) and(54), it is straightforward that the relations

2, (Op,—On,—On,)=On=0n, (65)
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o

Y (@, —0,—0,)=0, =0, (66)

n,=0
hold, where the double propagator is defined as

1 1 d
=5,F S tNi—1 5 +Nias 5
As in particle physics, the last equation is the full propagator of a scalar field to first ordeminen the interaction is a
composite operator likga®? [28].
If N is odd, taking N—1)=2P, Eq. (64) becomes

[’

958 1(X) =g5P,1(0) > (@3, —=0n,=On""On s =On o 1 —®n,p). (68)

Ng,...N2p—1).N2p=0

X |- (67)

N_17 N1

On the contrary, iiN is even, takingN—1=2P—1, Eq.(64) becomes

[

gB(X)=058(0) > (@0, =0n=Ong""Onyp_=Cnzp_5=®npp_y)- (69)

Equations(68) and (69) show that there is a nontrivial with the rules(65) and (66) generates a kind of self-similar
parity effect in the partition function of the FJC; the single fractal sequence. In Fig. 2, the first three generations of this
propagator in(68) may be placed anywhere in the integer fractalization are shown for a fractal initiator given By=3.
chain. This odd-even effect manifests itself by oscillations inThere are holes in the prefractal sequence relative to the
some functions derived from the partition function. It haSsequenceg gdp)(x)_ If the fractal initiator is made oP single
been observed by Fisher and Hilgy5] in a counting of  propagators, then theth prefractal generation will have’®
self-avoiding walks(SAW's) and recently by Grassberger single propagators; it will correspond to the partition func-
and Heggef16] in simulations of® polymers in two and o of a FIC made oRli=2(1+ 2" YP) bonds. This frac-

three_ d"_"e_”SiO”S- ) talization looks like the reverse of the decimation method
It is difficult to contract the double propagatq&y) as is 414 6,3
n 1 L .

done for the single propagators, because of other odd-ev 1.
effects of higher order that appear and because of the need TO contract the propagators further we take 3 in (67).

for multiple hypergeometric functions. On the other hand,Thus the functiong (?(x') is defined as a scalar field on a
the double propagators can be developed in single propag&uclidean space of a dimension smaller than the Euclidean
tors (stageb), and the single propagators transformed intospace defined in Sec. IV B. This space has a dimendibn
double propagatorgstagea). This manipulation repeated —1)/2 if N is odd, andN/2—1) if N is even.

; e—e N=3
f 1 2
l 2
n=li |
*r———y
1 3
\ l b
\
*———0—e N=4
{/ 1 2 3
l 2 FIG. 2. Schematic representation of the first
n=21 i - ° three stages associated with the building of the
H 3 5 prefractal sequence for the butane skeleton as a
\ l b fractal initiator. This looks like the reverse of the
N decimation method.
N=6
/ 1 2 3 4 5
{ l a
' . .

L ]
e
C
[e
q
e
[e
®
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Relations between the hypergeometric functions give

2272 2 2’ 2 4
1 (ny,1/2) 11.d 1) .
2o ol (naiz) P Mtz g g g (70

and

(1111ddd1 1)

” 1 1d 1) 1
=2 2':1(5,”14’5,5,2)

3

n,!

(71)

whereF, is the second Appell double hypergeometric func-
and Fy the triple hypergeometric function of

tion,
Lauricella-Sarar(see[29]).

From Egs.(68) and (69), we obtain derivatives of all or-
ders ofg (P at the origin. IfN is odd

n R
A2 g5p1(x)o

11
+1(0)[2F1(§ 5

n
X 3N2PHL L
X2p+1

d 1\]P-D
2’ Z”

1

2’

1 d
5 7 %2p |x2P:O

for 3<i<2P—-3 (i odd) and

(72

f9 92P+1(X’)|o

(74

and relations S|m|lar to Eq$72) and (73). As for (60), the
restriction ofg (¥, ; to each axis of the space fbx;|<1 is
given by

MARTIAL MAZARS
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g(2T3)+1(X2PAe2P)
11d 1\]"Y
+1(0){2F1(§ > E’Z”
1 l_ d_
XoFa Mt 5. 5050 Xop (75)

for 3<i<2P—-3 (i odd) and

11d 1)]*"?
2F1(§* 22 z”

1111ddd?1 1)

9oy (X&) =053, 1(0)

Kl292'2'2°2'2'273% 2
(76)
fori=1 or 2P—1. ForN even
R ) 11 d 1|]*"?
g (xi&)=g5n(0) 2F1<§ > E;Z”
F 111dd 1 .
“Flz 2272270 D

and similar relations on the other axis.
The Feynman rules of the FJC may be used for calcula-
tions involving hypergeometric functions.

E. J® for small N

In this subsection, we calculate{’ (x) for a few small
values of the degree of polymerization.

1. Ethane skeleton (1)

For this molecule, sinc&dl—1=0, the previous calcula-
tions do not apply. However){Y) can be computed from

(32):
= f h

2. Propane skeleton (N2)

(78

1
dy, exq—y§>=r(§).

The Feynman diagram associated with this molecule is
(n1,2)®, . So we have

0:"(0=05"(0) 25 [(ne,3)@,]

=gW(0) ,F(1/2,1/20/2;x,), (79
and consequently

RCREEEE
|

T'(1/2) 11 d
Ty 2020 2

) (80)

-Ml—\



3. Butane skeleton (N=3)

The Feynman diagram associated with this molecule i
Onl—an, giving

05" 0=05"(0) > (®,—®,)

ny,np=0

=gW(0)F »(1/2,1/2,1/2d/2,d12;x1 ,X),
(81

and thus

11

4’ 4

1

2

1

2

1

2

IERE

111dd11

2'2'2'2' 2 4'4)'
(82

|

T'(1/2)

I'(d/2)

e

“[riam | =

4. Pentane skeleton (N4)

For this molecule the associated Feynman diagram i§

® —O,—@, .So we have
n n2 I’]3

1

o)

9P 0=gP©0) > (®,—0,—®,)
nq,ny,n3=0 1 2 3
@ 11114dd
=04 (0OFkl 5,5, 5, 55 5, 5:X1,X2,X3

(83

With the contraction$65) and(66), the Feynman diagram is
also

[

nZEZO ® 0,0, ,-0,=0,. (84)
We have
111
(d_ @ = = =
Ja =0a (4'4’4)
B 1)3 1 3d/2F 1\/T(1/2)\3
“\2)\2 2/\T(d/2)
. 1111ddd111
2202022222288 8)
(89

5. General form for any N

We can define a multiple hypergeometric functibig”
such that

d

1 1d
g(l\?)(x):gg\ld)(o)FEBN)(zyazy Ey---a 2;X11'--1XN*1 .

