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Using the method of constraints proposed by S. F. Edwards and A. G. Goodyear@J. Phys. A5, 965 ~1972!;
5, 1188~1972!#, we do a complete calculation of the canonical partition function of a freely jointed chain~FJC!
from its classical Hamiltonian. We show how the constraints reduce the phase space of an ideal gas of
monomers to the phase space of a FJC, and how they permit one to find the canonical partition function. By
using this function, it is possible to study thermodynamical properties of FJC’s and to build other thermody-
namical ensembles via Laplace transforms. Thus we define a grand canonical ensemble where the monomer
number of the FJC can fluctuate; in this ensemble, the FJC of infinite length is the asymptotic state at low and
high temperatures. The critical exponentsg and n for FJC’s are calculated and found to be equal to the
Gaussian polymer exponents. Connections between the properties of FJC’s and random walks on regular
lattices are also discussed.@S1063-651X~96!07106-1#

PACS number~s!: 36.20.2r, 05.40.1j

I. INTRODUCTION

In the statistical theory of polymers, the first system
which has been studied is the ideal polymer. When the de-
gree of polymerization of the polymer is large, the polymer’s
end to end distance has a Gaussian distribution. This fact can
be very well understood with the help of the central limit
theorem@1#. The Gaussian model of a polymer is very useful
because it retains important characteristics of the polymers,
and allows one to interpret and calculate some of the critical
exponents@2,3#. The values of these exponents can serve as a
reference for more realistic models of polymers. This ideal
model is thus used as a reference model for the study of
macromolecules and polymers, in the same way as the ideal
gas is used as a reference model for the study of real gases
and liquids@2–6#.

However, the description of an ideal polymer, based on a
Gaussian distribution, or a random walk on a regular lattice,
does not provide a direct relationship to the fundamental
laws of statistical physics, especially the relationship be-
tween the Hamiltonian of the polymer and the canonical par-
tition function. The present work aims at filling this gap.

To achieve this aim, we will use the simplest possible
polymer model, the freely jointed chain~FJC!, which we will
also dub the ideal ghost polymer~IGP!. This latter name
seems to be a pleonasm in consideration of the customary
use of the term ‘‘ideal’’ in polymer physics. In fact, in mod-
els of macromolecules and polymers, the interactions be-
tween monomers are taken to be~1! chemical and physical
interactions~such as excluded volume effects, electrostatic
interactions, etc.! and ~2! geometrical constraints which de-
fine the structure and the geometry of the molecule.

The freely jointed chain has two major characteristics; it
is a ghost polymer and an ideal polymer. By ‘‘ghost,’’ we
then mean that there is interaction neither between the bonds
nor between the monomers of the polymer. In this sense, the
FJC is different from a polymer at itsu point @6#, but some of
the physical properties, independent of the ghost characteris-
tic, will be common to both systems. For ideal we take the

simplest possible geometrical constraints, namely, bonds
with constant lengths. Thus a FJC is made up of~N11!
massive points, linearly and freely jointed byN links of con-
stant length~Fig. 1!. This freely jointed chain was first stud-
ied by Kramers in 1946@7#, and since then by many others
@8–12#. If we remove the constraints, we will have an ideal

FIG. 1. Conformations of a freely jointed chain in three dimen-
sions:~a! N520; ~b! N5500.
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gas of ~N11! distinguishable monomers. The geometrical
constraints transform the system of~N11! distinguishable
monomers into a macromolecule by changing the topology
of the phase space associated with the~N11! monomers.
The study of the thermodynamical and statistical properties
of the macromolecule is equivalent to the study of an ideal
gas in this modified phase space; this is the point of view
adopted in the late 1960s by the Soviet school@6,13#. At the
beginning of the 1970s, Edwards and Goodyear put forward
a study of the dynamics of a polymer using the microcanoni-
cal ensemble and expressing the geometrical constraints with
the help of Dirac distributions@9#. The main purpose of the
present work is to compute the canonical partition function
of the FJC and to study its equilibrium thermodynamical
properties, especially the equilibrium states of a FJC which
can exchange monomers with an infinite ideal gas of mono-
mers.

The present work is organized as follows. In Sec. II, we
study the reduction of phase space of a system of~N11!
ideal and indistinguishable monomers under the action of the
geometrical constraints expressed via Dirac distributions.
The Dirac distributions allow us to express the partition
function as an integral over the full phase space rather than
over the reduced phase space which is topologically more
complicated. In this way we will derive two nonintegrated
analytical expressions for the partition function. In Sec. III,
the temperature dependence of the partition function is ex-
tracted. We show that the partition function is the product of
a function depending on the temperature and the degree of
polymerization, for which a closed analytical expression is
obtained, and a function depending only on the degree of
polymerization. The latter is expressed as an integral involv-
ing Bessel functions. Sections IV and V are devoted to the
study of this integral. In Sec. IV, we present an analytical
study by series expansions of the exponentials appearing in
the integral. These series expansions permit us to explore the
analogy between quantum mechanics and polymer physics
via Feynman formulation rather than via the Fokker-Planck
equation@1,6,9#. Then, by using a method close to conven-
tional renormalization theory and similar to the decimation
method proposed by de Gennes@14,3,6#, we give analytical
approximations, involving hypergeometric functions, for the
partition function of the FJC. In Sec. V, we perform a nu-
merical study of the integral using a Monte Carlo algorithm
together with an importance sampling method. Comparison
of the numerical results with the analytical results of Sec. IV
is made and an interpretation is given for the odd-even os-
cillation effect observed in polymers@15,16#: The agreement
between the numerical and analytical results highlights the
quality of the analytical approximations for the partition
function of the FJC.

From the known canonical partition function of the FJC,
we can derive its thermodynamical and statistical properties.
In Sec. VI, we begin the study of these properties in the
canonical ensemble for a system of FJC’s. Then, considering
the FJC as a gas of~N11! monomers, we can build the
microcanonical and the grand canonical ensembles by
Laplace transforms. In the grand canonical ensemble the low
and high temperature states are FJC’s of infinite length. This
reentrant behavior is similar to the reentrant behavior of the
less ordered phases observed in other systems, such as, for

instance, in binary mixtures~for a review see@17#! or liquid
crystals@18,19#. Finally, in order to compare the FJC model
with other ideal polymer models, we compute the critical
exponentsg andn associated with the FJC. They are found
to be equal to the critical exponents of the Gaussian polymer.

In this work, d is the dimension of the space containing
the polymers. It is taken to be a real number greater than or
equal to 2. Comparison with random walks on a regular lat-
tice does not lead to any serious problems of interpretation as
long asd has an integer value. Whend takes noninteger
values the random walks may be ill defined@20#. Recent
work by Bender and co-workers@20,21# permits one, subject
to topological regularity@22#, to extend the model to nonin-
teger dimensions of space.

II. REDUCTION OF THE PHASE SPACE
BY CONSTRAINTS

Following Edwards and Goodyear@9#, we express the
geometrical constraints with Dirac distributions. These dis-
tributions reduce the phase spacew of an ideal gas of~N11!
monomers to the restricted phase spacewrestof the FJC. First,
the monomers within the polymer have to become distin-
guishable. Nevertheless, in the polymer an indistinguishabil-
ity remains due to the fact that one can label the monomers
in one direction or the other. A memory effect is induced by
the geometrical constraints imposed on the system. This ef-
fect may be interpreted as follows. At any point of the phase
spacewrest, the monomer numberedi remembers that its left
and right neighbors are, e.g., the monomers~i21! and~i11!,
respectively. It is possible to reverse the labeling, so that the
number of allowed permutations for the monomers inwrest is
only 2!, whereas the number of allowed permutations inw is
~N11!! The memory effect results in a factor~N11!!/2! in
the partition function. Thus it becomes impossible to distin-
guish the beginning of the polymer from its end. We will see
that the Feynman rules associated with the polymer initiator
and polymer terminator are the same.

To use Dirac distributions in the partition function with-
out any dimensionality problem, we have to pay attention to
their actions and meaning. The Dirac distributions are de-
fined in such a way that for a physical observableA, there is
the dimensional equation

EdnAd~A!51⇒@d~A!#5@A#2n. ~1!

So with the normalization~1! of the Dirac distribution, the
probability distribution of the FJC inw derived from that in
the spacewrest by expressing the geometrical constraint as a
Dirac distribution must be multiplied by a constant having
dimension such that inw the distribution will be dimension-
less@cf. Eq. ~1!#.

For the FJC, the constraints on the bonds are

ad„~r i212r i !
22a2…, ~2!

wherea is the multiplicative constant. Bonds with a constant
length induce, from a dynamical point of view, a relation
between the conjugate momenta associated with the degrees
of freedom of the system@9#. This classical mechanics effect
is one of the major difficulties encountered in simulations
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using the molecular dynamics method for the study of com-
plex molecules when some degrees of freedom are frozen
~see@23,24#, and for a review@25#!. In the FJC, the distribu-
tion ~2! induces the dynamical constraint@9#

gd„~pi212pi !•~r i212r i !…, ~3!

whereg plays the same role asa.
The two constantsg and a must be related to physical

parameters of the system. To do so, a convention concerning
the canonical partition function must be chosen. A plausible
choice, in view of the symmetry properties of the system,
appears to be to take the partition functionQL

(d)(T,L) of a
particle in a box of lengthL in a space of dimensiond, equal
to the partition functionQ*

(d11)(T,L) of a particle moving
on a hypersphere of radiusL in a space of dimension~d11!.

QL
(d)(T,L) is given by

QL
~d!~T,L !5

1

hd
E

L~d!
dr dp expS 2

b

2m
p2D

5S mL2

2pb\2D d/2, ~4!

andQ*
(d8)(T,L) is given by

Q*
~d8!~T,L !5

1

hd8
E

*~d821!
dr dp expS 2

b

2m
p2D . ~5!

With use of the Dirac distribution the latter can be written

Q*
~d8!~T,L !5

1

hd8
agE

R
d83R

d8
dr dp d~r22L2!d~p•r !

3expS 2
b

2m
p2D . ~6!

Use of the Fourier transform of the dynamical constraint,

d~p•r !5
1

2p E
2`

1`

dV exp~ jVp•r !, ~7!

gives

Q*
~d8!~T,L !5

ag

hL2 S mL2

2pb\2D ~d821!/2

. ~8!

Thus, withd85d11, in order to have

QL
~d!~T,L !5Q*

~d11!~T,L !, ~9!

the equalityag5hL2 is required. To satisfy the dimensional
equation~1!, dimensional analysis givesa5L2 andg5h. Of
course, by choosing another convention for the partition
functions, for instance, by taking a hypersurface with a dif-
ferent geometry or by taking a different radius for the hyper-
sphere, other relations could be obtained for the constantsa
andg.

