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Nonexponential relaxation of density fluctuations in charge-stabilized colloids
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The relaxation of density fluctuations in charge-stabilized colloidal suspensions is characterized by the
dynamic structure factd®(q,t), which can be measured by dynamic light scattering. Whereas the short-time
behavior of this quantity is well understood, its characteristics at longer times are more difficult to determine
due to memory effects, which lead to a nonexponential decay(oft). A suitable measure of the overall
nonexponential decay &(q,t) is the reduced memory functiak(q). Formally exact results fak(q) can be
obtained on the basis of the many-body Smoluchowski equation, but for its evaluation one has to introduce
approximations. Earlier calculations A{q) based on a particular form of the mode-coupling approximation
were found to be in qualitative disagreement with experimental results. In particular, for monodisperse sus-
pensions it was predicted thatq—0)=0, whereas positive values faK0) are extrapolated from experimental
data. It will be shown that surprisingly small amounts of polydispersity can give rise to finite values of the
measured reduced memory functiongat0. For this reason, we have improved the mode-coupling approxi-
mation and extended the theory to moderately polydisperse suspensions. Our results are in good qualitative
agreement with available experimental data. We have also studied how the nonexponential &qaty) of
affected by the amount of added electrolyte. The reduced memory function is found to depend significantly on
the ionic strength[S1063-651X96)08405-9X
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[. INTRODUCTION with n=N/Q). The radial distribution function gives the rela-
tive conditional probability of finding a particle a distance
Since the invention of dynamic light scatterif®LS) apart from another one.
techniques, one has been able to determine the dynamic The quantitiesS(q,t) and S(q) are specified once the
structure factor of colloidal suspensions over a wide range oparticle interactions are known. In colloidal suspensions, one
time and length scalefl,2]. The dynamic structure factor needs to distinguish two types of interparticle interactions:
S(q,t) of monodisperse suspensions is the autocorrelatiogirect (i.e., potential interactions, which are at the origin of
function of microscopic density fluctuations, i.e., the equilibrium microstructure as quantified 18¢q) and
g(r), and indirect hydrodynamic interactions. The latter ac-
1 count for the fact that the velocity field, generated in the
S(a,H) = (ée(q,t) 5e(—a,0)), (1) supporting fluid by the motion of one particle, affects that of
the other particles. The suspension dynamics of charged par-
ticles, and hencé&(q,t), is influenced both by diredt.e.,

where c(q.t)=c(q,t) =(c(q.t)) and excluded volume plus electrostatend hydrodynamic inter-

actions.
N . .
c(aut) = 2 o ia-RI(D) @ The bghawor of5(q,t) d_epends cruuglly on thg temporal .
T and spatial range probed in the scattering experiments. Typi-

cal DLS experiments on colloidal suspensions probe length
scales| from |=2=/g>T to I<r, wherer=n"%is the
Ymean interparticle distance. In the first caSgg,t) is sensi-

. . . . tive to long-wavelength density fluctuations, which are typi-
loidal particle,q is the scattering wave vector of modulgs cal of the hydrodynamic regime. In the other ling(q.t) is

N is the number of par'qcles in the scattering volufbeand . essentially determined by single-particle dynamics, i.e., self-
() denotes the canonical ensemble average. The functio ffusion

j(?’t:.o )Z%(q) tlst_thl_e f]iat'c tsttrL!cture fac_tor, Vzh'??. canl l:;e Most of the DLS experiments are confined to correlation
etermined by static light scattering experiments. It is rela eqimest>10*6 s>, Wherers=M/Z is the momentum re-

to the radial distribution functiog(r) by laxation time of a spherical colloidal particle of madsand
friction coefficient?®=3m7o. Hereo is the particle diameter
and 7 is the shear viscosity of the suspending fluid. For
typical aqueous suspensions, one finds tgat10 °-10 8 s.
As a consequence, inertial effects arising from the momen-
tum relaxation of the particles are not resolved, so that only
*Mailing address: Fakuiltdiir Physik, Universitakonstanz, P.O. the relaxation of the particle positions is probed. At the
Box 5560, D-78434 Konstanz, Germany. FAX:+49-7531-  shortest resolvable times=10"° s, the individual particles
883157. Electronic address: gerhard.naegele@uni-konstanz.de have diffused only a distance that is a small fraction of their

is the Fourier component of the microscopic particle densit
c(r,t). HereR,(t) denotes the position vector of thth col-