(86)
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Forx,=---=x;="--=Xy_1= 1., all the nontrivial depen-

dence on the degree of polymerization of the partition func-

tion is included inF . This function is far from simple;
however, with Eq.(60), its restriction to each axis of the
Euclidean space is known. With the method of the previous
subsections, we can build more and more accurate approxi-
mations ofF &V [31].

V. NUMERICAL STUDY OF J{"

To test the precision of the analytical method of the pre-
vious section, the results will be compared with a humerical
calculation. A feature of the method used in Sec. IV is that it
uses the dimension of the physical space in which the poly-
mer is contained as a real parameter and not as the number of
independent components of the bond vectors. To obtain an-
other nonintegrated form of the partition function withas a
real parameter, we must not make the integration over the set
of variables{(,,} before the integration over the variables
{G,} as is done if12], because the values allowed forin
that way would be the integer values, but the method must be
generalized to noninteger values too. For this purpose,
the integration ovefl,} is still made before the integration
ver{(},}, then the Bessel functions are expressed with their
representatio38), and thus the space dimensidiecomes
a parameter of which the partition function is a function.
Then we make the complete integration over the variables
{w,}; this allows us to recover the metric determinant of the
freely jointed chair{8,10,13, which in this way is indepen-
dent of the space dimension. Since we do not know the ana-
Iytical form of the integral containing this determinant, we
estimate it with a Monte Carlo algorithm using importance
sampling. The numerical results obtained with this algorithm
permit a comparison with the approximate analytical results
obtained in Sec. IV.

This section is divided into three subsections. In Sec.
V A, the analytical form of] ! is established with the met-
ric determinant of the FJC for any dimension of space. In
Sec. V B, the integral is computed with the Monte Carlo
algorithm. In Sec. V C, the analytical results of Sec. IV are
compared with the numerical results of Sec. VB, and an
accurate approximation for the partition function of the FJC
made ofN bonds is given.

A. Another integral equation for J "

To obtain the FIC metric determinant, a recurrence based
on the computational rules for the determinants is used. The
first stage of the recurrence is to determfrf® , from f (.

With the relation(41), f ! , is defined by

+ o0
d) _ 1-d/2
fg\lll_ANflJ7 dwN*lwg\l—l )l(dlzfl)(wal)

—1)P 2

(d)
on-1] N

N-2
X exp( - pl;[l (0fn-1-p)"
(87)

which, using the integral representation of the Bessel func-
tions (38), can be cast in the form



_ (LW D (W% (e
NZ1=AN-1 I'((d=11/2)T'(1/2) I'([d—1]/2)

WN-1
1

X f dthl(l_tyz\l,l)(d_s)/ze(“’NfltN—l)
-1

1
x| (- e - Ay oy,
0
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(p+1)

d/2
po (5
NpT 2] T([d—112)
1P , 1 12
d—3)/2
On];[o dtn-nm (1= tiy_n) " (detM(p”))

t2_ . detM®
Xexp(u

2 2
2 WAN—p—le—p—l)' (92

Then we have

(88)
) . . . 1 (d/i2—1) 1
The integral overwy_; is Gaussian; thus fO A <
N=p—177N=p=1) | 2 I'([d—1]/2)T(1/2)
1 d/r2 1 2 1
f(d):(— —jdt, ! -
N2 Td-112)) Jo Sy X | dtnpo (1=t pog) "
1 tee
Xf dtN(l_t(ZNil))(d*\?m)/Z(l_IIZ\I)(d*3)/2 X f_m da)N_p_l eX[Iw(N_p_l)t(N_p_l))
0
X exp—Af_p- 108 p-1) TR p- (93
1 1/2 tl%l—l ) )
X(m) ex’{zl(l——t,z\‘M) AN-20N-2 |- The integral ovewwy_,_; is Gaussian witlicf. Eq. (15)]
(89
X=wN-p-1,
The relation(41) permits one to find the dependence of
£, on wy_, and thus to build a recurrence relation. Let J=tN-p-1, (94)
M be a sequence of square matripesp, such that they
verify the recurrence relation tﬁl—p detM
A2 74 Getmr T e
detMP =detMP~Y—c2_, detMP~2), (90
detM(P*2)
:Z—detM(p+1) N—p—1

where{c,} is a sequence of real numbers, and

detM®=1, andc,= Sty p- Using the relation
(91
detM®@=1-¢? ! 2
e =1-ci. AN ) =AZ_ p—2ON—p-21 (95
p-
With these definitions, assume thigf’ , can be written
as (93) becomes

1d/2 1 (p+2) ~qP+1
oi=|l5] toammm| )Lt
Pio2)  T([d-1]/2) 0 =0

1 V2[R poq detM P ,
GetM® | & T2 Germ @D AN-p-209N-p-2]- (96)

><<1—th_”>)<"‘3>/2<

For p=0, the relation betweeh{" , [Eq. (89)] andf (! is in agreement witf{92) on account of the definition&0) and
(91). Equation(96) shows the stability of Eq92) under the recurrence, so this form is right for ad@<N—2. In particular,
for p=N-—2 one has

1 d/r2
fgld):{(i) (e 1]/2} JH dt-n)

1 V2 [t3 detMN2)
exp = — 1 ©2 ], (97)

_ 2 (d=3)12
X (1= tin-n) (detM(Nl) 4 detM™-D
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which by definition off { andJ{{’ gives a Gaussian integration ovey and withx,=ty_,

d

N

-]