With the convention~9!, the partition function of the FJC
in the canonical ensemble is defined by the integral

QN
~d!5

1

2

1

h~N11!d E
wrest

)
n50

N

drndpn expS 2
b

2m (
n50

N

pn
2D ,
~10!

where the factor12 results from the indistinguishability effect
discussed above. The topology ofwrest may be complicated;
in particular, it depends on the value ofd. With the method
of constraints, the domain of integration simplifies at the
expense of a modification of the integrand. With the con-
stantsa and g as determined above the partition function
written in w is

QN
~d!5

1

2

1

h~N11!d ~ha2!NE
w
dr0dp0

3 )
n51

N

dundpnd~un
22a2!d„~pn2pn21!•un…

3expS 2
b

2m (
n50

N

pn
2D , ~11!

where the bond vectors are defined by

un5rn2rn21 for 1<n<N. ~12!

In the next section, we factorize the temperature depen-
dence in the partition function~11!.

III. DEPENDENCE ON TEMPERATURE
OF THE PARTITION FUNCTION OF A FJC

To extract the dependence on temperature in the partition
function of the FJC, the integration over all momenta must
be done, and the variables chosen such that the nonintegrated
part of the partition function depends only onN. As in Sec.
II, the dynamical constraints are expressed through their
Fourier transforms

d„~pn2pn21!•un…5
1

2p E
2`

1`

dVn

3exp@ jVnun•~pn2pn21!#. ~13!

Using the propertyd (lx)5~1/ulu!d (x) of the Dirac distri-
bution and replacing~13! in ~11!, we obtain

QN
~d!5

1

h~N11!d

1

2 S h

2p D NE dr0)
n51

N

dundS un2a221D
3E )

n51

N

dVnE dp0)
n51

N

dpn expS 2
b

2m (
n50

N

pn
2

1 j (
n51

N

Vnun•~pn2pn21!D . ~14!

The integral overpn is a Gaussian integral,

EdX exp~2 1
2X

tAX1JtX!5FdetS A

2p D G21/2

exp~ 1
2J

tA21J!,

~15!
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where

X5~pn!0<n<N ,

J5 j @2V1u1 ,$~Vnun2Vn11un11!%,VNuN#, ~16!

A5~b/m!~ I ~N11! ^ I d!,

FdetS A

2p D G21/2

5S 2pm

b D d~N11!/2

, ~17!

and

1
2J

tA21J52
m

b S (
n51

N

Vn
2un

22 (
n51

N21

~Vnun!•~Vn11un11!D .
~18!

To integrate overr0, the box which contains the polymer
is assumed to be larger than the typical size of the polymer.
After integration over all the momenta and overr0 Eq. ~14!
becomes

QN
~d!5

1

2

1

h~N11!d S h

2p D NVS 2pm

b D d~N11!/2

3E )
n51

N

dundS un2a221D E )
n51

N

dVn

3expF2
m

b S (
n51

N

Vn
2un

2

2 (
n51

N21

~Vnun!•~Vn11un11! D G . ~19!

The definition

ûn5
1

a
un ~20!

allows us to work with dimensionless bond vectors.
The integrand in~19! is always positive; permutation of

the order of integrations and use of the property
* f (x)g(x)d(x)dx5 f (0)*g(x)d(x)dx gives

QN
~d!5

1

2

1

h~N11!d S h

2p D NVaNdS 2pm

b D d~N11!/2

3E )
n51

N

dVn expS 2
ma2

b (
n51

N

Vn
2D

3E )
n51

N

dûnd~ ûn
221!

3expFma2

b S (
n51

N21

~Vnûn!•~Vn11ûn11!D G .
~21!

The last equation shows how the dynamical constraints in-
duce a coupling between the bond vectors. The integration
over the set of variables$ûn% is not straightforward.

Defining

U ~d!5E )
n51

N

dûnd~ ûn
221!

3expFma2

b S (
n51

N21

~Vnûn!•~Vn11ûn11!D G ~22!

andx5(ma2/b)VN21VN , the integral overûN is

z~d!~x!5E dûNd~ ûN
221!exp~xûN21•ûN!, ~23!

z~d!~x!5
x

2p j E dûNE
2 j`

1 j`

du exp@xu~12ûN
2 !#

3exp~xûN21•ûN!, ~24!

z~d!~x!5
x

2p j Ea2 j`

a1 j`

dr exp~xr !E dûN

3exp@2x~r ûN
22ûN21•ûN!#. ~25!

In Eqs.~23!–~25!, the Dirac distribution has been expressed
through its Fourier transform, the order of integrations has
been permuted, and we have setr5u1a with a such that
~u1a!ûN

22ûN21•ûN.0.
The integral overûN is Gaussian, with the result

z~d!~x!5
x

2p j Ea2 j`

a1 j`

drS p

xr D
d/2

expFxS r1
1

4r D G , ~26!

z~d!~x!5
1

2

x

2p j S 2p

x D d/2E
2a2 j`

2a1 j`

dw~w!2d/2

3expF x2 Sw1
1

wD G , ~27!

z~d!~x!5
1

2
xS 2p

x D d/2I ~d/221!~x!. ~28!

The functionIm(x) is the modified Bessel function of the
first kind. The integralz(d)(x) is independent of the direction
of ûN21, but depends onVN21 andVN . The integrals over
each bond are independent and the integral over the bondû1
produces a factorSd~1!, the surface of a sphere with a unit
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radius in a space ofd dimensions. The dependence onV1 is
included in the integral over the bondû2. Equation~22! can
be written in the form

U ~d!5Sd~1!Sma2

2b D ~N21!

3S 2pb

ma2 D
d~N21!/2

)
n51

~N21!

~VnVn11!
~12d/2!

3I ~d/221!Sma2

b
VnVn11D . ~29!

A particular case of this result has been obtained by Stan-
ley @26# for a chain of classical isotropic spins with nearest
neighbor interactions. Stanley’s result is recovered if allVn’s
are taken to be equal. In this caseU (d) is proportional to the
partition function obtained by Stanley. If some other sets of
$Vn% values are chosen, partition functions of different spin
systems can be obtained; for instance, if we setVn5V for
nÞ i andViÞV, the partition function of a classical isotropic
spin chain with an impurity spin on the sitei is obtained. In
spin systems, the coupling between spins results from the
magnetic field induced by the spins. In the FJC, the coupling
between bond vectors results from the dynamical constraints
induced by the bonds.

Use of the transformed variables

gn5Sma2

b D 1/2Vn , ~30!

leads to an integral which depends onN only. After straight-
forward simplifications, the partition function~21! becomes

QN
~d!5Sd~1!VS m

4p2b\2D d/2F S 12D
2/~d21! ma2

b\2GN~d21!/2

JN
~d! ,

~31!

where\5h/2p and

JN
~d!5E )

n51

N

dgnS )
n51

~N21!

~gngn11!
~12d/2!

3I ~d/221!~gngn11!D expS 2 (
n51

N

gn
2D . ~32!

All the temperature dependence is explicitly contained in
~31!, whereas the integral~32! contains all the nontrivial de-
pendence onN. The main difficulty in computing the latter
integral comes from the coupling betweengn andgn11.

For the transformation

vn5gn21gn for 2<n<N,
~33!

v15g1 ,

the Jacobian matrix is triangular, giving the Jacobian

det@Ja~v i !#5 )
n52

N

)
p51

n21

~v~n2p!!
~21!p. ~34!

Using this transformation in~32!, the nonintegrated part be-
comes

JN
~d!5E )

n51

N

dvnudet@Ja~w!#uS )
n52

N

~vn!
~12d/2!

3I ~d/221!~vn!D expS 2 (
n52

N

)
p51

n21

~v~n2p!
2 !~21!pvn

2

2v1
2D . ~35!

In order to identify the contribution toQN
(d) from each bond,

we set

AN5U)
p51

N21

~v~N2p!!
~21!pU ~36!

and

f N
~d!5ANE dvNvN

~12d/2!I ~d/221!~vN!

3expS 2 )
p51

N21

~v~N2p!
2 !~21!pvN

2 D . ~37!

For the Bessel function, we use the representation

Im~x!5
~x/2!m

G~m11/2!G~1/2! E21

1

~12t2!~m21/2!extdt.

~38!

IV. ANALYTICAL STUDY OF J N
„d…

In this section, devoted to the degree of polymerization,
we try to compute the functionJ N

(d) for all values ofN. The
computation is made by extracting the contribution of each
bond toJ N

(d).
By series expansion of the exponentials, each integral is

transformed into a sum over the natural numbers. There are
~N21! sums of that kind for a FJC withN bonds. These
sums show thatJ N

(d) can be expressed in terms of a special
function having the special value14 for its arguments. If one
were able to find an analytical form for this function, then
one would have found an analytical form for the partition
function of a FJC. Unfortunately, this function is directly
related to the multiple hypergeometric functions, so that an
analytical form of the partition function of a FJC can easily
be obtained only for small values ofN. On the other hand,
the series expansion ofJ N

(d) is useful to exhibit the analogy
between polymer physics and quantum mechanics via the
Feynman formulation. Usually, this analogy is demonstrated
by using the Fokker-Planck equation for the probability dis-
tribution function of the end to end distance@1,6,9,27#; it
may also be described via Green’s functions@6#. This anal-
ogy enables the use of methods closely related to the con-
ventional renormalization of the full propagator@28# to de-
rive various approximations forJ N

(d).
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To test the analytical approximations derived in this sec-
tion a Monte Carlo algorithm described in the next section is
used to obtain numerical results forJ N

(d). The agreement be-
tween the approximate analytical results of this section and
the numerical results of the next section will show the reli-
ability of the theoretical approach.

The present section is divided into five subsections. In
Sec. IV A, we make the series expansion ofJ N

(d). In Sec.
IV B, we define the function related toJ N

(d). This function
can be defined in several ways depending on the number of
variables the special value14 is assigned to. The series expan-
sion of J N

(d) is composed of~N21! sums; thus the function
giving J N

(d) will be a scalar field on a Euclidean space of
dimension~N21!. In Sec. IV C, we write the Feynman rules
for the computation ofJ N

(d). In Sec. IV D, we use these Feyn-
man rules to develop the conventional renormalization and
derive approximations. Finally, in Sec. IV E, we compute
J N
(d) exactly for small values ofN.

A. Series expansion ofJ N
„d…

In the relation~37! defining f N
(d), the Bessel functions are

expressed with their representation~38!; this gives

f N
~d!5

~1/2!~d/221!

G~@d21#/2!G~1/2!
ANE

2`

1`

dvN

3E
21

1

~12tN21
2 !~d23!/2e2AN

2vN
2

1vNtN21dtN21 .

~39!