S(q)=1+nf d® e "9 [g(r)—1], €)
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diameters, so that their dynamics is only determined by thevhereD.(q,z) =q-D.(q,Zz) -q is the longitudinal part of the
single-particle friction and by the hydrodynamic interactions,Fourier-Laplace transform dd.(r,t) andq=q/q. The wave
which can be considered to act instantaneously V\ﬂ%lﬂB vector and frequencﬁi_e_, Z) dependence oﬁc(q,z) will
[1] The configurational relaxation of particles, which giveSgive rise in genera| to a dynamic structure facﬂ@q,t) of
rise to a change of the direct interactions, becomes importamteracting particles that shows a more complicated depen-
at times of the order of the structural relaxation timedence ort andq than the simple exponential behavior given
7,=0°/D°, whereD%=kgT/{° is the Stokesian free diffu- py Eq. (4).
sion coefficient. For typical aqueous suspensions, one finds There is a limiting regime where E¢7) leads to an ex-
that ;=~10"° s such that the short-time regimg<t<r is  ponential form forS(q,t). This so-called hydrodynamic re-
well separated from the long-time regirte 7, . gime is characterized by values @& q,,, and oft> 7, , with

It is known thatS(q,t) only decays exponentially for all g2t kept constant at a value of the order of one. We denote
timest> 7 and for the experimentally accessible wave num-py g the position of the principle peak of the static structure
bersq in case of a strongly diluted suspension of noninter-actor S(q). Formally this corresponds to the limi—0,
acting monodisperse particles. For this limiting case, ong—0 with g%z constant. In the hydrodynamic regime,
finds[1] S(q,t) is given by

(q,t)=e 9P, (4) S(q,t)=S(q)e 9!, ®

where the superscript 0 i8%(q,t) indicates that both direct whereD -=D(q—0,z—0) is denoted as the long-time col-
and hydrodynamic interactions are vanishingly small. How-ective diffusion coefficient. The diffusion coefficier
ever, significant direct and hydrodynamic forces among thean be determined in an alternative way from macroscopic
particles give rise to an nonexponential decaysd,t), as  gradient diffusion experiments.
long asq is not very small. Physically, this is due to the fact = As a phenomenological approach, generalized hydrody-
that the particles get temporarily trapped in the dynamic cagaamics provides no methods to predict the diffusion kernel
formed by their next neighbors. The time scale associate®.(q,z). This can only be accomplished on the basis of a
with the onset of caging is of the order of the structuralmicroscopic theory that relies on the many-body Smolu-
relaxation timer; . chowski equation as the appropriate time evolution equation.
A phenomenological description of the overall nonexpo-Using Mori-Zwanzig projection operator methods, one can
nential relaxation of density fluctuations can be accom-derive a memory equation that expresSés,t) in terms of a
plished by using what is known as generalized hydrodynammemory functionM.(q,t), the latter being closely related to
ics [3]. The starting point in a generalized hydrodynamicD(q,z) [3].
description is the continuity equation In this study we are concerned with the calculation of a
reduced memory functioA(q) (also termed a nonexponen-
J__ — tiality factor), which characterizes the deviation 8{q,t)
5 S(nO+V-(r,H=0, (5)  from a simple exponential in time. The precise definition of
A(q) is given in the following section. For calculatiryq),
which relates the particle density to the particle current den'—F IS necessary to kno_w the time integral of the memory func-
on M(q,t). For this purpose, we use a version of the