) d/2

T ([d—1]/2)

lN—l

(N-1)
[T ox,
0n=1

) 1 1/2
d-3)/2
X(l—Xn)( ) (W) (99
If the matrix M (P is taken as
1 3x, O 0 0 0
axp 1 3% 8 8 8
0 s5x, 1 :
MP=| o O 0 0 0 0 , (99
0O o O 1 Xpzy O
1 1 1
0 0 0 ZX(p-2) 2X(p-1)
0O o O 0 FX(p-1) 1
|
then it verifies the condition®0) and(91). This result, when N-1
replaced in(31), gives the partition function of a FIC as (NOYN=D= | TT dx,(1—x3)(d=372
0n=1
(df2—1) dr2
@_1](1 _ram _m 1 T(L2T([d—1]/2)| N~V
Q=312 T([d—1]/2) Sa(L) |V 472 BH2 =5 (103
2 I'(d/2) '
1\ (d+2)/(d-1)
>< ) . . .
2 We have applied the Monte Carlo integration method to
26d—1 271N(d—1)/2 FJC’s for which the number of bonds takes all values be-
- - | (d) 100 tweenN=2 and 500 and considered 28 valuesidfetween
X —77 N ( ) . . . . .
I'([d=1]/2) Bh 2 and 8(including noninteger dimensiong-or each value of

where

N1 1 1/2
1= fo 11 dxn<1—xﬁ)<d3>’2(—detM<N)) . (10

It is the value ofl ) that we estimate by a Monte Carlo
algorithm. In this relatiord is only an integration parameter,

which would not be the case if we had made the Gaussian

integration over the set of variabl¢8,} in Eq. (19).

B. Monte Carlo integrations

From Eq.(101), | (& may be considered as the average
value of (UdetMM)¥2  over the distribution
pnO=TIN"tdx (1—-x2)@=372 je

I(d)_ f g 1 1/2
N oy X9 | Germ™

Importance sampling is done over the distribution func-

PN(X)

(102

d, 499 partition functions of the FJC have been obtained.
The Monte Carlo results are shown in Fig. 3. The data may
be very well represented by a straight line fit

50

W
)

[\
fes)

In(<(detM™)"*>)

—
==l

tion py(x) whered appears as a parameter. Results for non- FIG. 3. Results obtained for ((L/detM™)*?), ., with a
integer values ofl can thus be obtained as well. The nor- Monte Carlo algorithm using importance sampling. The straight
malization of the distribution functionpy(x) is easily line fit is not represented on the curves. The symbols are placed
calculated to be every 15 points.
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C. Analytical form for the partition function of the FJC

From the results of the previous subsection, the accuracy
of the analytical expressions presented in Sec. IV can be
tested on the coefficients of the fit. The partition function of
the FJC is given by

N(d—1)/2
Q<N“><v,T>=qu>Q%’><v,T)(T—m> . (107
(o]
with
@ 12 B(d
%o _(E) T([d- 11722’
mkT |2
Q%’)(V,TF(W> v, (108
1 1)\ (d+4)/(d-1)
0= a2
2/(d—1) 2
o« A@ I'(1/2 ma .
[ (d/2) 72

In Fig. 5,A(® andB(® are shown as functions df From
Sec. IV B, the scalar fielth,(x) defined by
22

(109

coincides with the field) () on each axis. Furthermore, from
Sec. IV D, the scalar fielth{¥(x’) defined by

(N-2)

I1 ./

i=1

1d

1.d. .
2i 27 22

g\ (0),F4

ng curves

(104

hiP(x") =950, 1(0)

After only a few thousand Monte Carlo iterations, almost

all the points of Fig. 3 are in agreement with the straight line
fit to within 1-3 %, except for the point withN=3. How-
ever, forN=3, the analytical functiod{? is given by Eq.

(85).

If correlations between two random variables, Y) are

exactly according to a straight line fit, one
a2,=(uv)—(u){v) andY=aX+b,

O'Y aO'X 0,

o%y—aok=

0.
In Fig. 4, logo(o3—ao

tions. The accuracy of the fit is so good than afte

thousand |terat|ons the differences betwesnand a’o %,
and 0%y andac %, are less than 0.01. Thus the approxima-

tion
B(@

IN'=S@
NO

N (Ng' AN

2) and logy(o2y—ac?) are
shown as functions of the number of Monte Carlo integra-

ZP‘SF 1111ddd1 1
i=3,0dd EEEEEEEZX"4
111dd1
has, with *Falz 2027202 7%
11 d
X 2F, 50 50 i XeP+1 (110
(105

coincides with the flelayg F+1 0N each axis. Of coursi,(x)
and h{®P(x’) are not exactly equal to the fields{’ and
gR., away from the axis, but they may serve as approxi-
mations of these fields. The difference between Secs. IV and
W/ resides only in the integration order in which the integrals
have been computed. As the integrals are convergent, both
results must be equal. Thus, by fixing the value of the fields
h,(x) andh{P(x') atx,=---=x;=+--=xy_,= 3, after sim-
plification, one has the following.

For hy

r only a fe

(108)

BOAD)N=F,(;F))N=2), (111

appears to be extremely good. The resultsA6P andB(@

for several values ofl are given in Table I.

giving
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TABLE |. The numerical values of the coefficie$® andB(® from the straight line fit of the Monte Carlo estimatesl § and the
analytical approximations of both coefficierjtge use the reduced notationg=¢) = ,F(1/2,d/2,1/4 and F,)=,F1(1/2,1/2¢/2,1/4)].