Since in ~39! the integrand is always positive and the
value of f N

(d) finite, the integration orders can be permutated.
The integral overvN is Gaussian; thus

f N
~d!5

~1/2!d/2

G~@d21#/2!
E
0

1

dtN21~12tN21
2 !~d23!/2e2tN21

2 /4AN
2
.

~40!

The factorAN defined in ~36! and stemming from the
Jacobian~34! is exactly cancelled by a factorAAN

25uANu
5AN coming from the Gaussian integration. Starting from
~40!, we may either put~40! into ~35! to extract f N21

(d) and
make the Gaussian integration overvN21, or make a series
expansion of the exponential of~40! and integrate overtN21.
In this section the latter way is chosen, while the former will
be used in the next section. Since the integral is convergent
both ways must lead to the same result. From the definition
of AN ~36!, the following relation holds:

1

AN
2 5AN21

2 vN21
2 . ~41!

The series expansion of the exponential gives

f N
~d!5

~1/2!d/2

G~@d21#/2! (
n50

`
1

n! S 14D nS 1

AN
2 D n

3E
0

1

dtN~12tN
2 !~d23!/2tN

2n , ~42!

which, after a straightforward integration, leads to

f N
~d!5S 12D S 12D

d/2

(
n50

`
1

n!

G~n11/2!

G~n1d/2! S 14D
n

AN21
2n vN21

2n .

~43!

Substituting~43! into ~35!, f N21
(d) is extracted as

f N21
~d! 5S 12D

d/2 1

2 (
n50

`
1

n!

G~n11/2!

G~n1d/2! S 14D
n

AN21
2n AN21

3
~1/2!~d/221!

G~@d21#/2!G~1/2! E21

1

dtN21~12tN21
2 !~d23!/2

3E
2`

1`

dvN21vN21
2n exp~2AN21

2 vN21
2

1tN21vN21), ~44!

and becomes, after integration overvN21,

f N21
~d! 5

1

2 S 12D
d/2

(
n150

`
1

n1!

G~n111/2!

G~n11d/2! S 14D
n1

AN21
2n1

3E
21

1

dtN21~12tN21
2 !~d23!/2

3
1

AN21
2

d2n121

dtN21
2n121 F tN21 expS tN21

2

4AN21
2 D G .

~45!

Expanding the exponential in~45!, taking the derivative, and
integrating gives

f N21
~d! 5S 12D

d/2S 12D
d/2

(
n150

`
1

n1!

G~n111/2!

G~n11d/2!

3S 14D
n1S 14D

n1 1

2 (
n250

`
1

~n21n121!!

3
@2~n21n1!21#!

~2n2!!
S 14D

n2 G~n211/2!

G~n21d/2! S 1

AN21
D 2n2.

~46!

From the relation

~2n!!5
22n

Ap
n!G~n1 1

2 !, ~47!

6302 53MARTIAL MAZARS



it follows that

@2~n21n1!21#!

~n21n121!! ~2n2!!
5
4n1

2

1

~n2!!

G~n21n111/2!

G~n211/2!
~48!

and so with use of relation~41! the second sum is found to
be

f N21
~d! 5S 12D

d/2 1

2 (
n150

`
1

n1!

G~n111/2!

G~n11d/2! S 14D
n1S 12D

d/2

3S 12D (
n250

`
1

n2!

G~n11n211/2!

G~n21d/2! S 14D
n2

AN22
2n2 vN22

2n2 .

~49!

The method is repeated untilN2p52; thus

f 2
~d!5S 12D

d~N21!/2S 12D ~N21!

(
n150

`
1

n1!

G~n111/2!

G~n11d/2! S 14D
n1

(
n250

`
1

n2!

G~n11n211/2!

G~n21d/2! S 14D
n2

•••

3 (
np50

`
1

np!

G~np211np11/2!

G~np1d/2! S 14D
np

••• (
nN2250

`
1

nN22!

G~nN231nN2211/2!

G~nN221d/2! S 14D
nN22

(
nN2150

`
1

nN21!

3
G~nN221nN2111/2!

G~nN211d/2! S 14D
nN21

A1
2nN21v1

2nN21. ~50!

Finally, by definition of f 1
(d) andJ N

(d),

JN
~d!5 f 1

~d!5E
2`

1`

dv1f 2
~d! exp~2v1

2!, ~51!

with *2`
1`dv1v1

2nN21 exp(2v1
2)5G(nN211

1
2), which closes the expansion. Thus the series expansion ofJ N

(d) is

JN
~d!5S 12D ~N21!S 12D

d~N21!/2

(
n150

`
1

n1!

G~n111/2!

G~n11d/2! S 14D
n1

(
n250

`
1

n2!

G~n11n211/2!

G~n21d/2! S 14D
n2

••• (
np50

`
1

np!

G~np211np11/2!

G~np1d/2!

3S 14D
np

••• (
nN2250

`
1

nN22!

G~nN231nN2211/2!

G~nN221d/2! S 14D
nN22

(
nN2150

`
1

nN21!

G~nN221nN2111/2!

G~nN211d/2!

3GS nN211
1

2D S 14D
nN21

. ~52!

~This relation can be seen as a propagation over a chain of
integer number.! The relation~52! is far from simple, but has
the advantage of showing thatJ N

(d) is given by the particular
value 1

4 of a special function that we shall callgN
(d)(x). The

series expansion of this function is obtained from~52! by
replacing 1

4 by x, imposing the constraintn5( i51
(N21)ni on

the ni , and extending the sum overn from 0 to`. In each
sum, the factor14 can be associated with an independent vari-
able xi , the i th component of a vectorx in the Euclidean
space of dimension~N21!. gN

(d)~x! is, with this definition, a
scalar field. We will use this latter definition ofgN

(d) which is
easier to manipulate, rather than the functional definition
where there is a constraintn5( i51

(N21)ni .

B. The scalar fieldgN
„d…

The fieldgN
(d) can be expressed in terms of hypergeomet-

ric functions. The following definitions will be used~see
@29#!:

2F1~a,b;c;x!5 (
n50

`
1

n!

~n,a!~n,b!

~n,c!
xn, ~53!

for the hypergeometric function and

1F1~a;c;x!5 (
n50

`
1

n!

~n,a!

~n,c!
xn, ~54!

for the degenerate hypergeometric function;

~n,a!5
G~n1a!

G~a!
~55!

is the Pochhammer symbol@29#, and

gN
~d!~0!5S 12D ~N21!S 12D

d~N21!/2

GS 12D S G~1/2!

G~d/2! D
~N21!

.

~56!

In each sum over the integerni , the factors (14)
ni are

changed intoxi
ni wherexi is the i th component of a vectorx

of a Euclidean space of dimension~N21!. With the previous
definitions, the series expansion ofJ N

(d) leads to the multiple
series expansion ofgN

(d)~x! according to
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gN
~d!~x!5gN

~d!~0! (
n150

`
1

n!

~n1,1/2!

~n1 ,d/2!
~x1!

n1 (
n250

`
1

n2!

~n11n2,1/2!

~n2 ,d/2!
~x2!

n2••• (
np50

`
1

np!

~np211np ,1/2!

~np ,d/2!
~xp!

np•••

3 (
nN2250

`
1

nN22!

~nN231nN22,1/2!

~nN22 ,d/2!
~x~N22!!

nN22 (
nN2150

`
1

nN21!

~nN221nN21,1/2!

~nN21 ,d/2! S nN21 ,
1

2D ~x~N21!!
nN21.

~57!

Derivatives of all orders at the origin of the scalar field
are thus known. They can be expressed with the help of the
derivatives of the hypergeometric functions. For example,
the gradiant ofgN

(d) at the origin is

@“gN
~d!~x!#05gN

~d!~0!F ]x1
A

]xN22

]xN21

1F1~1/2;d/2;0!

A
1F1~1/2;d/2;0!

2F1~1/2,1/2;d/2;0!
G , ~58!

and derivatives of all orders in the direction of each axis of
the Euclidean space at the origin are given by

]xi
nigN

~d!~x!ux505gN
~d!~0!]xi

ni
1F1~1/2;d/2;0!

for 1< i<N22,
~59!

]xN21

nN21gN
~d!~x!ux505gN

~d!~0!]xN21

nN21
2F1~1/2,1/2;d/2;0!

for N21.

One can note that the value of the fieldgN
(d) along each

axis of the Euclidean space is known, since, foruxi u,1,

gN
~d!~xiei !5gN

~d!~0! 1F1~1/2;d/2;xi ! for 1< i<N22,
~60!

gN
~d!~xN21eN21!5gN

~d!~0! 2F1~1/2,1/2;d/2;xN21!

for N21.

C. Feynman rules for J N
„d…

Equation~52! can be interpreted as a sum over all allowed
propagations on an integer linear chain. The chain is made of

~N21! sites; with each site a multiplicityni and a weight
(1/ni !) @1/(ni ,d/2)#(xi)

ni are associated. On site 1, a propa-
gation is initialized with a multiplicityn1 by a polymer ini-
tiator ~n1,

1
2!. This perturbation of the integer chain propa-

gates itself to site 2 with a propagator~n11n2 ,
1
2!, from site 2

to site 3 in the same way, and so on until the perturbation
reaches a polymer terminator on site~N21! of the same
form as the polymer initiator~nN21,

1
2!. The sum over all the

allowed propagations gives the behavior inN of the partition
function of the FJC. This is, of course, closely related to the
decomposition with Green’s functions@6,30#. The Feynman
rules associated with this propagation are, for the sites,

sp[
1

p!

1

~p,d/2!
~x!p, ~61!

and for the propagators,

nup[~n1p, 12 !5~p1n, 12 ! ~62!

~one can observe that the propagators are not oriented!. For
the polymer initiator and the polymer terminator the rules are
the same:

dn[~n, 12 !sn . ~63!

The rules~62! and ~63! preserve the symmetry by inver-
sion of the labeling in the partition function. With the Feyn-
man rules Eq.~57! becomes

gN
~d!~x!5gN

~d!~0!(
n1

`

•••(
np

`

••• (
nN21

`

~dn1
usn2

usn3
•••snp21

usnp
•••snN22

udnN21
!. ~64!

The memory effect appears explicitly in the last equation. If one considers that each site is associated with an event and the
numbering of the sites with a discrete time, then the system will keep memory of the relative chronology of events but not of
the direction of time.

D. Calculations with Feynman rules

From the definitions~53! and ~54!, it is straightforward that the relations

(
n250

`

~sn1
usn2

usn3
!5sn1

vsn3
, ~65!

6304 53MARTIAL MAZARS



(
n250

`

~dn1
usn2

usn3
!5dn1

vsn3
~66!

hold, where the double propagator is defined as

n21
vni11

[2F1S 121ni21 ,
1

2
1ni11 ;

d

2
;xi D . ~67!