S'tyj.(r’t)’ and it EXPresses t'he conservation .O.f the number omode-coupling approximatiofMCA), as developed recently
particles. The overbar indicates a nonequilibrium averag k ' '
[3]. Close to thermal equilibrium, one can relate the curren‘?)y Szamel and Lwen[5]. Their MCA scheme is based on
= ) ) " ) earlier work of Cichocki and Hed$], where it was shown
i (r,t) to the gradients in the particle density by a nonlocalihat M (q,t) can be further reduced in terms of an irreduc-
extension of the Fickean law ible memory function. It is the irreducible memory function
: to which the MCA scheme of Szamel andven is applied.
— , 3., , , — Our MCA results forA(q) will be shown to be in good
J(r’t)__fodt Jd rD(r=r'[,t=t")- V'e(r',t"). qualitative agreement with all available experimental data,
(6)  when the theory is extended to account in an approximate
way for size polydispersity. Within this extension, it is also

This equation states that the averaged current density at ppecessary to know the time integral of the autocorrelation
sition r and timet arises from gradients of the averaged functionG(q,t) of the microscopic one-particle density. We
particle density at neighboring positiomé and at earlier have calculated this time integral in a mode-coupling ap-
timest’ <t, as mediated by the phenomenological diffusionProximation applied to an irreducible memory function re-
kernel D ([r|,t). According to Onsager's regression hypoth- lated toG(q,t). It should be pointed out that size polydis-
esis[4], S(q,t) can be expected to obey the same evolutiorPersity is present to some extent in almost all colloidal
equation as the Fourier componartty,t) of c(r,t). Hence, Systems. It is quite remarkable that already small amounts of
by taking the Fourier-Laplace transform of E¢S) and (6), polydispersity can give rise to positive values for the small-

we find limit of the measurable reduced memory function, in contrast
to a vanishingA(q—0) found for a genuinely monodisperse
. suspension.
S(q,2) = J' dt e 7's(q,t) = % 7) The direct forces acting between the charged particles are
0 z+q°D.(q,2) quite sensitive to the amount of residual salt ions dissolved
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in the suspension. For this reason, and in order to promote By employing Mori-Zwanzig projection operator meth-

further experimental work, we have also investigated to whabds, one can derive a memory equation $¢q,t) [7]

extent the nonexponential decay $fq,t) is influenced by

the amount of added electrolyte. We have found that thed ) t S(q,u)

reduced memory function depends significantly on the ionic; S(9:t) =~ Der(q)S(a,t) + fodu Mc(q,t—u) q)

strength. (13)
In the following section we outline the Smoluchowski dy-

namics of collective diffusion, introduce the concept of thewhich is valid fort> 5. In Eq. (13)

reduced memory function, and discuss the general properties

of A(q). Section Il contains the description of the mode- o H(@)

coupling approximation used together with another simplify- Der(q)=D Q) (14)

ing approximation for calculating the reduced memory func-

tion of monodisperse systems. The effects of intrinsic sizgg the effectiveq-dependent short-time collective diffusion

polydispersity are considered in Sec. IV on the basis of whaggefficient, which is determined by the hydrodynamic func-
is known as decoupling approximation. Our results, in comyjon [1,7]

parison with experimental and computer simulation data, are
presented and discussed in Sec. V. Section VI contains our
concluding remarks. H(q)=

N
> (G-D;(RY)-ge'rRi=Rily (15

l,j=1

3
ol

IIl. SMOLUCHOWSKI DYNAMICS

OF COLLECTIVE DIFEUSION and by the static structure fact®(q). The hydrodynamic

function H(q) contains the configuration averaged effect of
As mentioned in the Introduction, the time and lengththe hydrodynamic interactions on the short-time dynamics. It
scales accessible by DLS experiments are restricted to cois a positive definite function, since theNX 3N matrix of
relation times t>rg and corresponding distances diffusivity tensorsD,j(RN) is also positive definite. For neg-
I>(D%r5) Y2 This fact allows for a coarse-grained configu- ligibly small hydrodynamic interactiond (q) =1. When hy-
ration space description based on the generalized Smol@rodynamic interactions are important, the(q) becomes
chowski equatiofGSE) dependent.
The second term in Eq13) does not contribute at short

d N 5N N times rg<t<<7,. Therefore, the short-time expression for
ot Y(REO=QRDHHURY), 9 g(q.t) is given by
where S(a,1)=S(q)e™TPer (1<), (16)