d A B@ (Fo) (F1) %2 GFo™ (Fp*
2F1
2.0 1.0925) 0.8940) 1.137 58 1.07318 0.829 297 0.93181 0.879 06
2.2 1.0779) 0.9127) 1.124 50 1.066 00 0.843 021 0.938 09 0.889 28
2.4 1.0690) 0.9218) 1.113 65 1.060 07 0.854 745 0.943 33 0.897 95
25 1.06%3) 0.9283) 1.108 90 1.057 48 0.859 978 0.945 64 0.901 79
2.6 1.0619) 0.9324) 1.104 51 1.055 09 0.864 872 0.947 79 0.905 38
2.8 1.0561) 0.9380) 1.096 71 1.050 85 0.873 691 0.95161 0.911 82
3.0 1.0513) 0.9449) 1.089 97 1.047 20 0.881 453 0.954 93 0.917 46
3.2 1.0472) 0.9493) 1.084 10 1.044 02 0.888 320 0.957 84 0.922 42
3.4 1.0438) 0.9524) 1.078 94 1.041 24 0.894 454 0.960 39 0.926 84
3.5 1.0422) 0.9553) 1.076 58 1.039 97 0.897 279 0.961 57 0.928 87
3.6 1.04Q7) 0.9585) 1.074 36 1.038 78 0.899 960 0.962 67 0.930 79
3.8 1.0381) 0.9590) 1.070 28 1.036 59 0.904 928 0.964 70 0.934 33
4.0 1.03%8) 0.9620) 1.066 62 1.034 63 0.909 422 0.966 53 0.937 54
4.2 1.0332) 0.9645) 1.062 54 1.032 45 0.914 486 0.968 57 0.941 14
4.5 1.0310) 0.96717) 1.058 92 1.030 53 0.919 042 0.970 37 0.944 36
5.0 1.0273) 0.9714) 1.052 81 1.027 28 0.926 810 0.973 44 0.949 84
6.0 1.0221) 0.9727) 1.04370 1.010 87 0.927 988 0.989 25 0.958 13
7.0 1.0185) 0.981(1) 1.037 26 1.019 09 0.947 194 0.981 27 0.964 08
8.0 1.01%8) 0.9835) 1.032 46 1.016 59 0.953671 0.983 68 0.968 56
A(d):(lFl)! A(d)=(FK)1/Z,
(112 (119

B(d):(ZFl)/(lFl)z- B(d):(Fz)Z(zFl)/(FK)S/Z'

and forh{?, whenN=2P,
Forh{®, whenN=2P+1,

BW(A®)2P=(F,)%(F) PP, (119
BW(AD)ZPHD = (F))2(,F ) (F)®Y, (113 '
leading to
giving AD= (F )12

1.15 1 . (116)

. & - - A Monte Carlo (a) B(d): (FZ)Z/(FK)v

S — = (F)
L10 o~ — 1 where the arguments of the hypergeometric functions have

been omitted.

In Egs. (114 and (116) the odd-even effect aPPears ex-
plicitly in the value of B@. In both equationsA'® takes
identical values. Thus with the use of the approximation
given by Eqgs.(107) and (108 the odd-even effect must de-
crease when the degree of polymerization increases. This is
in agreement with the results of Fisher and Hi[dyp] and

@
A

% & t,/’ B T e e those of Grassberger and Heg6].
090 —= (R 1 With the relations
. — (F,
- E:F:;/ (F, 1)1
0.85 , ' . ‘ . F(l 1 1_d d'O 1)_F(1 1_d_1) (117
TT20 30 40 50 60 70 80 22°2020202774) 7202020 4

d and
FIG. 5. Comparison between the theoretical valuesAdt and
B(@ obtained with an approximation of the functigi’ and the
values of A and B(Y obtained from the straight line fit of the
Monte Carlo data. The numerical values are given in Table I. We
use the reduced notations {F;)=1F.(1/2;d/2;1/4) and F (E E 9 }) F (
(5F 1) =oF1(1/2,1/24/2;1/4). 271l 27274) 21
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the odd-even effect is canceled and another approximation is £y, T)= ¢d (v, T) - kT IN[QV(V,T)]— kT In(q'?),
possible. To zeroth order, with the scalar figlff’, it gives (123
DV, T)=(N/2)(d—1)KT In(T,(d)/T).
A(d)m(ll:l) and B(d)k(ll:l)—ll (119) ex ( ’ ) ( )( ) n( 0( ) )

The average energy of the gas is given b
and to first order, with the scalar fiegk?, it gives g gy g g y

9 Inz(® _ d N

B M’V—Mec—MkT 2+ 5 (d 1)).

In Table I, the values of Eq$119 and(120) are reported, (124
as well as those of Eq112. In Fig. 5, these analytical
approximations are shown as functionslofThe good agree-
ment between these results confirms the validity of th
method described in Sec. IV and the approximat{&67)
made for the partition function of the FJC. 1

Finally, the asymptotic behavior ford—w« gives SP(M,V,T)= = [E.—F{(M,V,T)], (125
1F1(1/2d/2;1/19—1 and ,F,(1/2,1/20/2;1/4—1. In this
limit, the only nonzero contribution tb{" is given byx=0;

then
< ( 1 )1/2> where
Top —1,
detM NG

SP(m,v T)=k(9 M+M In[QYP(V T)]—In(M'))
d Vo 2 O ’ )|

AD~(F;) and BO~(F) L (120 Ec=-

Equation(124) shows that equipartition is verified, as was
ealready obvious from Eq(31) of Sec. Ill. The entropy is
given by

SYM,V,T)=sPM,V,T)+MsI(T), (126

andA@—1 andB(®—1. With the approximatiori107) for

the partition function the study of the thermodynamical and @ N " @
statistical properties is straightforward. sy (T)=k| 5 (d=1)+In(de") —sex (T |, (127
VI. THERMODYNAMICAL AND STATISTICAL J N To(d)
PROPERTIES OF FJC's se(T)= 5 | (d=DIn{——]|.

The two preceeding sections give the canonical partition . .
function of the FJC. Then it is possible to study the equilib- The re!atlon%}ﬂ) are tr(lg) Sakur-Tetrode relation fOT the
rium thermodynamical properties of a gas mad&loFJC’s. FJC; In Fig. 65, (T) andée,'(V,T) are shown as functions
As explained in the Introduction and explicitly used in Egs.of T*=T/To(d) for a few values of the degree of polymer-
(10) and(11), the FIC can be considered as an ideal gas withzation andd=3. As long as the size of the box is greater
phase spaceye. It is straightforward to build the microca- than the typical size of the polymg#], the equation of state
nonical and grand canonical ensembles relative to this ide&f the gas of FIC's is the same as that of an ideal monatomic
gas via Laplace transform. The meaning of the partitiond@s,PV=MKT. The chemical potential is given by
function permits one to give the connection with random (d)_ (d) (d)
walks and to compute the critical exponentand v. pN =FN(MALV, T =F(MV,T)

=kTIn(M+1)— &P (V,T). (129
A. Gas of FJC’s in the canonical ensemble
The canonical partition functiotL07) of the FIC permits This chemical potential may serve as a reference value for

one to express the canonical partition function of a galdl of th.e computat.ion OT chem_ical potentials in realistic models,
FIC's as with the configurational bias methd82-34.