As in particle physics, the last equation is the full propagator of a scalar field to first order inl, when the interaction is a
composite operator like12lF2 @28#.

If N is odd, taking (N21)52P, Eq. ~64! becomes

g2P11
~d! ~x!5g2P11

~d! ~0! (
n1 ,...,n~2P21! ,n2P50

`

~dn1
vsn3

vsn5
•••sn~2P23!

vsn~2P21!
udn2P

!. ~68!

On the contrary, ifN is even, takingN2152P21, Eq. ~64! becomes

g2P
~d!~x!5g2P

~d!~0! (
n1 ,...,n2P2150

`

~dn1
vsn3

vsn5
•••sn~2P25!

vsn~2P23!
vdn~2P21!

!. ~69!

Equations~68! and ~69! show that there is a nontrivial
parity effect in the partition function of the FJC; the single
propagator in~68! may be placed anywhere in the integer
chain. This odd-even effect manifests itself by oscillations in
some functions derived from the partition function. It has
been observed by Fisher and Hiley@15# in a counting of
self-avoiding walks~SAW’s! and recently by Grassberger
and Hegger@16# in simulations ofQ polymers in two and
three dimensions.

It is difficult to contract the double propagators~67! as is
done for the single propagators, because of other odd-even
effects of higher order that appear and because of the need
for multiple hypergeometric functions. On the other hand,
the double propagators can be developed in single propaga-
tors ~stageb!, and the single propagators transformed into
double propagators~stagea!. This manipulation repeated

with the rules~65! and ~66! generates a kind of self-similar
fractal sequence. In Fig. 2, the first three generations of this
fractalization are shown for a fractal initiator given byN53.
There are holes in the prefractal sequence relative to the
sequenceg 2P

(d)~x!. If the fractal initiator is made ofP single
propagators, then thenth prefractal generation will have 2nP
single propagators; it will correspond to the partition func-
tion of a FJC made ofN52(112(n21)P) bonds. This frac-
talization looks like the reverse of the decimation method
@14,6,3#.

To contract the propagators further we takexi5
1
4 in ~67!.

Thus the functiongN
(R)~x8! is defined as a scalar field on a

Euclidean space of a dimension smaller than the Euclidean
space defined in Sec. IV B. This space has a dimension~N
21!/2 if N is odd, and~N/221! if N is even.

FIG. 2. Schematic representation of the first
three stages associated with the building of the
prefractal sequence for the butane skeleton as a
fractal initiator. This looks like the reverse of the
decimation method.
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Relations between the hypergeometric functions give

F2S 12 , 12 , 12 ; d2 , d2 ;x1 , 14D
5 (

n150

`
1

n1!

~n1,1/2!

~n1 ,d/2! 2F1S n11 1

2
,
1

2
;
d

2
;
1

4D x1n1 ~70!

and

FKS 12 , 12 , 12 , 12 ; d2 , d2 , d2 ; 14 ,x1 , 14D
5 (

n150

`

2F1S 12 ,n11 1

2
;
d

2
;
1

4D 1

n1!
S n1 , d2D

32F1S n11 1

2
,
1

2
;
d

2
;
1

4D x1n1, ~71!

whereF2 is the second Appell double hypergeometric func-
tion, and FK the triple hypergeometric function of
Lauricella-Saran~see@29#!.

From Eqs.~68! and ~69!, we obtain derivatives of all or-
ders ofgN

(R) at the origin. IfN is odd

]x2P
n2Pg2P11

~R! ~x8!u0

5g2P11
~d! ~0!F 2F1S 12 , 12 ; d2 ; 14D G ~P21!

3]x2P11

n2P11
2F1S n11 1

2
,
1

2
;
d

2
;x2PD ux2P50 ~72!

for 3< i<2P23 ~i odd! and

]xi
nig2P11

~R! ~x8!u0

5g2P11
~d! ~0!F 2F1S 12 , 12 ; d2 ; 14D G ~P23!

3]xi
niFKS 12 , 12 , 12 , 12 ; d2 , d2 , d2 ; 14 ,xi , 14D U

xi50

~73!

for i51 or 2P21. If N is even

]xi
nig2P

~R!~x8!u0

5g2P
~d!~0!F 2F1S 12 , 12 ; d2 ; 14D G ~P22!

3]xi
niF2S 12 , 12 , 12 ; d2 , d2 ;xi , 14D U

xi50

~74!

and relations similar to Eqs.~72! and ~73!. As for ~60!, the
restriction ofg 2P11

(R) to each axis of the space foruxi u,1 is
given by

g2P11
~R! ~x2Pê2P!

5g2P11
~d! ~0!F 2F1S 12 , 12 ; d2 ; 14D G ~P21!

32F1S n11 1

2
,
1

2
;
d

2
; x2PD ~75!

for 3< i<2P23 ~i odd! and

g2P11
~R! ~xi êi !5g2P11

~d! ~0!F 2F1S 12 , 12 ; d2 ; 14D G ~P23!

3FKS 12 , 12 , 12 , 12 ; d2 , d2 , d2 ; 14 ,xi , 14D
~76!

for i51 or 2P21. ForN even

g2P
~R!~xi êi !5g2P

~d!~0!F 2F1S 12 , 12 ; d2 ; 14D G ~P22!

3F2S 12 , 12 , 12 ; d2 , d2 ;xi , 14D ~77!

and similar relations on the other axis.
The Feynman rules of the FJC may be used for calcula-

tions involving hypergeometric functions.

E. J N
„d… for small N

In this subsection, we calculategN
(d)~x! for a few small

values of the degree of polymerization.

1. Ethane skeleton (N51)

For this molecule, sinceN2150, the previous calcula-
tions do not apply. However,J 1

(d) can be computed from
~32!:

J1
~d!5E

2`

1`

dg1 exp~2g1
2!5GS 12D . ~78!

2. Propane skeleton (N52)

The Feynman diagram associated with this molecule is
(n1 ,

1
2)dn1

. So we have

g2
~d!~x!5g2

~d!~0! (
n150

`

@~n1 ,
1
2 !dn1

#

5g2
~d!~0! 2F1~1/2,1/2;d/2;x1!, ~79!

and consequently

J2
~d!5g2

~d!S 14D5S 12D S 12D
d/2

GS 12D
3S G~1/2!

G~d/2! D 2F1S 12 , 12 ; d2 ; 14D . ~80!
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3. Butane skeleton (N53)

The Feynman diagram associated with this molecule is
dn1

udn2
, giving

g3
~d!~x!5g3

~d!~0! (
n1 ,n250

`

~dn1
udn2

!

5g3
~d!~0!F2~1/2,1/2,1/2;d/2,d/2;x1 ,x2!,

~81!

and thus

J3
~d!5g3

~d!S 14 , 14D5S 12D
2S 12D

d

GS 12D
3S G~1/2!

G~d/2! D
2

F2S 12 , 12 , 12 ; d2 , d2 ; 14 , 14D .
~82!

4. Pentane skeleton (N54)

For this molecule the associated Feynman diagram is
dn1

usn2
udn3

. So we have

g4
~d!~x!5g4

~d!~0! (
n1 ,n2 ,n350

`

~dn1
usn2

udn3
!

5g4
~d!~0!FKS 12 , 12 , 12 , 12 ; d2 , d2 ;x1 ,x2 ,x3D .

~83!

With the contractions~65! and~66!, the Feynman diagram is
also

(
n250

`

dn1
usn2

udn3
5dn1

vdn3
. ~84!

We have

J4
~d!5g4

~d!S 14 , 14 , 14D
5S 12D

3S 12D
3d/2

GS 12D S G~1/2!

G~d/2! D
3

3FKS 12 , 12 , 12 , 12 ; d2 , d2 , d2 ; 14 , 14 , 14D .
~85!

5. General form for any N

We can define a multiple hypergeometric functionF G
(N)

such that

gN
~d!~x!5gN

~d!~0!FG
~N!S 12 ,..., 12 ; d2 ,..., d2 ;x1 ,...,xN21D .

~86!

For x15•••5xi5•••5xN215
1
4 , all the nontrivial depen-

dence on the degree of polymerization of the partition func-
tion is included inF G

(N). This function is far from simple;
however, with Eq.~60!, its restriction to each axis of the
Euclidean space is known. With the method of the previous
subsections, we can build more and more accurate approxi-
mations ofF G

(N) @31#.

V. NUMERICAL STUDY OF J N
„d…

To test the precision of the analytical method of the pre-
vious section, the results will be compared with a numerical
calculation. A feature of the method used in Sec. IV is that it
uses the dimension of the physical space in which the poly-
mer is contained as a real parameter and not as the number of
independent components of the bond vectors. To obtain an-
other nonintegrated form of the partition function withd as a
real parameter, we must not make the integration over the set
of variables$Vn% before the integration over the variables
$ûn% as is done in@12#, because the values allowed ford in
that way would be the integer values, but the method must be
generalized to noninteger values ofd too. For this purpose,
the integration over$ûn% is still made before the integration
over $Vn%, then the Bessel functions are expressed with their
representation~38!, and thus the space dimensiond becomes
a parameter of which the partition function is a function.
Then we make the complete integration over the variables
$vn%; this allows us to recover the metric determinant of the
freely jointed chain@8,10,12#, which in this way is indepen-
dent of the space dimension. Since we do not know the ana-
lytical form of the integral containing this determinant, we
estimate it with a Monte Carlo algorithm using importance
sampling. The numerical results obtained with this algorithm
permit a comparison with the approximate analytical results
obtained in Sec. IV.

This section is divided into three subsections. In Sec.
V A, the analytical form ofJ N

(d) is established with the met-
ric determinant of the FJC for any dimension of space. In
Sec. V B, the integral is computed with the Monte Carlo
algorithm. In Sec. V C, the analytical results of Sec. IV are
compared with the numerical results of Sec. V B, and an
accurate approximation for the partition function of the FJC
made ofN bonds is given.

A. Another integral equation for J N
„d…

To obtain the FJC metric determinant, a recurrence based
on the computational rules for the determinants is used. The
first stage of the recurrence is to determinef N21

(d) from f N
(d).

With the relation~41!, f N21
(d) is defined by

f N21
~d! 5AN21E

2`

1`

dvN21vN21
~12d/2!I ~d/221!~vN21!

3expS 2 )
p51

N22

~v~N212p!
2 !~21!pvN21

2 D f N~d! ,

~87!

which, using the integral representation of the Bessel func-
tions ~38!, can be cast in the form
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f N21
~d! 5AN21

~1/2!~d/221!

G~@d21#/2!G~1/2!

~1/2!d/2

G~@d21#/2!
E

2`

1`

dvN21

3E
21

1

dtN21~12tN21
2 !~d23!/2e~vN21tN21!