N The effective diffusion coefficient reduces, for small wave

~ J
Q(RN)=_§_:1 R 'Dij(RN)'[ﬁ—/ﬂ’Fj} (100 numbers gq<gq,,, to the short-time collective diffusion
= ' ! D $=Dx(q—0), which describes the initial decay of long-
is the Smoluchowski operatgt—3]. Here RN={R;,...RM! wavelength density fluctuations. In systems with strong re-
—39|. = Taeees

denotes the positions of the centers of the spherical particlegrl:ls'Ve fct)r%(?l§, "’(‘jnd hence .lOW O‘TTOUC. co.mprtes)s)g)n(ﬂ%g.,
the Dij(RN) are diffusivity tensors describing the solvent- charge-stabriized suspensions at low lonic stre IS

mediated hydrodynamic interactions between particlasd Iﬁu?d at fm;"[el Cgf}ger?”a“onif.“? tgos\tj\t/)st:\nzlhally Iatrg?r: tthan
j, andF;=—dU/dR; denotes the force that all oth@d—1) © Iree particie diiusion coeticient . Vi€ further note tha

a°Dew(q) constitutes a contribution to the rate of change of
S(q,t) solely determined by the conserved variabl(e|,t),
whereas the additional rate of change due to all other dy-
namical variables is contained in the secgmé&mory term
in Eq. (13), where the collective memory functidv .(q,t)

1 A appears. The memory term describes the caging effect, and
S(a.0=1y (sc(g)e™sc(—q)), (11)  for longer times (=) this term will change the time be-

havior of S(q,t) as compared to its exponential form in Eq.

colloidal particles exert on particlethrough potential inter-
actionsU(RN). The GSE is the time evolution equation for
the configuration space distribution functigfiR™,t). Using
Eq. (1), the dynamic structure factor can be written as

h th lar bracket denotes th ical b(ll6)'
;vv:rfge € angular bracket denotes the canonical ensemble |, y,q following we discuss general properties of collec-

tive diffusion that are related to the form Ed.3) of the time

evolution equation ofS(q,t). For this purpose, we do not
(V= f drN-.. Yed RN). (12)  need to display here explicitly the microscopic expression of

M¢(q,t), which is given, e.g., if1]. By taking the Laplace

Here zpeq(RN):exr{—BU(RN)]/deN extf—BURY] is the transform of Eq.(13), and by comparing with the form of

equilibrium distribution function. In writing Eq(11), it is ~ S(d.2) given in Eq.(7), it follows

understood that the time evolution operator €kpacts on ¥ (q.2)

everything to its right, including also the equilibrium distri- = _ ~ Mq(Q,z

bution function. Dc(6:2)=Der(@) a%s(q) (17
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so that the phenomenologically introduced diffusion kerneloverall slower decay 08(q,t) as compared to its short-time
D.(q,z) is now expressed in terms of microscopically de-behavior. Therefore it must generally be true thatq)
fined quantities. As a resul) 5 can be expressed as = 75(q) or, equivalently, that

M(q,z

DL=DS— fim lim #qq)) 19 0=A(q)=1. (24
0 a0 The ordering relation Eq24) can be rewritten with E¢23)
with q%/z kept constant. From E§18) and the mathematical Into the form G=D(q,0)<D.«(q). A proof of the latter or-
structure of the GSE, one can easily prove the followingdering relation has been given by Felderhof and Vel

general ordering relation existing between the long-time an@ the basis of the Smoluchowski dynamics. Notice also that

short-time collective diffusion coefficienfs]: D(q,2)>0 for all z>0. This inequality follows from Eq(7)
and from the fact that any autocorrelation function is mono-
o< D'c-s Df. (19 tonically decaying in time when described within the Smolu-

chowski dynamics[8]. From these properties follow

When only pairwise additive hydrodynamic interactions ar€g(q,z)>0 andzS(q,z)<$(q), and these inequalities imply
important, it can be shown for smallq that thatD (q,z)>0.