Considering that the FJC is an ideal gas with phase space

g 1 g ety the degree of polymerization can be associated with a
Z{ MV, T)= M [\ (v, H)IM second chemical potentiglcalled the bonding chemical po-
' tential. In the canonical ensemble,s given by
1
=== (@MHMQP (v, ) 1 To(d)
Mt o L0 x= 80V T) = E0(V.T) = 5 (d= 1T In| ===
T )(MN/Z)(dl) (129

X| =——= 121

To(d) (12

With N andy, thermodynamical ensembles of the same kind
as the grand canonical ensemble may be assoc[dtEld
This second chemical potential has been used previously by
|:<Nd>(M V., T)=—kT In[Zﬁ\‘d)(M V)] de Genne§3,35] and Redner and Reynol{36] in a study of
SAW'’s, Daoud and Family37] in a study of polydispersity,
=kTIn(M)—M&P(V,T), (122  Grassberger and HeggE38] in simulations of a polymer,
and by many otherfor a review, se¢4]). In a recent work,
where&(@(V,T) is the free energy of one FJC, Guijrati [40] has used several chemical potentials of this kind

The free energy of the gas of FJC’s is given by
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T FIG. 7. Schematic representation of all isochoric thermodynami-

cal ensembles of the FJC in equilibrium with their reservoirs. Ar-

3 rows with T(B8xX) symbolize Laplace transforms according to
FIG. 6. (a) Excess free energ¥s,(V,T) for a FIC of a few f(x) =B/ &*dX exp(BXxX)F(X).

different degrees of polymerization as a functionTdf=T/T,(d).
(b) Excess entropg(T) for FIC's as in(a). 1. The microcanonical ensemble

_ . o . From the canonical partition functio® {’(V,T), given
to give a geometrical description of the phase transitions angy gq. (107), the microcanonical partition function is ob-
has applied this formalism to branched polymers. tained by the Laplace transform

In most of the previous works, the authors perform calcu-
lations on lattices using a grand canonical ensemble in which
the number of bonds in the polymer can fluctuate. In the
present work,y is the continuous version of these chemical
potentials. The definition of is neither a constraint to the A straightforward calculation gives
geometry of a regular lattice nor a particular dimension of
the physical space.

Qﬁ?)(V,T)=,8fo+de e FFQ@(V,E). (130

[Bo(d)EJN 22
T(N(d—1)+d]/2+1)’

QP V,E) =00 (V,E)

(131
B. Some thermodynamical ensembles for the FJC
In this subsection, the FJC is considered as an ideal gavghere
with phase space,.s;. From the canonical partition function wgd>:qéd)’
of this gas, seven other thermodynamical ensembles may be (132
built using Laplace transfornig1]. d/2
The extensive variables aré&(V,S) and the associated Q(g)(V,E):<mz) V.

intensive variables arex(—P,T). The canonical partition

function Q{’(V,T) is obtained with an approximation on Q (V,E) is the number of microstates of a FJC made of
the size of the box containing the polymer. The dependencg bonds isolated in a volum¥ with an energyE. In the
onV in Q{(V,T) is only linear; thus the Laplace trans- work of Edwards and Goodyear the contribut@d®(V,E)
forms for the conjugated variabl&®and —P are straightfor- due to the motion of the first monomer is absent, the calcu-
ward and do not give any extra information. lations having been done in the frame where this monomer is
In Fig. 7, all the isochoric ensembles are shown in equi-at rest. If we omit this contribution we recover, f+3, the
librium with their reservoirs. We study two of these en- same behavior witle as found by these authors, which is a
sembles, the microcanonical ensemble partly studied to somensequence of the equipartition.
extent by Edwards and Goodyd8i and the grand canonical The behavior wittN is not trivial because of the presence
ensemble in which the conjugated variables @ey). of the gamma function.
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The entropy is given by 1.25
s\'=k InQ{(N,E) (F)
1.00 t P)
s N (d—1)In[ Bo(d)E]
42 ° 075 |
% — XD
d N(d—1)+d = S A )
+kIn oY~k InT —— —+1], (133 0.50
wheres({ is the entropy of an ideal monomer. In the micro- 0.25 | ™) c
canonlcal ensemble the temperature is defined by
1T = (951 9E)|n.v which leads tq124) and again to equi- 0.00 ‘ ‘
partition. -1 -1.0 -0.5 0.0 0.5

X*
2. Grand canonical ensemble with respect to variablgsN)

FIG. 8. Diagram of the different domains of the FJC in the plane
X5, T%), with x* =x/kT,(3) and T* =T/T,(3). Thedomains are
(M) the monatomic domain,R) the polyatomic domain, and{
the forbidden zone. The poifitis like a double critical point whose
coordinates ard* =(1/2e)?C~Y and y* =[(3—1)/2]T* .

This ensemble is called the grand canonical ensemble b
some author$3,4|, and the equilibrium ensemble by others
[39] to distinguish it from the truly grand canonical ensemble
where the number of polymers can fluctuate. In this en-
semble the partition function is given by

JO=—KkT InQY(V,T)+kT
Y T \(@-Dr
1- exp( ) ) } (139

To(d)
The average number of bonds in the FJC is

E“”(x,v,T):NZO QW (v, T)efN, (134
X 1n

where, forN=0, Q (v, T)=q{PQ (v, T).