3E
0

1

dtN~12tN
2 !~d23!/2e@2AN21

2 ~12tN
2 /4!vN21

2 #.

~88!

The integral overvN21 is Gaussian; thus

f N21
~d! 5F S 12D

d/2 1

G~@d21#/2!G
2E

0

1

dt~N21!

3E
0

1

dtN~12t ~N21!
2 !~d23!/2~12tN

2 !~d23!/2

3S 1

~12tN
2 /4!

D 1/2 expS tN21
2

4~12tN
2 /4!

AN22
2 vN22

2 D .
~89!

The relation~41! permits one to find the dependence of
f N21
(d) on vN22 and thus to build a recurrence relation. Let

M (p) be a sequence of square matricesp3p, such that they
verify the recurrence relation

detM ~p!5detM ~p21!2cp21
2 detM ~p22!, ~90!

where$cp% is a sequence of real numbers, and

detM ~1!51,
~91!

detM ~2!512c1
2.

With these definitions, assume thatf N2p
(d) can be written

as

f N2p
~d! 5F S 12D

d/2 1

G~@d21#/2!G
~p11!

3E
0

1

)
n50

p

dt~N2n!~12t ~N2n!
2 !~d23!/2S 1

detM ~p11!D 1/2

3expS tN2p
2

4

detM ~p!

detM ~p11! AN2p21
2 vN2p21

2 D . ~92!

Then we have

f N2p21
~d! 5A~N2p21!F S 12D ~d/221! 1

G~@d21#/2!G~1/2!G
3E

21

1

dt~N2p21!~12t ~N2p21!
2 !~d23!/2

3E
2`

1`

dvN2p21 exp~v~N2p21!t ~N2p21!!

3exp~2AN2p21
2 vN2p21

2 ! f N2p
~d! . ~93!

The integral overvN2p21 is Gaussian with@cf. Eq. ~15!#

X5vN2p21 ,

J5tN2p21 , ~94!

A52S 12
tN2p
2

4

detM ~p!

detM ~p11!DAN2p21
2

52
detM ~p12!

detM ~p11! AN2p21
2 ,

andcp5
1
2 tN2p . Using the relation

1

AN2p21
2 5AN2p22

2 vN2p22
2 , ~95!

~93! becomes

f N2p21
~d! 5F S 12D

d/2 1

G~@d21#/2!G
~p12!E

0

1

)
n50

p11

dt~N2n!

3~12t ~N2n!
2 !~d23!/2S 1

detM ~p12!D 1/2 expS tN2p21
2

4

detM ~p11!

detM ~p12! AN2p22
2 vN2p22

2 D . ~96!

For p50, the relation betweenf N21
(d) @Eq. ~89!# and f N

(d) is in agreement with~92! on account of the definitions~90! and
~91!. Equation~96! shows the stability of Eq.~92! under the recurrence, so this form is right for all 0<p<N22. In particular,
for p5N22 one has

f 2
~d!5F S 12D

d/2 1

G~@d21#/2!G
N21E

0

1

)
n50

N22

dt~N2n!

3~12t ~N2n!
2 !~d23!/2S 1

detM ~N21!D 1/2 expS t224 detM ~N22!

detM ~N21! v1
2D , ~97!
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which by definition off 1
(d) andJ N

(d) gives a Gaussian integration overv1 and withxp5tN2p

JN
d5ApF S 12D d/2 1

G~@d21#/2!G ~N21!E
0

1

)
n51

N21

dxn

3~12xn
2!~d23!/2S 1

detM ~N!D 1/2. ~98!

If the matrixM (p) is taken as

M ~p!51
1

1
2x1
0
A
0
A
0
0
0

1
2x1
1

1
2x2
A
0
A
0
0
0

0
1
2x2
1
A
0
A
0
0
0

•••
•••
•••
A

•••
A

•••
•••
•••

0
0
0
A
0
A
1

1
2x~p22!

0

0
0
0
A
0
A

1
2x~p22!

1
1
2x~p21!

0
0
0
A
0
A
0

1
2x~p21!

1

2 , ~99!

then it verifies the conditions~90! and~91!. This result, when
replaced in~31!, gives the partition function of a FJC as

QN
~d!5

1

2 F S 12D ~d/221! G~1/2!

G~@d21#/2!
Sd~1!GVS m

4p2b\2D d/2
3F S 12D ~d12!/~d21!

3S 1

G~@d21#/2! D
2/~d21! ma2

b\2GN~d21!/2

I N
~d! , ~100!

where

I N
~d!5E

0

1

)
n51

N21

dxn~12xn
2!~d23!/2S 1

detM ~N!D 1/2. ~101!

It is the value ofI N
(d) that we estimate by a Monte Carlo

algorithm. In this relationd is only an integration parameter,
which would not be the case if we had made the Gaussian
integration over the set of variables$Vn% in Eq. ~19!.

B. Monte Carlo integrations

From Eq. ~101!, I N
(d) may be considered as the average

value of ~1/detM (N)!1/2 over the distribution
rN~x!5P n51

N21dxn(12x n
2)(d23)/2, i.e.,

I N
~d!5S E

@0,1#~N21!
dx rN~x! D K S 1

detM ~N!D 1/2L
rN~x!

.

~102!

Importance sampling is done over the distribution func-
tion rN~x! whered appears as a parameter. Results for non-
integer values ofd can thus be obtained as well. The nor-
malization of the distribution functionrN~x! is easily
calculated to be

~No
~d!!~N21!5E

0

1

)
n51

N21

dxn~12xn
2!~d23!/2

5S 12 G~1/2!G~@d21#/2!

G~d/2! D ~N21!

. ~103!

We have applied the Monte Carlo integration method to
FJC’s for which the number of bonds takes all values be-
tweenN52 and 500 and considered 28 values ofd between
2 and 8~including noninteger dimensions!. For each value of
d, 499 partition functions of the FJC have been obtained.
The Monte Carlo results are shown in Fig. 3. The data may
be very well represented by a straight line fit

FIG. 3. Results obtained for ln^(1/detM(N))1/2&rN(x)
with a

Monte Carlo algorithm using importance sampling. The straight
line fit is not represented on the curves. The symbols are placed
every 15 points.
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lnK S 1

detM ~N!D 1/2L
rN~x!

5 ln B~d!1N ln A~d!. ~104!

After only a few thousand Monte Carlo iterations, almost
all the points of Fig. 3 are in agreement with the straight line
fit to within 1–3 %, except for the point withN53. How-
ever, forN53, the analytical functionJ 3

(d) is given by Eq.
~85!.

If correlations between two random variables (X,Y) are
exactly according to a straight line fit, one has, with
s uv

2 5^uv&2^u&^v& andY5aX1b,

sY
22a2sX

250,
~105!

sXY
2 2asX

250.

In Fig. 4, log10(s Y
22a2s X

2) and log10(s XY
2 2as X

2) are
shown as functions of the number of Monte Carlo integra-
tions. The accuracy of the fit is so good than after only a few
thousand iterations, the differences betweensY

2 and a2s X
2,

andsXY
2 andas X

2, are less than 0.01. Thus the approxima-
tion

I N
~d!5

B~d!

No
~d! ~No

~d!A~d!!N ~106!

appears to be extremely good. The results forA(d) andB(d)

for several values ofd are given in Table I.

C. Analytical form for the partition function of the FJC

From the results of the previous subsection, the accuracy
of the analytical expressions presented in Sec. IV can be
tested on the coefficients of the fit. The partition function of
the FJC is given by

QN
~d!~V,T!5qo

~d!QL
~d!~V,T!S T

To~d! D
N~d21!/2

, ~107!

with

qo
~d!5S p

2 D 1/2 B~d!

G~@d21#/2!2
,

QL
~d!~V,T!5S mkT

4p2\2D 1/2V, ~108!

bo~d!5
1

kTo~d!
5S 12D ~d14!/~d21!

3SA~d!
G~1/2!

G~d/2! D
2/~d21! ma2

\2 .

In Fig. 5,A(d) andB(d) are shown as functions ofd. From
Sec. IV B, the scalar fieldh1~x! defined by

h1~x!5gN
~d!~0!2F1S 12 , 12 ; d2 ;xN21D )

i51

~N22!

1F1S 12 ; d2 ;xi D
~109!

coincides with the fieldgN
(d) on each axis. Furthermore, from

Sec. IV D, the scalar fieldh 1
(R)~x8! defined by

h1
~R!~x8!5g2P11

~d! ~0!F2S 12 , 12 , 12 ; d2 , d2 ;x1 , 14D
)

i53,odd

2P23

FKS 12 , 12 , 12 , 12 ; d2 , d2 , d2 ; 14 ,xi , 14D
3F2S 12 , 12 , 12 ; d2 , d2 ; 14 ,x2P21D
3 2F1S 12 , 12 ; d2 ;x2P11D ~110!

coincides with the fieldg 2P11
(R) on each axis. Of course,h1~x!

and h 1
(R)~x8! are not exactly equal to the fieldsgN

(d) and
g 2P11
(R) away from the axis, but they may serve as approxi-

mations of these fields. The difference between Secs. IV and
V resides only in the integration order in which the integrals
have been computed. As the integrals are convergent, both
results must be equal. Thus, by fixing the value of the fields
h1~x! andh 1

(R)~x8! at x15•••5xi5•••5xN215
1
4 , after sim-

plification, one has the following.
For h1

B~d!~A~d!!N52F1~1F1!
~N22!, ~111!

giving

FIG. 4. Accuracy of the straight line fit for data from Fig. 3
versus number of Monte Carlo iterations. On both graphs the first
curve from the top corresponds tod52.0, and the following curves
are obtained by increasingd by 0.5; thus on both graphs the lowest
curve corresponds tod54.5.
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A~d!5~1F1!,
~112!

B~d!5~2F1!/~1F1!
2.

For h 1
(R), whenN52P11,

B~d!~A~d!!~2P11!5~F2!
2~2F1!~FK!~P21!, ~113!

giving

A~d!5~FK!1/2,
~114!

B~d!5~F2!
2~2F1!/~FK!3/2,

and forh 1
(R), whenN52P,

B~d!~A~d!!2P5~F2!
2~FK!~P21!, ~115!

leading to

A~d!5~FK!1/2,
~116!

B~d!5~F2!
2/~FK!,

where the arguments of the hypergeometric functions have
been omitted.

In Eqs. ~114! and ~116! the odd-even effect appears ex-
plicitly in the value ofB(d). In both equationsA(d) takes
identical values. Thus with the use of the approximation
given by Eqs.~107! and ~108! the odd-even effect must de-
crease when the degree of polymerization increases. This is
in agreement with the results of Fisher and Hiley@15# and
those of Grassberger and Hegger@16#.