limg_oM C(q,t)/qi=0 [9]-S|n_ this case we need not distin-  Because of Eq23), A(q—0)=0 whenever hydrodynamic
guish betweerD ; andD¢, i.e., D =D :=D.. Moreover, nteractions can be considered as pairwise additive. How-

from Eq. (17) follows then ever, finite values\(0)>0 are extrapolated from many ex-
H(0 perimental data on dilute suspensions of highly charged par-

Bc(q—>0,z)=Dc=D° ( ), (20) ticles. As will be explained in Sec. IV, thi_s experimental
S(0) observation can be understood by accounting for size poly-

) ) ) ) dispersity, which gives rise to an incoherent background of
so that in the long-wavelength lim§(q,t) is a single expo-  gcattered light.
nential function in time, given by Eq16) for g—0. A proof In the following section we describe how(q) can be
of this result for many-body hydrodynamic interactions doescomputed in mode-coupling approximation. Clearly, any re-

not exist. The assumption of pairwise additive hydrodynamicy)istic approximation forA(q) must be consistent with Eq.
interactions is justified for the important case of dilute o4

charge-stabilized suspensions at low ionic strength. In these
systems, the particles are kept far apart from each other due
to strong electrostatic forces acting among theifl]. As a
consequence, only the far-field part of the hydrodynamic in-  For the calculation ofA(q), it is necessary to know the
teractions contributes to the suspension dynamics and thifme integral of the collective memory functidn(q,t). For
part is pairwise additive simplicity, we will neglect hydrodynamic interactions in cal-
A suitable measure of the overall nonexponential behaveulating A(q). This allows us to use a mode-coupling ap-
ior of S(q,t) is the nonexponentiality factax(q) defined as  proximation in the form developed by Szamel andwem
[5], based on earlier work by Cichocki and Hd&§. The
s latter authors have shown th&dl.(qg,z), or equivalently
A(q)=1- T_(Q) 21) D.(q,2), can be further reduced and expressed in terms of a
7(q) ’ so-called irreducible collective memory function. Using pro-

jection operator techniques, one obtains the expre$Si@h
where 75(q) =[q°D44(q) ]! is the characteristic decay time

IIl. MODE-COUPLING APPROXIMATION

of the short-time expression E¢L6) and — kgT 1
— Dc(g,2)= SO 792" (25)
) = fmdt S(q,t) _ S(q,z=0) 22 clds
o S(q) S(q) where
is the mean relaxation time &{(q,t). The definition(21) of ~ Azc(q,z)
A(q) is such thatA(q)=0 if S(q,t) were a simple exponen- {(9,2="1+ T} (26)

tial. The nonexponentiality factak(q) can be rewritten, us-

ing Egs.(7) and(17), as is a generalized friction function. It consists of the bare fric-

B (q,0 v (0,0 tion coefficient?®, and a contributiom\ /.(q,z) arising from
A(q)=1— AR > CO . (23 potential interactions. Note that_hydrodynamic interactions
Der(d)  q°D"H(q) are neglected in Eq26). Here AZ.(q,z)/° is the Laplace
L ) ) . transform of the irreducible collective memory function
so that it is essentially determined by the time integral of the, £.(9,1)/&°. This function is related to the memory function

collective memory function. For this reasoA(q) is also (9,2) in Laplace space by
called reduced memory function. Equatit28) implies that o

For noninteracting particles®(q)=(q) =(q?D° ! and M .(q,2)=q2DO Agéq_z)/(
hence A(q) =0, whereas interactions may give rise to an 1+AZ7.(9,2)/2°

(27)
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For this function, Cichocki and Hess have derived the exact A (q,t) Q 5 )
result[6] O 2023 f d°k|V(k,q)|“S(k,t)S(|g—K|,t),
(34)
Afat) _