In [6], the functionH(d)(X V,T) is called the generating
function. In Eq.(134) the first contribution to the sum cannot
be given by a single monomer, because the first monomer

_ = (d) (d=1)/2

must have the ability to be a polymer initiator for the poly- N(d) = 161n 2 ‘ = eXpx/kT)(T/To(d)) -
merization(see Sec. IV @ This is the reason why there is a B ox |y; 1-exp(x/KT)(T/T,(d))
factorq? in the definition ofQ {'(V,T). This factorq(? is (139
the continuous version of the activity for creating a chain end
[6,42). Applying the operator(llﬁ)(a/ax) to (139 once _more

With the use of Eqs(108), the partition function is given gives the fluctuationaN(® for the average numbed(®) of
by the bonds in the FIC. An elementary computation gives
_ °C Bo(d) (d—1)/2]N AN@
ED0V =0 (VD) 2, exn(ﬁx)( °ﬁ . — —expl Bl x— X" UM I<1. (140

(135

The serieq135 are geometrics, as for Bose-Einstein statis-
tics[43]. 2@ is defined only ify< x'9(T) wherex @ (T) is
given by

In the plane(x,T) three domains are easily identified. If
N@<1, then on average there is only one monomer in the
polymer; this leads to the definition g% (T) as

(d-1) (To(d)
In

+kT 5 T

) . (14D

Xinad T) = (dgl) In(TO;d)). (136 Xinond T)=KT In

x99 (T) is the continuous analog of the critical value of the ~ The domain wherg < x{3(T) is the monatomic domain.
activity appearing in the study of SAW’s in the equilibrium If x{2.{T)<x<x2«T), then the FIC is made of several
ensembld 36,38,39. The case of the subcritical phase is thebonds; this domain is the polyatomic domain. When
only case studied in this work. Whenapproacheg @ (T a  x— x%(T) thenN@ —o0; a FIC of infinite length is found
careful study is needed for two reasons, which @ethe as in[36]. This phenomenon is similar to the Bose conden-
limitation of the box siz§36,45 and (b) exchange between sation sincey'?,(T) is defined with the same criteride3].

the system and its reservoir. The domainy> x9.(T) is forbidden since the serigd34)
For x<x'9.(T), the grand partition function is are divergents. The forbidden domain is an artifact of the
@ Iimiting case studied here where. the $ize of the box is con-
=@ (VT = Qu (V,T) sidered to be larger than the typical size of the FJC. If ones

1—exp(x/KT)(T/Ty(d)) @172 (1379 {ake into account the finite size of the box then the forbidden
domain disappears and the seri#84) is convergent for all
and the grand potential values ofy [45]. These three domains are shown in Fig. 8. In
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A is a constantz is the coordination number of the lattice on

2 ‘ which the random walk is performed, andthe critical ex-
— y*=-01 ponent. Thus, for the FJC, the same value for the expopent
5l R e | is found as for the Gaussian polymer model.
The exponenv is related to the size of the polymer. The
distance between two distinct monomers of the same FJC is
A given by|R, )| where
&, 10
v p
R(n,p)zagn dc (n<p). (145
5 L
R(n,p) is the bond vector between monom@r—1) and p.
! 0 e ‘ The square distance is
0.0 0.3 0.6 0.9 1.2

T* p
FIG. 9. Average number of link8l® in a FJC studied in the n<i<j<p
internal grand canonical ensemble as a functioldfT/T,(3)
for different values ofy* = x/k T,(3). For y* =0.15, polyatomic be- gnd its average value
havior is reentrant while fop* <0 it is not. For x*=0.25 mon-
atomic behavior is absent.

<(R(n,p))2>:a2(p_n)

2 - -
— 1+ —— ui-u)|. (14
Fig. 9N@ is shown as a function af* =T/T,(d) for a few p—n nsizjsp <' J>) (149
values of y* =x/kT,(d). The coordinates of the point

markedC in Fig. 8 are given by With the results of Sec. Ill, the correlations between the

bondsi andj are given by

1\ 2(d-1)
(2
2e
o _Q(B)
* __ *
Xe=">% Ts . (142 g "
_ 2 o ~n2 TR
In Fig. 8, the polyatomic domain is reentrant; Bepoint ><exp< ngl Q”) f nl;[l dun S(U = 1)U -y

is similar to the double critical point found in some binary

mixtures[17]. The polyatomic domain appears strange. In ma . .

this domain for x@ (T)<y<x9 (T, Eq. (140 gives X ex B ngl (QpUp) - (QpyqUnig) ||, (148
1/2<ANYD/N@ <1, and thus predicts large fluctuations in
this domain, of the size of the whole system. The results fo
AN@/N@ indicate important polydispersity in this domain.
These large values dfN@/N® may be an artifact of the

‘eading, after some algebra, to

imati - (@
approximation on the size of the box. o G;
(uj-uj) = (d) (d) H d7nH (Yn¥nsp) ™42
C. Statistical properties and critical exponents
The exponenty is the first exponent that we compute. Xl(d’2’1>(y”7”+1)k1_[J (Yeyies 1) (192

This exponent is related to the total number of conformations

of the FJJ44]. A FJC can be related to a random walk with

the partition function interpreted as the total number of con- %1 exp( _ 2) 149
formations of the FJC. The total number of random walks a2 ViYir1) n§=:l Il (149
made ofN stepsRy, is identified withQ {P; thus with

wherel ={1,i—1}U{j+ 1N} andJ={i,j}. The transforma-

Ry—QN'=AZN"" 143 ion (33) gives

one has, using Eq108),

N
A=q,QE(V,T), Gij'= f 11 don|defda(@)][L1 (0n) ™41 @z 1(@n)
T (d-1 N
= ( To(d)) ' Xkl—[J ()92 (d/2)(wk)exf{ —22 A2w2— wi) .

y=1. (144) (150
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All the permutations of the variablds)} are not allowed whose integration oven,,,, gives, due to the fact that the
because the memory effect in the FJC is included in théntegrand is odd,
factor A2. However, takingE(A) as the number of elements w ‘ ‘
in the setA, the relation(41) allows theo permutations such S 1 (1) ( 1 ) (2k+1)!
that 7 (0*[J])=71J] and if (ny,n,) e (¢*[J])? all natural k=fans, K!'|4 [2(k—Nppgq) F 1]
numbers between,; andn, are in the image ensembdé [ J]
of J with the permutatior. This limitation on the permuta- % f (112 )(d—l)IZt[Z(kannHHl]dt ~0
tions allows the correlations between the mononieasd j An+l An+1 antl
to propagate on the polymer, and this property must be the
same anywhere in the polymer. If a permutation of this type
is done in(150), G (" is invariant becausfeleto)|=1. More- ~ Thus
over, since it is right for any permutation which has these () _
properties, it is right for the permutation which puten 1 Gan=0 (157
andj on Z(J). Thus the invariance by propagation on the 5nq
polymer imposes the relation