With the relations

F2S 12 , 12 , 12 ; d2 , d2 ;0, 14D52F1S 12 , 12 ; d2 ; 14D ~117!

and

FKS 12 , 12 , 12 , 12 ; d2 , d2 , d2 ; 14,0, 14D
52F1S 12 , 12 ; d2 ; 14D 2F1S 12 , 12 ; d2 ; 14D ~118!

FIG. 5. Comparison between the theoretical values forA(d) and
B(d) obtained with an approximation of the functiongN

(d) and the
values ofA(d) and B(d) obtained from the straight line fit of the
Monte Carlo data. The numerical values are given in Table I. We
use the reduced notations (1F1)51F1(1/2;d/2;1/4) and
(2F1)52F1(1/2,1/2;d/2;1/4).

TABLE I. The numerical values of the coefficientsA(d) andB(d) from the straight line fit of the Monte Carlo estimates ofI N
(d) and the

analytical approximations of both coefficients@we use the reduced notations (1F1)51F1~1/2,d/2,1/4! and (2F1)52F1~1/2,1/2,d/2,1/4!#.

d A(d) B(d) ~1F1! ~2F1!
( 1F1)
( 2F1)

2 ~2F1!
21 ~1F1!

21

2.0 1.092~5! 0.894~0! 1.137 58 1.073 18 0.829 297 0.931 81 0.879 06
2.2 1.077~9! 0.912~7! 1.124 50 1.066 00 0.843 021 0.938 09 0.889 28
2.4 1.069~0! 0.921~8! 1.113 65 1.060 07 0.854 745 0.943 33 0.897 95
2.5 1.065~3! 0.928~3! 1.108 90 1.057 48 0.859 978 0.945 64 0.901 79
2.6 1.061~9! 0.932~4! 1.104 51 1.055 09 0.864 872 0.947 79 0.905 38
2.8 1.056~1! 0.938~0! 1.096 71 1.050 85 0.873 691 0.951 61 0.911 82
3.0 1.051~3! 0.944~9! 1.089 97 1.047 20 0.881 453 0.954 93 0.917 46
3.2 1.047~2! 0.949~3! 1.084 10 1.044 02 0.888 320 0.957 84 0.922 42
3.4 1.043~8! 0.952~4! 1.078 94 1.041 24 0.894 454 0.960 39 0.926 84
3.5 1.042~2! 0.955~3! 1.076 58 1.039 97 0.897 279 0.961 57 0.928 87
3.6 1.040~7! 0.956~5! 1.074 36 1.038 78 0.899 960 0.962 67 0.930 79
3.8 1.038~1! 0.959~0! 1.070 28 1.036 59 0.904 928 0.964 70 0.934 33
4.0 1.035~8! 0.962~0! 1.066 62 1.034 63 0.909 422 0.966 53 0.937 54
4.2 1.033~2! 0.964~5! 1.062 54 1.032 45 0.914 486 0.968 57 0.941 14
4.5 1.031~0! 0.967~7! 1.058 92 1.030 53 0.919 042 0.970 37 0.944 36
5.0 1.027~3! 0.971~4! 1.052 81 1.027 28 0.926 810 0.973 44 0.949 84
6.0 1.022~1! 0.972~7! 1.043 70 1.010 87 0.927 988 0.989 25 0.958 13
7.0 1.018~5! 0.981~1! 1.037 26 1.019 09 0.947 194 0.981 27 0.964 08
8.0 1.015~8! 0.983~5! 1.032 46 1.016 59 0.953 671 0.983 68 0.968 56
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the odd-even effect is canceled and another approximation is
possible. To zeroth order, with the scalar fieldgN

(d), it gives

A~d!'~1F1! and B~d!'~1F1!
21, ~119!

and to first order, with the scalar fieldgN
(R), it gives

A~d!'~2F1! and B~d!'~2F1!
21. ~120!

In Table I, the values of Eqs.~119! and~120! are reported,
as well as those of Eq.~112!. In Fig. 5, these analytical
approximations are shown as functions ofd. The good agree-
ment between these results confirms the validity of the
method described in Sec. IV and the approximation~107!
made for the partition function of the FJC.

Finally, the asymptotic behavior ford→` gives
1F1~1/2;d/2;1/4!→1 and 2F1~1/2,1/2;d/2;1/4!→1. In this
limit, the only nonzero contribution toI N

(d) is given byx50;
then

K S 1

detM ~N!D 1/2L
rN~x!

→1,

andA(d)→1 andB(d)→1. With the approximation~107! for
the partition function the study of the thermodynamical and
statistical properties is straightforward.

VI. THERMODYNAMICAL AND STATISTICAL
PROPERTIES OF FJC’s

The two preceeding sections give the canonical partition
function of the FJC. Then it is possible to study the equilib-
rium thermodynamical properties of a gas made ofM FJC’s.
As explained in the Introduction and explicitly used in Eqs.
~10! and~11!, the FJC can be considered as an ideal gas with
phase spacewrest. It is straightforward to build the microca-
nonical and grand canonical ensembles relative to this ideal
gas via Laplace transform. The meaning of the partition
function permits one to give the connection with random
walks and to compute the critical exponentsg andn.

A. Gas of FJC’s in the canonical ensemble

The canonical partition function~107! of the FJC permits
one to express the canonical partition function of a gas ofM
FJC’s as

ZN
~d!~M ,V,T!5

1

M !
@QN

~d!~V,T!#M

5
1

M !
~qo

~d!!M@QL
~d!~V,T!#M

3S T

To~d! D
~MN/2!~d21!

. ~121!

The free energy of the gas of FJC’s is given by

FN
~d!~M ,V,T!52kT ln@ZN

~d!~M ,V,T!#

5kT ln~M ! !2MjN
~d!~V,T!, ~122!

wherej N
(d)(V,T) is the free energy of one FJC,

jN
~d!~V,T!5jex

~d!~V,T!2kT ln@Qo
~d!~V,T!#2kT ln~qo

~d!!,
~123!

jex
~d!~V,T!5~N/2!~d21!kT ln~To~d!/T!.

The average energy of the gas is given by

Ēc52
] lnZN

~d!

]b
U
M ,V

5Mēc5MkTS d21
N

2
~d21! D .

~124!

Equation~124! shows that equipartition is verified, as was
already obvious from Eq.~31! of Sec. III. The entropy is
given by

SN
~d!~M ,V,T!5

1

T
@Ēc2FN

~d!~M ,V,T!#, ~125!

SN
~d!~M ,V,T!5Sid

~d!~M ,V,T!1MsN
~d!~T!, ~126!

where

Sid
~d!~M ,V,T!5kS d2 M1M ln@QL

~d!~V,T!#2 ln~M ! ! D ,
sN

~d!~T!5kSN2 ~d21!1 ln~qo
~d!!2sex

~d!~T! D , ~127!

sex
~d!~T!5

N

2 F ~d21!lnS To~d!

T D G .
The relations~127! are the Sakur-Tetrode relation for the

FJC. In Fig. 6,sex
(d)(T) andjex

(d)(V,T) are shown as functions
of T*5T/To(d) for a few values of the degree of polymer-
ization andd53. As long as the size of the box is greater
than the typical size of the polymer@6#, the equation of state
of the gas of FJC’s is the same as that of an ideal monatomic
gas,PV5MkT. The chemical potential is given by

mN
~d!5FN

~d!~M11,V,T!2FN
~d!~M ,V,T!

5kT ln~M11!2jN
~d!~V,T!. ~128!

This chemical potential may serve as a reference value for
the computation of chemical potentials in realistic models,
with the configurational bias method@32–34#.

Considering that the FJC is an ideal gas with phase space
wrest, the degree of polymerization can be associated with a
second chemical potentialx called the bonding chemical po-
tential. In the canonical ensemble,x is given by

x5jN11
~d! ~V,T!2jN

~d!~V,T!5
1

2
~d21!kT lnS To~d!

T D .
~129!

With N andx, thermodynamical ensembles of the same kind
as the grand canonical ensemble may be associated@41#.
This second chemical potential has been used previously by
de Gennes@3,35# and Redner and Reynolds@36# in a study of
SAW’s, Daoud and Family@37# in a study of polydispersity,
Grassberger and Hegger@38# in simulations of a polymer,
and by many others~for a review, see@4#!. In a recent work,
Gujrati @40# has used several chemical potentials of this kind
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to give a geometrical description of the phase transitions and
has applied this formalism to branched polymers.

In most of the previous works, the authors perform calcu-
lations on lattices using a grand canonical ensemble in which
the number of bonds in the polymer can fluctuate. In the
present work,x is the continuous version of these chemical
potentials. The definition ofx is neither a constraint to the
geometry of a regular lattice nor a particular dimension of
the physical space.

B. Some thermodynamical ensembles for the FJC

In this subsection, the FJC is considered as an ideal gas
with phase spacewrest. From the canonical partition function
of this gas, seven other thermodynamical ensembles may be
built using Laplace transforms@41#.

The extensive variables are (N,V,S) and the associated
intensive variables are (x,2P,T). The canonical partition
function QN

(d)(V,T) is obtained with an approximation on
the size of the box containing the polymer. The dependence
on V in QN

(d)(V,T) is only linear; thus the Laplace trans-
forms for the conjugated variablesV and2P are straightfor-
ward and do not give any extra information.

In Fig. 7, all the isochoric ensembles are shown in equi-
librium with their reservoirs. We study two of these en-
sembles, the microcanonical ensemble partly studied to some
extent by Edwards and Goodyear@9# and the grand canonical
ensemble in which the conjugated variables are~N,x!.

1. The microcanonical ensemble

From the canonical partition functionQN
(d)(V,T), given

by Eq. ~107!, the microcanonical partition function is ob-
tained by the Laplace transform

QN
~d!~V,T!5bE

0

1`

dE e2bEVN
~d!~V,E!. ~130!

A straightforward calculation gives

VN
~d!~V,E!5vo

~d!VL
~d!~V,E!

@bo~d!E#N~d21!/2

G„@N~d21!1d#/211…
,

~131!

where

vo
~d!5qo

~d! ,
~132!

VL
~d!~V,E!5S mE

2p\2D d/2V.
V N

(d)(V,E) is the number of microstates of a FJC made of
N bonds isolated in a volumeV with an energyE. In the
work of Edwards and Goodyear the contributionV L

(d)(V,E)
due to the motion of the first monomer is absent, the calcu-
lations having been done in the frame where this monomer is
at rest. If we omit this contribution we recover, ford53, the
same behavior withE as found by these authors, which is a
consequence of the equipartition.

The behavior withN is not trivial because of the presence
of the gamma function.

FIG. 6. ~a! Excess free energyjex
~3!(V,T) for a FJC of a few

different degrees of polymerization as a function ofT*5T/To(d).
~b! Excess entropysex

~3!(T) for FJC’s as in~a!.

