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We present three-dimensional off-lattice Monte Carlo simulations on randomly branched polymers with
annealed and quenched branching structures when monomers interact with each other through excluded vol-
ume interactions. The values of the critical exponent for the mean-square radius of gyration are estimated on the
basis of scaling analysis asna50.4960.01 ~annealed! and nq50.4560.01 ~quenched!, which suggest that
annealed and quenched randomly branched polymers belong to different universality classes. We further
confirm the existence of a scaling parameter that was deduced earlier by the perturbation theory and the
Flory-type argument.@S1063-651X~96!09005-X#

PACS number~s!: 61.41.1e, 61.20.Ja, 61.25.Hq

I. INTRODUCTION

The study of models of branched polymer chains has at-
tracted considerable interests due to its fundamental impor-
tance to biological molecules and to technical applications in
synthetic physical chemistry@1–4#. Branched polymers may
have regularly branched structures as in the case of star-
shaped and comb-shaped polymers@5# or they may have ran-
domly branched structures. In the latter systems, there exist
two possible types of solutions of randomly branched poly-
mers ~RBPs!: those with annealed branching structures and
those with quenched. The majority of previous analytical
works @6–8# and numerical simulations@9–16# in this field
have been devoted to systems of annealed RBPs, in which
the rearrangement of branching points may take place and
the branching structure is controlled by maintaining a con-
stant branching activity; the repulsive interactions between
polymer segments not only swell the polymer, but also affect
the average number of branching points. Much less attention
has been given so far to quenched branched polymers@17#.
Unlike annealed branched polymers, quenched branched
polymers have more stable structures; the statistics of the
branching points is unaffected by the introduction of the in-
teraction potential for two polymer segments. An important
example is the transfer RNA molecules@18,19#. Quenched
RBPs are expected to exhibit different static and dynamic
behaviors from annealed ones. They are more compact and
the quenched polymeric branching structures prevent any
structural changes. Very recently, it has been suggested
@20,21# that the static properties of these two types of poly-
mers belong to different universality classes.

In the present work, we shall verify some of the recent
theoretical results by studying dilute solutions of RBPs with
annealed and quenched branching structures using the non-
local Monte Carlo~MC! pivot algorithms. Our main interest
is to obtain simulation data on the structure of a model of
annealed and quenched RBPs, especially in the scaling re-
gion of the mean-square radius of gyration. We shall also

present a discussion on the choice of an appropriate scaling
variable that one should use to extract the characteristic criti-
cal exponent in the asymptotic limit of a large molecule
weight. The resulting scaling behavior of the simulation
data for the radius of gyration indicates that quenched RBPs
belong to a universality class different from that of annealed
RBPs. The critical gyration exponents are estimated as
na50.4960.01 ~annealed! and nq50.4560.01 ~quenched!.
The former is consistent with the values reported earlier
@16,22#.

II. RBP MODEL AND SIMULATION METHOD

The RBP model being numerically studied here is a tree-
like molecule of links ofN identical rigid bonds of lengthl ,
freely jointed together inD ~53! dimensional space; a hard
spherical bead is attached to every end of the bonds. The
bonds are connected through junctions that may grow two or
three branches. It is assumed that the beads~monomers! in-
teract with each other through a hard-sphere-type excluded
volume potential, the hard-sphere diameter being denoted as
d in the following. The quantities of interest here are the
mean-square radius of gyrationS2 and the average number
of branching unitsn3. These quantities were obtained for
several values ofN ~typically 10<N<2000! as well as for
several values of the interaction parameterd. Although our
model may differ from the actual structures of real systems,
the scaling behavior and the critical exponent should be sys-
tem independent, according to the universality hypothesis.

For quenched RBPs, the topology of the branching struc-
ture is fixed while other degrees of freedom are accessible to
the polymers. We assumed that, during the initial prepara-
tion, no monomer-monomer interactions are present and dif-
ferent structures occur with the same probability. The intro-
duction of the monomer-monomer interaction leads to
stretching of the polymer, but does not affect the branching
structures. On the other hand, for annealed RBPs interacting
through the excluded volume interaction, the configurational
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phase space of rotating the bonds is sampled simultaneously
with the degree of freedom of rearranging branching struc-
tures. Due to this difference, different computer algorithms
are proposed below.