2
AAn+l

(156

((Rin,p)?y=a%p—n). (158

The last equation gives=3 which is the same value as
that for the Gaussian polymer. For the same reasons as given
in Sec. IV, a simple argument could not give this result for
any value ofd because the analytical continuation to nonin-
E G-(-d)} teger dimension is not always straightforward; the important
Zi ' point is to preserve something similar to the Euclidean scalar

(152 product. These results are given for any dimensiphut not
for any space of dimensiod because a regularity on the

(p—m § topological structure of the space is neefi2d—27.
1+ 3@ Z G\

d d d
G{P=G{" =G a5

and Eq.(147) becomes

((Rinp)?y=a%(p—n)| 1+ (=3 oo

((Rin,p)?y=2a%(p—n)

VIl. CONCLUSION

2 " An We know that the Gaussian distribution for the end to end
- W Azl _p n GAn distribution of an ideal polymer is a consequence of the cen-

tral limit theorem[1,6], and so this distribution is valid for
N—o0; for finite values ofN there are corrections in N/[6].

Section IV gives "
g In the case of the FJC, the values of the critical exponents of

An+1  An+1 ideal polymers have been recovered and, moreover, a very
(d)_f H dwy H Ay H (0,) 92 4o @) good approximation is given for its canonical partition func-
tion for almost all degrees of polymerization and for all

An+i physical dimensions of spaa#=2, subject to topological
_ 2 2 regularity of the spaces with noninteger dimensions.
><exp( HZ Ajon wl)f an+2) (153 Thus, in principle, this ideal model of a polymer is com-
pletely solved. The analytical form of the partition function
and we can perform the same series expansion as in Sec. 07) is approximate for two reasongt) The multiplicative
on the function defined by coefficientsA@ andB(®, coming from the metric determi-
nant, are only approximated by hypergeometric functions;

(1-di2) (2) the size of the box containing the polymer has been con-
hiihe1)= A(An+1>f dwan+1(@an+1) Lo @an+1) sidered greater than the typical size of the polymer. For the

latter approximation, an analytical study is difficult to make,

Xexp(— Al 1030 ) f(hi2) (154  while for the former, the coefficienta® andB® are com-

puted from a straight line fit to the Monte Carlo data, and

to obtainG (. compared with the analytical approximation made with hy-
The series expansion cbﬁg)nﬂ) gives for the last term of pergeometric functions. The good agreement between the

h Qs 1) analytical and numerical results validates the analytical
method used. For each dimension studied by means of the

1|92 1 Monte Carlo integration, 498 points out of 499 are in agree-

(E) I'([d+1]/2)I'(1/2) ment, with an accuracy of 1-3%, with the straight line fit.

The Monte Carlo method has been applied for 28 values of

1 the dimension of space between 2 andr¢luding noninte-
x [ A= Rty T e p s
-1

An+1 ger dimensions Thus for the 13 972 partition functions
computed, 13 944 are in agreement with the partition func-
" +oodw N Y C tipn giv_en by(1_07) with an accuracy pf 1-3%. For each
B An+1@xniq An+1%An+1 dimension studied, the only exception is fé=3. However,

in that case the analytical form of the partition function is
+wansitans), (159 known exactly. In view of these results, EL07) can be
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considered as nearly exact. The valuedt andB(® given  system, whereas these fluctuations are of the same size as the
by the fit are all close to 1A(@ is slightly bigger than 1 and system in the polyatomic domain. This domain is very
B is slightly smaller than Isee Table)l Both coefficients ~ strange and requires a careful study. First, this domain has a
arise from the metric determinant of the FJC; thus we carieentrant behavior with temperatufsee Fig. 8 similar to
conclude that the metric determinant produces only a weake one occurring for the disordered phases in other systems
perturbation of the value of the partition functipt0]. This ~ [17—19; this would lead one to define a double critical point
fact is known from numerical simulations where often the@nd to consider that the second chemical potential is similar
contribution from the frozen vibrational degree of freedomt© @ hydrogen bond strengtfil7]. The big fluctuations

of the polyatomic molecules can be neglecie8,47. The present in the domain do not allow one to consider it as a
analytical method used to obtain the approximations aIIowéNeII del;med phaze. Becr?usehtr;e fluctuat|023 ar? of thg sime
one to describe the analogy between quantum mechanics aﬂ&d.er of magnitude as the whole system, t e polyatomic do-
polymer physics via the Feynman formulatig#6]. In the main cannot be con5|dered as a Wel! defined phase. Never-
guantum theory of fields, the path formulation leads to thetheless, the quctuat!ons always remain ?ma”_er than fche Sys-
definition of the generating functional whose logarithmic de—te.rt?]’ thus thhg ';‘]C I|sd_really _;t)olyatom|c in this domain, but
rivatives with respect to the currents give the connecte II etlhvery 'g poly .|sp|erS| Y- ble. th is a limiti |
Green'’s functiong28]. In statistical physics, the partition h the grand canonical ensembié, nere IS a limiting value
function is similar to the generating functional. So, in poly- 9€Pending on the temperature for the second chemical poten-

mer physics, it seems natural to use the Feynman formuldidl. t which the system becomes infinite. This FJC of infi-
nite length appears at high as well as low temperature for a

tion to compute the partition function rather than the Fokker- "~ ! . .
P P ositive second chemical potential. This phenomenon looks