FIG. 7. Schematic representation of all isochoric thermodynami-
cal ensembles of the FJC in equilibrium with their reservoirs. Ar-
rows with T(bxX) symbolize Laplace transforms according to
f (x)5b* 0

1`dX exp(bxX)F(X).
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The entropy is given by

sN
~d!5k lnVN

~d!~N,E!

5sid
~d!1

N

2
~d21!ln@bo~d!E#

1k ln vo
~d!2k lnGSN~d21!1d

2
11D , ~133!

wheresid
(d) is the entropy of an ideal monomer. In the micro-

canonical ensemble the temperature is defined by
1/T5(]sN

(d)/]E)uN,V which leads to~124! and again to equi-
partition.

2. Grand canonical ensemble with respect to variables (x,N)

This ensemble is called the grand canonical ensemble by
some authors@3,4#, and the equilibrium ensemble by others
@39# to distinguish it from the truly grand canonical ensemble
where the number of polymers can fluctuate. In this en-
semble the partition function is given by

J~d!~x,V,T!5 (
N50

`

QN
~d!~V,T!ebxN, ~134!

where, forN50, Q 0
(d)(V,T)5q o

(d)QL
(d)(V,T).

In @6#, the functionJ (d)(x,V,T) is called the generating
function. In Eq.~134! the first contribution to the sum cannot
be given by a single monomer, because the first monomer
must have the ability to be a polymer initiator for the poly-
merization~see Sec. IV C!. This is the reason why there is a
factorq o

(d) in the definition ofQ 0
(d)(V,T). This factorq o

(d) is
the continuous version of the activity for creating a chain end
@6,42#.

With the use of Eqs.~108!, the partition function is given
by

J~d!~x,V,T!5Q0
~d!~V,T! (

N50

` Fexp~bx!S bo~d!

b D ~d21!/2GN.
~135!

The series~135! are geometrics, as for Bose-Einstein statis-
tics @43#. J(d) is defined only ifx,xmax

(d) (T) wherexmax
(d) (T) is

given by

xmax
~d! ~T!5kT

~d21!

2
lnS To~d!

T D . ~136!

xmax
(d) (T) is the continuous analog of the critical value of the

activity appearing in the study of SAW’s in the equilibrium
ensemble@36,38,39#. The case of the subcritical phase is the
only case studied in this work. Whenx approachesxmax

(d) (T) a
careful study is needed for two reasons, which are~a! the
limitation of the box size@36,45# and ~b! exchange between
the system and its reservoir.

For x,xmax
(d) (T), the grand partition function is

J~d!~x,V,T!5
Q0

~d!~V,T!

12exp~x/kT!~T/To~d!!~d21!/2 , ~137!

and the grand potential

J~d!52kT lnQ0
~d!~V,T!1kT

3 lnF12expS x

kTD S T

To~d! D
~d21!/2G . ~138!

The average number of bonds in the FJC is

N̄~d!5
1

b

] ln J~d!

]x U
V,T

5
exp~x/kT!~T/To~d!!~d21!/2

12exp~x/kT!~T/To~d!!~d21!/2 .

~139!

Applying the operator~1/b!~]/]x! to ~139! once more
gives the fluctuationsDN̄(d) for the average numberN̄(d) of
the bonds in the FJC. An elementary computation gives

DN̄~d!

N̄~d!
5exp$b@x2xmax

~d! ~T!#%,1. ~140!

In the plane~x,T! three domains are easily identified. If
N̄(d),1, then on average there is only one monomer in the
polymer; this leads to the definition ofxmono

(d) (T) as

xmono
~d! ~T!5kT lnS 12D1kT

~d21!

2
lnS To~d!

T D . ~141!

The domain wherex,xmon
(d) (T) is the monatomic domain.

If xmono
(d) (T),x,xmax

(d) (T), then the FJC is made of several
bonds; this domain is the polyatomic domain. When
x→xmax

(d) (T) then N̄(d)→`; a FJC of infinite length is found
as in @36#. This phenomenon is similar to the Bose conden-
sation sincexmax

(d) (T) is defined with the same criterion@43#.
The domainx.xmax

(d) (T) is forbidden since the series~134!
are divergents. The forbidden domain is an artifact of the
limiting case studied here where the size of the box is con-
sidered to be larger than the typical size of the FJC. If ones
take into account the finite size of the box then the forbidden
domain disappears and the series~134! is convergent for all
values ofx @45#. These three domains are shown in Fig. 8. In

FIG. 8. Diagram of the different domains of the FJC in the plane
~x* , T* !, with x*5x/kTo~3! andT*5T/To(3). Thedomains are
(M ) the monatomic domain, (P) the polyatomic domain, and (F)
the forbidden zone. The pointC is like a double critical point whose
coordinates areTc*5(1/2e)2/(321) andxc*5@(321)/2#Tc* .
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Fig. 9 N̄(d) is shown as a function ofT*5T/To(d) for a few
values of x*5x/kTo(d). The coordinates of the point
markedC in Fig. 8 are given by

Tc*5S 12eD
2/~d21!

,

xc*5
~d21!

2
Tc* . ~142!

In Fig. 8, the polyatomic domain is reentrant; theC point
is similar to the double critical point found in some binary
mixtures @17#. The polyatomic domain appears strange. In
this domain for xmono

(d) (T),x,xmax
(d) (T), Eq. ~140! gives

1/2,DN̄(d)/N̄(d),1, and thus predicts large fluctuations in
this domain, of the size of the whole system. The results for
DN̄(d)/N̄(d) indicate important polydispersity in this domain.
These large values ofDN̄(d)/N̄(d) may be an artifact of the
approximation on the size of the box.

C. Statistical properties and critical exponents

The exponentg is the first exponent that we compute.
This exponent is related to the total number of conformations
of the FJC@44#. A FJC can be related to a random walk with
the partition function interpreted as the total number of con-
formations of the FJC. The total number of random walks
made ofN stepsRN is identified withQN

(d); thus with

RN→QN
~d!.AzNNg21 ~143!

one has, using Eq.~108!,

A5qoQL
~d!~V,T!,

z5S T

To~d! D
~d21!/2

,

g51. ~144!

A is a constant,z is the coordination number of the lattice on
which the random walk is performed, andg the critical ex-
ponent. Thus, for the FJC, the same value for the exponentg
is found as for the Gaussian polymer model.

The exponentn is related to the size of the polymer. The
distance between two distinct monomers of the same FJC is
given by uR(n,p)u where

R~n,p!5a(
k5n

p

ûk ~n,p!. ~145!

R(n,p) is the bond vector between monomer~n21! and p.
The square distance is

~R~n,p!!
25a2S (

k5n

p

ûk
212 (

n< i, j<p
ûi•ûj D ~146!

and its average value

^~R~n,p!!
2&5a2~p2n!S 11

2

p2n (
n< i, j<p

^ûi•ûj& D . ~147!

With the results of Sec. III, the correlations between the
bondsi and j are given by

^ûi•ûj&5
Q~b!

QN
~d! E )

n51

N

dVn

3expS 2
ma2

b (
n51

N

Vn
2D E )

n51

N

dûnd~ ûn
221!ûi•ûj

3expFma2

b S (
n51

N21

~Vnûn!•~Vn11ûn11!D G , ~148!

leading, after some algebra, to

^ûi•ûj&5
Gi j

~d!

Jn
~d! 5

1

Jn
~d! E )

n51

N

dgn)
nPI

~gngn11!
~12d/2!

3I ~d/221!~gngn11!)
kPJ

~gkgk11!
~12d/2!

3I d/2~gkgk11!expS 2 (
n51

N

gn
2D , ~149!

whereI5$1,i21%ø$ j11,N% andJ5$ i , j %. The transforma-
tion ~33! gives

Gi j
~d!5E )

n51

N

dvnudet@Ja~v!#u)
nPI

~vn!
~12d/2!I ~d/221!~vn!

3)
kPJ

~vk!
~12d/2!I ~d/2!~vk!expS 2 (

n52

N

An
2vn

22v1
2D .

~150!

FIG. 9. Average number of linksN̄~3! in a FJC studied in the
internal grand canonical ensemble as a function ofT*5T/To(3)
for different values ofx*5x/kTo~3!. For x*50.15, polyatomic be-
havior is reentrant while forx*,0 it is not. Forx*50.25 mon-
atomic behavior is absent.
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All the permutations of the variables$vj % are not allowed
because the memory effect in the FJC is included in the
factorAn

2. However, takingE(A) as the number of elements
in the setA, the relation~41! allows thes permutations such
that C ~s* [J] !5C [J] and if (n1 ,n2)P(s* [J]) 2 all natural
numbers betweenn1 andn2 are in the image ensembles* [J]
of J with the permutations. This limitation on the permuta-
tions allows the correlations between the monomersi and j
to propagate on the polymer, and this property must be the
same anywhere in the polymer. If a permutation of this type
is done in~150!, G i j

(d) is invariant becauseudet~s!u51. More-
over, since it is right for any permutation which has these
properties, it is right for the permutation which putsi on 1
and j on C (J). Thus the invariance by propagation on the
polymer imposes the relation

Gi j
~d!5Gu i2 j u

~d! 5GDn
~d! ~151!

and Eq.~147! becomes

^~R~n,p!!
2&5a2~p2n!F11

2

~p2n!JN
~d! (

n< i, j<p
Gi j

~d!G ,
~152!

^~R~n,p!!
2&5a2~p2n!F11

2

JN
~d! (

Dn51

~p2n!

GDn
~d!

2
2

JN
~d! (

Dn51

~p2n!
Dn

p2n
GDn

~d!G .
Section IV gives

GDn
~d!5E )

k51

Dn

dvk )
k52

Dn11

Ak )
k52

Dn11

~vk!
~12d/2!I d/2~vk!

3expS 2 (
n52

Dn11

An
2vn

22v1
2D f ~Dn12!

~d! ~153!

and we can perform the same series expansion as in Sec. IV
on the function defined by

h~Dn11!
~d! 5A~Dn11!E dvDn11~vDn11!

~12d/2!I d/2~vDn11!

3exp~2ADn11
2 vDn11

2 ! f ~Dn12!
~d! ~154!

to obtainG Dn
(d).

The series expansion off (Dn12)
(d) gives for the last term of

h (Dn11)
(d)

S 12D
d/2 1

G~@d11#/2!G~1/2!

3E
21

1

~12tDn11
2 !~d21!/2dtDn11ADn11

2nN2Dn2211

3E
2`

1`

dvDn11vDn11
2nN2Dn2211 exp~2ADn11

2 vDn11
2

1vDn11tDn11!, ~155!

whose integration overvDn11 gives, due to the fact that the
integrand is odd,

W (
k5nDn11

`
1

k! S 14D kS 1

ADn11
2 D k ~2k11!!