The nonlocal MC pivot algorithm to simulate annealed
RBPs used in this study is similar to that proposed by Ma-
dras and Sokal@23#, while the MC algorithm to simulate
quenched RBPs is an altered version of the same. The basic
steps to simulate annealed RBPs are as follows. An initial
self-avoiding branched molecule is produced and equili-
brated over certain runs. To obtain a new configuration, a
branching position is chosen at random and one of the neigh-
boring bonds is cut to produce two pieces of the polymer.
The smaller portion of the polymer is identified and rotated
as a rigid body to a new position by specifying randomly
chosen values for the three Euler angles~a,b,g!. Note that
the Euler angleb between the new and oldz axes is actually
chosen so that cosb is evenly distributed in the interval
21<cosb<1. Subsequently, an arbitrary point on the larger
portion of the polymer is located for reconnecting the two
pieces. The new configuration is accepted only when the new
branching point contains less than three branches originally
and only when the hard-sphere monomers of the rotated por-
tion do not overlap with those of the unrotated portion. Oth-
erwise, the new configuration is rejected, the old configura-
tion is recovered, and the cutting-reconnecting procedure
starts over again. Such a nonlocal algorithm efficiently pro-
duces radically different configurations after a relatively
small number of successful moves. Madras and Sokal
showed that this algorithm satisfies the condition of detailed
balance@23#.

The key requirement to simulate quenched RBPs is to
maintain the statistics of the branching positions unaffected
by the excluded volume interaction, while the hard-sphere
monomers are allowed to interact. We adopted the algorithm
that otherwise is the same as that for the annealed case ex-
cept for the last step; whether or not overlapping takes place
between the monomers of the rotated and the unrotated por-
tions after the reconnection, the configuration is always ac-
cepted as an intermediate one. Such a configuration is then
regarded as a nonequilibrium state and is allowed to relax to
the equilibrium state. Any possible overlapping is gradually
eliminated by randomly rotating an arbitrarily chosen part of
the polymer, until a configuration with no overlapping mono-
mers is achieved. This nonoverlapping configuration is sub-
sequently equilibrated over a number of runs~typically
N–2N! before a measurement is taken.

To simulate annealed RBPs, the measurement of the
physical properties was taken every five MC steps in order to
avoid temporal correlation of the configurations. For a given
set ofN and d, a typical run that was performed contains
23~105–106! MC steps. To simulate quenched RBPs, mea-
surements were taken only after five new structures were
made and equilibrated to avoid temporal correlation of the
branching structures. For a given set ofN andd, a typical
run that was performed contains 53~104–106! new branch-
ing structures. Table I shows the original data that we ob-
tained from the simulation. In Fig. 1, the mean-square radius
of gyrationS2 and the mean number of tribranchesn3 are
plotted as functions ofN for several values ofd. The open
symbols represent data for annealed RBPs and the solid sym-

bols for quenched RBPs. Regardless of the differences ind,
n3 of the quenched case always remains the same as that for
d50, as expected.

III. SCALING ANALYSES

In order to analyze the simulation data, it is essential to
have a firm theoretical understanding of the interacting RBPs
with annealed and quenched branching structures. In contrast
to the case of linear polymers, where there exists a consistent
description for the mean-square radius of gyrationS2 of self-
avoiding chains@1–3#, the behavior of interacting RBPs is
not completely understood. We recall that linear polymers
obey the so-called two parameter model, in which a scaling
parameterz relating the excluded volume with the total num-
ber of monomers is clearly defined@2#. At largez, the ratio
betweenS2 of self-avoiding chains and that of random walks
is expected to have a power-law dependence inz @3#. The
question is whether we can understand the data in Fig. 1 by
using a similar description. Both perturbation theory@8,21#
and Flory-type theory@24–26# show that

S2/~S2!0;z2~4n21!/e ~1!

and

z5
uL2

~4p!4 S 16p2N

L D e/4

, ~2!

where (S2)05 l 2(pN/L)1/2/4 is the mean-square radius of
gyration of ideal chains when no interactions are present
@27,28#, n is the gyration exponent,e5Dc2D with Dc58
being the upper critical dimensionality@29,8#, u is the ex-
cluded volume, andL2 is the activity of the trifunctional
units.