1 -
_— 2po0 Qipt — .
e q°B°D"  (o(@eTroy(—=a)), (28 whereQ denotes the system volume. In E84) the irreduc-
ible memory function is expressed in terms of the dynamic
where oy(q) is the microscopic expression for the structure factor and in terms of the static vertex function

momentum-averaged longitudinal stress fluctuations, i.e., (DO)”Z

q
V(k,q)= c(k)c(g—k)c(—
oi(a@)=-Qc2, (ia-Fila*+kgT)e™ ", (29
—N[q~kS(Iq—k|)+Q-(q—k)S(k)]], (35
and
which contains both two-point and three-point correlation
R R N P A functions.
Q. (RMY=0Q.D%> — Q- [——EFJ Q. (30 We have pointed out above that any realistic approxima-
=1 IR IR tion for A(q) needs to be consistent with EQ4). The given

MCA expression forAZ.(q,t) is positive definite and, ac-
is denoted as the one-particle irreducible Smoluchowski opcording to Eqs(25) and (33), this indeed makes the MCA
erator. Moreoverf=1/kgT, Q.=1—P., andP. is the pro-  compatible with Eq(24) and with the inequalityD .(q,z) >0
jection operator for z>0. Moreover, the MCA applied to the irreducible

memory function allows for the possibility of an ideal glass

- 1 transition in colloidal suspension§,14—18.

Pc=dc(—q)) NS(q) (oc(q) 3D It should be stressed that the physical compatibility of the
MCA might get lost when it is applied tM .(q,t) instead of
the irreducible memory functioﬁgc(q,t)/gg, as already ob-
served in early applications of the MCA to colloidal fluids
[17]. Indeed, Cichocki and He$6] and later KawasakKil3]
have clearly demonstrated that approximations such as the
MCA are performed in a safer way for the irreducible
memory function than foM.(q,t).

i i i We focus now on the three-point correlation function in
It can be shown that the irreducible memory function Eq. (35), which can be expressed in the form

AZ.(q,t)/Z is closely related to the longitudinal component

on the subspace of density fluctuations. In E8Q), there
appears a second opera@r=1—P;, whereP; is defined
for g#0 as

P;=eldRi)(g iR, (32

of the generalized dynamic viscosity functip. (c(k)c(g—k)c(—q))=N[—2+3S(q) + S(k) + S(|g—k|)
It is interesting to note that Eq25) has the form of a on 3
Stokes-Einstein relation generalized for interacting particles +n?g®(k,q-k)], (36)

to wave vector and frequency dependence. Indeed, neglect- ~ @ L _ S
ing interactions gives rise t8(q) =1 and ¢,(q,2)=£, so whereg™(k,k’) is the Fourier transform of the static triplet

that Eq.(25) reduces t°= kg T/, correlation functiong®(r,r’) [18], i.e.,
The nonexponentiality factor can be expressed in terms of
the time integral of the irreducible memory function by com- g<3>(k,k')=J d3rf d3r’e ke K g3y ).

bining Egs.(25) and(26) with Eqg. (23): 37)

Azc(q,O)lgo Three-body correlations are difficult to calculate and require
(33 additional approximations. Following Szamel andwem
[5], we employ as a third approximation the so-called con-

. . . . . volution approximation in Fourier spa¢&9
The MCA is now used to obtain a microscopic expression bp paged]

for AZ.(q,t). We can be rather brief in describing the vari- _ )= _ _

ous steps that lead to the MCA expression fof.(q,t), {ete(a-tje(~@)=NSl)S(a-khS(@. (38
since these have been already discussed in detail by Szan®libstitution of Eq(38) into Eq.(35) leads to the expression
and Loven[5], by Wagner{12], and by Kawasakil3]. The

first step of the MCA consists of projecting the longitudinal 02 .

stress fluctuationsoy(q) in Eqg. (28) onto the subspace V(k’Q)=<T) [9-ke(k)+a-(q—k)c(lg—k[)]
spanned by bilinear products of density fluctuations. The sec- (39
ond step amounts to a factorization approximation for the

resulting four-point_correlation function and replacing thefor the vertex function. Herac(k)=1—S"*(k) andc(k) is
irreducible operatof);, by the Smoluchowski operatd2.  the Fourier transform of the Ornstein-Zernike direct correla-
As a result of these two steps, the MCA expression fortion function. This quantity should not be confused with the
AZ.(q,t) is obtained microscopic densitg(q). The form of the vertex function in