@2~k2nDn11!11#!

3E
21

1

~12tDn11
2 !~d21!/2tDn11

@2~k2nDn11!11#dtDn1150.

~156!

Thus

GDn
~d!50 ~157!

and

^~R~n,p!!
2&5a2~p2n!. ~158!

The last equation givesn51
2 which is the same value as

that for the Gaussian polymer. For the same reasons as given
in Sec. IV, a simple argument could not give this result for
any value ofd because the analytical continuation to nonin-
teger dimension is not always straightforward; the important
point is to preserve something similar to the Euclidean scalar
product. These results are given for any dimensiond, but not
for any space of dimensiond because a regularity on the
topological structure of the space is needed@20–22#.

VII. CONCLUSION

We know that the Gaussian distribution for the end to end
distribution of an ideal polymer is a consequence of the cen-
tral limit theorem@1,6#, and so this distribution is valid for
N→`; for finite values ofN there are corrections in 1/N @6#.
In the case of the FJC, the values of the critical exponents of
ideal polymers have been recovered and, moreover, a very
good approximation is given for its canonical partition func-
tion for almost all degrees of polymerization and for all
physical dimensions of spaced>2, subject to topological
regularity of the spaces with noninteger dimensions.

Thus, in principle, this ideal model of a polymer is com-
pletely solved. The analytical form of the partition function
~107! is approximate for two reasons:~1! The multiplicative
coefficientsA(d) andB(d), coming from the metric determi-
nant, are only approximated by hypergeometric functions;
~2! the size of the box containing the polymer has been con-
sidered greater than the typical size of the polymer. For the
latter approximation, an analytical study is difficult to make,
while for the former, the coefficientsA(d) andB(d) are com-
puted from a straight line fit to the Monte Carlo data, and
compared with the analytical approximation made with hy-
pergeometric functions. The good agreement between the
analytical and numerical results validates the analytical
method used. For each dimension studied by means of the
Monte Carlo integration, 498 points out of 499 are in agree-
ment, with an accuracy of 1–3%, with the straight line fit.
The Monte Carlo method has been applied for 28 values of
the dimension of space between 2 and 8~including noninte-
ger dimensions!. Thus for the 13 972 partition functions
computed, 13 944 are in agreement with the partition func-
tion given by ~107! with an accuracy of 1–3%. For each
dimension studied, the only exception is forN53. However,
in that case the analytical form of the partition function is
known exactly. In view of these results, Eq.~107! can be
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considered as nearly exact. The values ofA(d) andB(d) given
by the fit are all close to 1.A(d) is slightly bigger than 1 and
B(d) is slightly smaller than 1~see Table I!. Both coefficients
arise from the metric determinant of the FJC; thus we can
conclude that the metric determinant produces only a weak
perturbation of the value of the partition function@10#. This
fact is known from numerical simulations where often the
contribution from the frozen vibrational degree of freedom
of the polyatomic molecules can be neglected@23,47#. The
analytical method used to obtain the approximations allows
one to describe the analogy between quantum mechanics and
polymer physics via the Feynman formulation@46#. In the
quantum theory of fields, the path formulation leads to the
definition of the generating functional whose logarithmic de-
rivatives with respect to the currents give the connected
Green’s functions@28#. In statistical physics, the partition
function is similar to the generating functional. So, in poly-
mer physics, it seems natural to use the Feynman formula-
tion to compute the partition function rather than the Fokker-
Planck equation. The use of Feynman rules allows us
naturally to use conventional renormalization methods and
so to find naturally a method similar to the decimation
method@14,6#. The first stage of the conventional renormal-
ization, applied to the FJC, gives an odd-even effect in the
FJC. This effect has been observed by Fisher and Hiley@15#
and by Grassberger and Hegger@16#. Because of the fracta-
lization process explained in Sec. IV D and shown for one
case in Fig. 2, one can suppose that FJC’s whose degrees of
polymerization belong to the same prefractal sequence have
some common properties; this also leads one to suppose that
other odd-even effects of higher order exist. The fractaliza-
tion appears as the reverse of the decimation method; this
might be easily tested because all analytical terms have finite
values. The numerical estimate of the odd-even effect on the
value of the coefficientB(d) in Eqs.~114! and~116! is given
to first order in Sec. V C. In view of this effect the strange
behavior of the FJC forN53 is interpreted as a reminiscence
of the odd-even effect. This effect appears to be smaller for
the FJC than for realistic polymers models@16# and SAW’s
@15#; this certainly means that interaction between monomers
amplifies this effect. With the knowledge of the partition
function of the FJC made ofN bonds, we can study all the
equilibrium properties of the FJC. Thus we have recovered
equipartition and found the Sakur-Tetrode relation for the
FJC.

Considering the FJC as an ideal monatomic gas with the
reduced phase spacewrest it is possible to build the partition
function of the FJC via Laplace transform in other thermo-
dynamical ensembles. Thus, we have given the microcanoni-
cal partition function and the partition function of the grand
canonical ensemble where the monomer number can fluctu-
ate. In this grand canonical ensemble, a second chemical
potential is associated with the number of bonds in the poly-
mer. In the plane~x,T! of this ensemble, we can define es-
sentially two domains in which the system has very different
behaviors: a monatomic domain where the average number
of monomers in the FJC is less than 2, and in which the
fluctuations of this number are quite small, and a polyatomic
domain where the FJC is made of several monomers. In the
monatomic domain the fluctuations of the average number of
monomers in the FJC are small compared to the size of the

system, whereas these fluctuations are of the same size as the
system in the polyatomic domain. This domain is very
strange and requires a careful study. First, this domain has a
reentrant behavior with temperature~see Fig. 8! similar to
the one occurring for the disordered phases in other systems
@17–19#; this would lead one to define a double critical point
and to consider that the second chemical potential is similar
to a hydrogen bond strength@17#. The big fluctuations
present in the domain do not allow one to consider it as a
well defined phase. Because the fluctuations are of the same
order of magnitude as the whole system, the polyatomic do-
main cannot be considered as a well defined phase. Never-
theless, the fluctuations always remain smaller than the sys-
tem; thus the FJC is really polyatomic in this domain, but
with a very high polydispersity.

In the grand canonical ensemble, there is a limiting value
depending on the temperature for the second chemical poten-
tial, at which the system becomes infinite. This FJC of infi-
nite length appears at high as well as low temperature for a
positive second chemical potential. This phenomenon looks
like the Bose condensation because the limit on the chemical
potential is defined with the same criterion on geometrical
series. It may be surprising to find that the reentrant infinite
FJC has the same behavior at high and low temperatures~the
critical exponentn is independent of the temperature!. This
is, of course, a consequence of the fact that our system is
classical. In recent work by Golubovic´ and Xie @48#, it has
been shown that if one takes quantum fluctuations into ac-
count, one finds, for low temperatures and for a non-self-
avoiding chain, a crumpled ground state having the appear-
ance of a highly collapsed polymer with radius of gyration
growing very slowly withN as R;@ln(N)#1/2 @48#. If we
apply the FJC model to polyethylene with the same geo-
metrical factors as in Ref.@48#, we find using Eqs.~108! and
~142! for d53, To~3!'1.516 K, and

Tc5
To
2e

.0.279 K,

~159!
xc.0.385310223 J.2.40331025 eV.

Tc is not far from the Ginzburg temperature defined in
@48#. The ‘‘infinite real’’ polymer in the low temperature
limit would be in the crumpled ground state by a pure quan-
tum effect, whereas our classical infinite FJC has the same
behavior at low and high temperatures. Of course, in the case
of these very low temperatures, our system~as well as the
quantum system! is certainly meaningless because in the real
world various things may happen, such as, for instance, crys-
tallization, before reaching temperatures of the order of a few
degrees kelvin. Even if one were able to experimentally cool
an ideal polymer down to a few kelvins, in the crumpled
ground state excluded volume effects cannot be neglected.
Neither the FJC nor the ideal gas exists in the real world.
They are very crude models of real systems. Moreover, it
must be pointed out that the system studied in@48# is slightly
different from a FJC since a harmonic potential between the
bonds and a bending energy are used. Constant length for the
bonds is not compatible with the uncertainty principle, unless
the metric of the space is modified.

Throughout this workd is the dimension of the physical
space and is taken as a real parameter greater than or equal to
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2. The use of noninteger dimensions should be done with
caution and if the results of the FJC are given for any dimen-
sion of space, they are not necessarily right for any space of
dimensiond. For example, the critical exponentn must be
defined in the fractal metric, otherwise an anomalous diffu-
sion exponentu appears that one may relate to the fractal
dimensiondf by u52df22 @22#; thus in the fractal space one
could recovern51/2. But, even if we definen with caution,
internal to the fractal space, it may happen that the relation-
ship between the fractal dimension and the anomalous diffu-
sion exponent is not valid~for ramification orders greater
than 1!. The properties of the FJC in space with noninteger
dimension depend on the topology of the space. Neverthe-
less, in a recent study by Bender and co-workers@20,21#,
‘‘random walks in noninteger dimension’’ make sense, if we
define rigorously the probabilities of walking outward or in-
ward in some regions of the space@20#; otherwise, we may
obtain unacceptable formulas for some probabilities~greater
than 1 or less than 0!. With their spherically symmetric ran-
dom walks, they recover also the right Hausdorff dimension
of a random walk@21#. Their construction is equivalent to a
generalization of the Buffon needle construction~see note 7
of @20#!. The FJC may be viewed as made ofN Buffon
needles, and one may use results of the FJC in noninteger
dimension if we have shown previously that the topology of
the noninteger space is correct for the FJC. The results of the
FJC are not true for any fractal space. A criterion of validity
might be the value of the critical exponentn. Finally, Eqs.
~144! give the connection with ideal polymers on regular

lattices ~i.e., random walks!. In particular, Eqs.~144! give
the coordination number of the equivalent lattice as a func-
tion of the temperature. Thus the FJC appears as a generali-
zation of random walks on a lattice. Choosing a particular
geometry for a regular lattice on which a random walk is
performed is equivalent to choosing a temperature for the
FJC model. To compare a random walk on a regular lattice
with a given symmetry with another on a lattice of different
symmetry but with the same lattice spacing and the same
number of steps is equivalent to studying a FJC made of a
number of bonds equal to the number of steps in the random
walk and with a bond length equal to the lattice spacing at
two different temperatures. For instance, in a two dimen-
sional space, transferring a random walk from a triangular
latticeztri56 to a square latticezsqua54 is equivalent to cool-
ing a FJC according to the rule

S Ttri
Tsqua

D ~221!/2

5
ztri
zsqua

5
3

2
. ~160!
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