The validity of Eqs.~1! and ~2! can be demonstrated by
using a perturbation theory that treatsu as the perturbation
parameter@2#. We have recently shown through a first-order
perturbation that thez parameter in Eq.~2! indeed exists for
both annealed and quenched cases@8,21#, similar to thez
parameter in the two-parameter theory for linear polymers.
Based on the perturbation expansions for the mean-square
radius of gyrationS2, the second virial coefficientA2, and
the partition functionQ, we have further applied the renor-
malization group technique, which allows us to determine
the critical exponentn for for small e:

na5
1
4 @11 1

9 e1O~e2!# ~3a!

for annealed RBPs and

nq5
1
4 @11 1

10e1O~e2!#, ~3b!

for quenched RBPs. AtD53, however, we cannot determine
rigorously the values ofna andnq based on a series contain-
ing only one correctional term. We are fortunate to have an
exact solution forna : Parisi and Sourlas@22# have demon-
strated thatna has an exact value of12 for D53. This value
can be used as a benchmark for the determinations ofna and
nq by using other methods.

The Flory-type argument is an effective procedure for es-
timating the critical exponentn approximately. In the case of
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linear polymers, the seemingly crude Flory argument pro-
duces the appropriate form for the scaling parameterz,
which can be identified by, for example, the perturbation

expansion. In the case of RBPs, the Flory-type argument also
produces the correct form forz given in Eq.~2! and a good
approximation for the critical exponentsna andnq . Follow-

TABLE I. Numerical results for the conformation properties.

d N

Annealed Quenched

S2 n3 S2 n3

0.25 10 1.564 2.066 1.570 2.073
20 2.614 4.979 2.600 4.971
50 5.065 13.671 5.064 13.762
100 8.597 28.135 8.416 28.394
200 15.078 57.080 14.374 57.694
300 21.168 86.048 19.952 86.714
400 27.068 114.879 25.371 116.497
600 39.140 172.720 35.458 174.899
800 51.191 230.537 45.051 233.524
1000 63.622 288.284 55.303 291.456
1500 92.859 432.381
2000 123.199 577.502

0.50 10 1.842 2.018 1.821 2.069
20 3.413 4.802 3.322 4.995
50 7.769 13.211 7.383 13.735
100 14.766 27.145 13.619 28.286
200 28.328 55.083 24.832 57.644
300 42.224 83.405 35.727 87.260
400 55.517 111.021 45.874 116.442
600 82.313 166.988 65.926 174.726
800 108.427 222.786 84.792 232.389
1000 135.955 278.843 102.729 293.394
1500 195.202 416.826
2000 268.453 560.201

0.75 10 2.234 1.919 2.167 2.082
20 4.338 4.569 4.164 4.980
50 10.607 12.599 9.660 13.772
100 20.711 25.801 18.142 28.450
200 40.912 52.322 33.760 57.674
300 61.320 78.469 48.654 86.549
400 80.514 105.292 62.966 116.346
600 121.836 157.843 89.717 174.446
800 160.942 211.967 117.749 233.768
1000 202.318 264.940 142.138 292.983
1500 297.598 399.276
2000 411.121 533.141

0.99 10 2.587 1.770 2.484 2.079
20 5.203 4.265 4.861 4.993
50 12.956 11.734 11.436 13.735
100 25.941 24.208 21.754 28.497
200 51.270 49.097 40.772 57.830
300 76.772 74.385 58.030 87.381
400 101.948 98.876 74.832 115.239
600 151.627 148.433 108.714 175.094
800 204.690 199.773 141.093 234.419
1000 254.156 249.741 171.797 293.302
1500 377.612 372.312
2000 531.196 498.249
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ing the discussion presented by Daoud and Joanny@24#, here
we briefly review the Flory-type argument by explicitly
maintainingL2 in the formula.