Planck equation. The use of Feynman rules allows u ke the B g tion b the limit on the chemical

naturally to use conventional renormalization methods an € he Bose condensation because the imit on the chemica

so to find naturally a method similar to the decimationpo'[.entlal is defined W't.h.the same criterion on geom_et_nqal

method[14,6]. The first stage of the conventional renormal- series. It may be surprising to fl_nd that the reentrant infinite
' é:JC has the same behavior at high and low temperaftires

ization, applied to the FJC, gives an odd-even effect in the * - L :
FJC. This effect has been observed by Fisher and Hiily critical exponentv is independent of the temperaturd@his
is, of course, a consequence of the fact that our system is

and by Grassberger and Hegs]. Because of the fracta- classical. In recent work by Golubovand Xie[48], it has

lization process explained in Sec. IV D and shown for on . ; .
case in Fig. 2, one can suppose that FIC's whose degrees gen shown that if one takes quantum fluctuations into ac-

polymerization belong to the same prefractal sequence haf@unt. one finds, for low temperatures and for a non-self-

some common properties; this also leads one to suppose th%\(mdmg chain, a crumpled ground state having the appear-

other odd-even effects of higher order exist. The fractaliza2"¢® of a highly collapsed polymer with radius of gyration

. ; N 12
tion appears as the reverse of the decimation method; th%;%\ll‘;n%evegcsﬁvgge}“’g Eo@iﬁlylggg\i}ith t[ﬁs].sgmv;egeo-
might be easily tested because all analytical terms have finit etrical factors as in Ref48], we find using Eqs(108 and

values. The numerical estimate of the odd-even effect on th?] - N
value of the coefficienB(® in Egs.(114) and(116) is given 142) for d=3, T(3)~1.516 K, and
to first order in Sec. V C. In view of this effect the strange

behavior of the FJC foN=3 is interpreted as a reminiscence Tc:j; =0.279 K,
of the odd-even effect. This effect appears to be smaller for (159
the FJC than for realistic polymers mod¢l$] and SAW's Xe=0.385x 10"23 J=2.403x 105 eV.

[15]; this certainly means that interaction between monomers
amplifies this effect. With the knowledge of the partition T, is not far from the Ginzburg temperature defined in
function of the FJC made dfl bonds, we can study all the [48]. The “infinite real” polymer in the low temperature
equilibrium properties of the FJC. Thus we have recoveredimit would be in the crumpled ground state by a pure quan-
equipartition and found the Sakur-Tetrode relation for thetum effect, whereas our classical infinite FJC has the same
FJC. behavior at low and high temperatures. Of course, in the case
Considering the FJC as an ideal monatomic gas with thef these very low temperatures, our syst@ms well as the
reduced phase spage. it is possible to build the partition quantum systejris certainly meaningless because in the real
function of the FJC via Laplace transform in other thermo-world various things may happen, such as, for instance, crys-
dynamical ensembles. Thus, we have given the microcanontallization, before reaching temperatures of the order of a few
cal partition function and the partition function of the grand degrees kelvin. Even if one were able to experimentally cool
canonical ensemble where the monomer number can fluctan ideal polymer down to a few kelvins, in the crumpled
ate. In this grand canonical ensemble, a second chemicgiound state excluded volume effects cannot be neglected.
potential is associated with the number of bonds in the polyNeither the FIC nor the ideal gas exists in the real world.
mer. In the plandy,T) of this ensemble, we can define es- They are very crude models of real systems. Moreover, it
sentially two domains in which the system has very differentmust be pointed out that the system studief] is slightly
behaviors: a monatomic domain where the average numbaeilifferent from a FJC since a harmonic potential between the
of monomers in the FJC is less than 2, and in which théonds and a bending energy are used. Constant length for the
fluctuations of this number are quite small, and a polyatomidonds is not compatible with the uncertainty principle, unless
domain where the FJC is made of several monomers. In thine metric of the space is modified.
monatomic domain the fluctuations of the average number of Throughout this world is the dimension of the physical
monomers in the FJC are small compared to the size of thepace and is taken as a real parameter greater than or equal to
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2. The use of noninteger dimensions should be done withattices (i.e., random walks In particular, Eqs(144) give
caution and if the results of the FJC are given for any dimenthe coordination number of the equivalent lattice as a func-
sion of space, they are not necessarily right for any space dion of the temperature. Thus the FJC appears as a generali-
dimensiond. For example, the critical exponemtmust be  zation of random walks on a lattice. Choosing a particular
defined in the fractal metric, otherwise an anomalous diffugeometry for a regular lattice on which a random walk is
sion exponentd appears that one may relate to the fractalperformed is equivalent to choosing a temperature for the
dimensiond; by 6=2d;—2[22]; thus in the fractal space one FJC model. To compare a random walk on a regular lattice
could recoverv=1/2. But, even if we define with caution,  with a given symmetry with another on a lattice of different
internal to the fractal space, it may happen that the relationsymmetry but with the same lattice spacing and the same
ship between the fractal dimension and the anomalous diffurumber of steps is equivalent to studying a FJC made of a
sion exponent is not validfor ramification orders greater number of bonds equal to the number of steps in the random
than 1. The properties of the FJC in space with nonintegemwalk and with a bond length equal to the lattice spacing at
dimension depend on the topology of the space. Neverthawo different temperatures. For instance, in a two dimen-
less, in a recent study by Bender and co-worke@,21], sional space, transferring a random walk from a triangular
“random walks in noninteger dimension” make sense, if welatticez,;=6 to a square latticey, =4 is equivalent to cool-
define rigorously the probabilities of walking outward or in- ing a FJC according to the rule

ward in some regions of the spal@]; otherwise, we may

obtain unacceptable formulas for some probabili{gpeater

than 1 or less than)OWith their spherically symmetric ran- (
dom walks, they recover also the right Hausdorff dimension

of a random walK 21]. Their construction is equivalent to a
generalization of the Buffon needle constructisee note 7
of [20]). The FJC may be viewed as made Mf Buffon
needles, and one may use results of the FJC in noninteger | wish to thank J. J. Weis and J. M. Caillol for useful
dimension if we have shown previously that the topology ofdiscussions. | am very grateful to D. Levesque for a lot of
the noninteger space is correct for the FJC. The results of thieelpful discussions on the Monte Carlo methods. The Lab-
FJC are not true for any fractal space. A criterion of validity oratoire de Physique Theque et Hautes Energies is a lab-
might be the value of the critical exponent Finally, Eqs.  oratoire associau Centre National de la Recherche Scienti-
(144 give the connection with ideal polymers on regularfigue (CURA No. Q63.
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