A =
D 7000
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Eq. (39) has been successfully used in the study of the glasextrapolate in general to a finite value &f{q) as q—0

transition in simple fluids and of colloidal suspensions[20-27, whereas theory predicts that(q)=0(q?) for

[5,13-14. g—0 as long as the suspension is genuinely monodisperse.
The MCA becomes exact in the weak coupling limit. In We will show in the following that even small amounts of

this limit, the particles are assumed to interact by a weak angolydispersity can give rise to a finite value of tfreeasur-

continuous pair potential(r), with Bu(r)<1. Ackerson7]  able nonexponentiality factor.

has derived the exact weak coupling expression for the

memory functionM,(q,t). It is easily seen that the weak IV. POLYDISPERSITY EFFECTS

coupling limit is recovered from Eq$34) and(39) by noting

that M(q,t) =q°D°AZc(q,t)/¢°+0(u?), c(q) reduces to A polydisperse suspension can be described as an
—Bu(q) to first order inu, and S(g,t)=exp(—g?D°%) to ~ M-component mixture. In DLS experiments, a measurable

zeroth order inu. dynamic structure factor is determined, which repd2,8]

Equations(39), (34), (25), and(7) form a closed set of 1 m
equations from whicts(q,t) could, in principle, be calcu- _ 112
lated self-consistently with the static structure fac$0n) as Su(a.t) 2(q) a%;l (XaXg) ol A)T(A) Sl ).
input. However, a full self-consistent calculation would be (42)
very tedious, particularly since one part of the equations is
expressed in the time domain and the other part in the spadgere S,4(q,t) is the correlation function of density fluctua-
of Laplace transforms. tions of componentsx and B8, and f (q) is the scattering
Instead of solving this complicated nonlinear problem, weamplitude of particles of component described by
rather consider a simplified version, which amounts to re- 3
placing the dynamic structure factor under the integral in Eq. fo(q)=Avyo,b(qo./2). (43
(349 by its short-time expression, i.e., by5(q,t)
=5(q)exd —q°D°t/S(q)]. This allows one to perform the
angular integration to obtain

In this expressionA, is the particle refractive index relative
to the solvent andr, andx,=N_/N are, respectively, the
particle diameter and molar fraction of componentThe

AZ(q,) nDO o 1 form amplitqdeb_(qcra/2) of an a-type homogeneous_ spheri-
0 = 5052 f dk kZJ dul wke(k) cal particle is given byo(x)=3j,(x)/x, wherej,(x) is the
¢ (2m)= Jo -1 spherical Bessel function of first order.
+(q— pk)c(k)12S(K) Sk ) In the following we vylll restrict our anaIyS|§ to the impor-
tant case where the distribution of the particle diameters is
of K k'2 rather narrowly peaked around a mean diameteThen, it
xexp —D™ SRRECAL (40 is possible to neglect the effects of polydispersity on the

correlation functionsS,4(q,t) and to consider only the size
wherek’ =|q—k|= Jo?+ k*—2qku and,uzc}-lz. The time  related scattering polydispersity described by thgq).

integral of this expression gives With this assumption the measurable dynamic structure fac-
tor reduces to what is known as decoupling approximation
A74(q,0 n o 1 [1,2,8,23
¢ ™* Jo -1 Sw(,1)~Sp(a,) =[ 1 X(a)]S(a,1) + X(q)G(a,1),
_ 12
FammoctO s rsiy where
(41 ()2
, , , X(q)=1—_(q) ~9s? (45)

The functionA(q) is then calculated using E¢33). There- 2(q)

fore, A(q) is solely expressed in terms of the static structure L

of the suspension. ands=((0®)— o?) ¥ o is the relative standard deviation of

A related procedure to determingq) has been used by the distribution of particle diameters. Furthermore,
Hess and Klein[3], who based their calculation on the
Fokker-Planck equation in the overdamped limit and made o n
use of a somewhat different mode-coupling ansatz for f (Q)—Zl Xofo(Q)
AZ.(q,t), which gives rise to a vertex functiovi(k,q) dif-
ferent from the one in Eq39) (cf. also[12]). Their result for  is the nth moment of the distribution of scattering ampli-
A(q) has been compared to experiments, but particularly fotudes. The function X(q) is bounded according to
small g no good agreement was found. This finding raisedo<X(q)<1 and, for smalk, is well approximated by & as
some doubts on the validity of the MCJR0]. expressed in Eq45).