For quenched RBPs, within Flory’s approximation, the
free energy Fq is the sum of the elastic energyFe

5b21S2/(S2)0 and a term contributed from the repulsive
interaction @3# Fi5b21uN2/(S2)D/2. Minimizing
Fq5Fe1Fi with respect toS2 yields nq~Flory!55/~2D14!
@24–26# andS2/(S2)0 obeying Eqs.~1! and ~2!. It is worth
mentioning that atD53, nq~Flory!5

1
2 was previously

thought to be in agreement with the annealed exponentna5
1
2 determined by Parisi and Sourlas@22#.
As regards the annealed branched polymers, there is an

additional entropy termFs contributing to the free energy,
which corresponds to the rearrangement of the branching
units. Gutin, Grosberg, and Shakhnovich@20# have consid-
ered a simple model, in which only ends and branched points
are allowed to exist~no linear parts!, in order to estimateFs
by using de Gennes’s diagrammatic method@28#. For anN
monomer molecule in which the average number of bonds
connecting two arbitrary external ends isL, they found
Fs5b21L2/N. To generalize to the case where the branch-
ing units are connected by linear parts, each containing sev-
eral monomers, we may group the monomers between the
branching units in imaginary blobs@24#; the branched mol-
ecule can then be represented as a molecule made exclu-

sively of branching units and blobs. The physical behavior of
the blob model should be qualitatively similar to that of Gu-
tin, Grosberg, and Shakhnovich’s model@20# consisting of
the same number of trifunctional units. In such a blob model,
the average number of monomers in one blob is roughly
L21. Accordingly,Fs of a branched polymer ofN monomers
with L bonds between two arbitrary ends is the same as the
system consisting ofN/~L21! blobs withL/~L21! blobs be-
tween those two ends:Fs5b21[L/(L21)] 2/[N/(L21)]
5b21L2/(N/L). Furthermore, noting that the mean-square
radius of gyration for one blob isL21l 2 and there are in total
L/~L21! blobs between these points, we can estimated the
elastic energy as Fe5b21S2/$@L/(L21)#(L21l 2)%
5b21S2/(Ll 2), which is independent ofL. Minimizing
Fa5Fe1Fi1Fs with respect toL andS2 yields the same
form of S2 as in Eqs.~1! and ~2! and a gyration exponent
na57/~3D14! @20#. Equation~1! now contains the branch-
ing activityL in comparison with equations in Ref.@20#. At
D53, na50.54, which showsna.nq .

The physical meaning ofL2 is somewhat different in the
two cases considered here. In the annealed case,L2 is the
fugacity of the branching structures, which is affected by the
presence of the excluded volume interactions, and thusL is a
function ofu. In the quenched case,L2 is the fugacity of the
branching structures when the polymers were initially made
without the presence of the excluded volume interaction and
is independent ofu. It is difficult, however, to analytically
evaluate the parameterL that must enter Eq.~2! for numeri-
cal analysis when the excluded volume interactions exist. An
alternative method will be to ‘‘measure’’L through measur-
ing n3, which is simultaneously determined in the simula-
tion, since the two quantities are related by@28#

n35LN, ~4!

where the large-N limit is considered. de Gennes showed Eq.
~4! in Ref. @28# for the case of branched polymers without
interaction of the monomers, which is the same case as our
quenched polymers. We showed earlier@8# that the same
relation is followed even in the case of annealed RBPs al-
thoughL depends on the interactions. Using then3/N data
as demonstrated in Fig. 1~b!, we can estimateL by examin-
ing the large-N asymptotic behavior and substitute that value
into Eq. ~2!. Since we are only interested in the large-N
behavior in order to determine the critical exponentn, we
may also replaceL in Eq. ~2! by n3/N directly during the
actual data analysis. We may show that the two procedures
produce the same value for the exponentn within the given
error quoted below. The analysis described below follows
the second procedure.

As for the estimation of the average excluded volume per
bondu, it is a subtle problem even for linear polymers@30#.
We shall follow the treatment suggested in Ref.@30#. Con-
sider a single bond that is associated with two beads at the
ends. Ifd, l /2, the region excluded per bond, when a third
bead is introduced, is simply the volume of two half spheres
of radiusd. If d> l /2, however, these two half spheres over-
lap and the actual excluded region is the volume of two half
spheres of radiusd minus the volume of the overlapping
region. The excluded volume averaged over one bond is then
given by

FIG. 1. ~a! Mean-square radius of gyrationS2 and ~b! mean
number of tribranching pointsn3 vs the monomer numberN for
different values of hard-sphere diameterd. Here the open symbols
represent data for the annealed cases and solid symbols for the
quenched cases. The circles correspond tod50.99, diamonds to
d50.75, triangles tod50.50, squares tod50.25, and crosses to
d50.0. For quenched branch polymers,n3 is the same as that of the
d50 case~cross symbols!.

53 6241MONTE CARLO SIMULATIONS OF RANDOMLY BRANCHED . . .



u5H 4

3
pS dl D

3

, d,
l

2

pF S dl D
2

2
1

12G , d>
l

2
,

~5!

which is used to compute the value ofz, Eq. ~2!.
Using Eqs.~1!, ~2!, ~4!, and ~5!, we present in Fig. 2 a

log-log plot of the functionS2/(S2)0 againstz. It can be
observed from Fig. 2 that the data points for largez lie
closely along a straight line for both annealed and quenched
RBPs and that the slope of the straight line for annealed
RBPs is higher than that for the quenched ones. This implies
that the scaling behavior in Eq.~1! is indeed valid for largez
and that the critical exponent of annealed RBPs forS2 is
greater than that of quenched ones. These observations agree
with the theoretical results discussed above. Using data
points withz>3, we have estimated the gyration exponents

na50.4960.01 ~6a!

for the annealed case and

nq50.4560.01 ~6b!

for the quenched case.
The earliest numerical estimates ofn, based on MC scal-

ing of ~annealed! lattice trees suggested thatna50.45 for
three-dimensional trees@9#. The most recent calculation is by
van Rensburg and Madras@16# for lattice trees, which yields
na50.4960. Our valuena is in satisfying agreement with that
obtained by van Rensburg and Madras for lattice animals
@16#, and that from the exact field-theory calculation
~na50.5! @22#. For comparison, the Flory-type argument
yields nq50.5 andna50.54, which show a similar relative
difference between the values of the two exponents.

In determining the critical exponents, we did not take into
account possible correction terms to the scaling behavior in
Eq. ~1!. The simulation data in Fig. 2 show interesting de-
viation from the scaling behavior represented by the straight
lines in the log-log plots. It is well known that the coefficient
of the correction-to-scaling term is proportional tou*2u,
whereu* is a characteristic excluded volume corresponding
to the fixed point in the field theory analysis of critical sys-
tems@31#. As displayed in Fig. 2, different values ofu show
different behavior. Those curves with small excluded volume
~small d! satisfyingu,u* exhibit positive curvature, while
those curves with large excluded volume satisfyingu.u*
exhibit negative curvature. The effective exponents deter-
mined by the small-u curves are always smaller than the
actual value, while the effective exponents are larger other-
wise. A similar qualitative behavior for linear polymers@32#
was discussed and analyzed by Nickel@33# and a crossover
model that takes the correction-to-scaling terms into account
in a closed form was put forth by Chen and Noolandi
@34,35#. Without a better knowledge of the behavior of the
correction-to-scaling terms for RBPs, it is difficult to give a
meaningful analysis of the simulation data at smallz in Fig.
2.

IV. CONCLUSION

In conclusion, the present MC simulations show that ran-
domly branched polymers with annealed and quenched
branching structures have different gyration exponents and
thus belong to different universality classes. This verifies the
previous conformational space renormalization analysis and
Flory-type arguments which yield different gyration expo-
nents for the two cases. It would be interesting to verify these
results experimentally.
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