We will show that the version of MCA based on the ver-  The self-intermediate scattering functi®{q,t), appear-

tex function in Eq.(39) gives results forA(q), which com-  ing in Eq. (44), is the autocorrelation function of the micro-
pare favorably with available experimental data. The comscopic one-particle density, i.e.,

parison is particularly good for small when polydispersity _
effects are taken into account. The experimental data seem to G(q,t)=(e'd [Ra=Ry O]y (47

m

(46)
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where the index 1 refers to a representative particle. BothW(t)~D Lt for t>r, , whereD .t denotes the long-time self-
S(g,t) andG(q,t) on the right-hand side of Eq44) corre-  diffusion coefficient. It can be shown th@$>DL [8],
spond to the effective monodisperse system for which allvhich is due to the hindrance of the Brownian motion of a
particles are of the same diametef1,2,8). The firstterm on particle by its direct and hydrodynamic interactions with
the right-hand side of44) is due to interparticle correlations neighboring particles. The relative osmotic compressibility
and will therefore be addressed as the coherent part. TH&0) of a strongly correlated system is very sm@f order
second term irt44) proportional toG(q,t) arises from single 10 ?). Therefore, the more slowly decaying second term in
particle diffusion and leads to an incoherent scattering conkg. (52), which represents the incoherent scattering contri-
tribution. Hence we refer to it as the incoherent part. We willbution[1,2], is particularly important and gives rise to values
show in the following that the incoherent part strongly influ- Ap(0)>0, as suggested by the experiment.
ences the nonexponential decay of the dynamic scattering The time integral ofS(q,t) can be expressed in terms of
function particularly wherg is small. A(q) using Egs(7) and(23) as

It is now crucial to realize that it is the nonexponentiality
factor Ap(q) of Sy(q,t)~Sp(q,t), and notA(q), that is S%(q)

determined in conventional DLS experiments. Similar to Eq. S(0,00= g’D[1-A(q)] (54)
(22), Ap(q) is defined as
s Since from Eqs(48) and(50)
Ap(@)=1- 29 49
° o(a)’ S2(q)
. o Ap(q)=1- ——=——", (55)
where 75(q)=5S5(q)/(q°D°) is the relaxation time of q°D"Sp(q,0)

Sp(g,t) at short times, as obtained from a first cumulant ) ]
analysis ofSy(q,t). This should be contrasted with the re- the only quantity needed besida¢q) to calculate the mea-
laxation time 75(q)=S(q)/(g?D°% for the monodisperse Surable nonexponentiality factdrp(q) is the time integral

case. The ratio of the two relaxation times is G(q,0) of the self-intermediate scattering function. It is ob-
tained by a projection operator method, similar to the one
Tg(q) Sp(q) 1 used for the collective case. We only outline here the major
= S(—q)%“_ 9s (%_1)’ (49 steps. First, the Laplace transform 6{q,t) is expressed,

similar to Eq.(7), in terms of a generalized wave-number-

showing that the initial relaxation d(q,t) is faster than and frequency-dependent self-diffusion functldg(q,z) ac-
that of S(q,t) for those values for which S(q) <1. cording to[3]
The expression found for3(q) is also due to the short-
time expression fo6(q,t), which is given by exp-D 5g°t).
HereD ? is the short-time self-diffusion coefficient, which is
equal to the free diffusion coefficier®® when hydrody-
namic interactions are neglected. The mean relaxation Qfrom the general properties of the Smoluchowski equation it
Sp(a,t) is characterized, in analogy to E@2), by follows thatD(q,z) is positive definite forz>0. The self-
~ diffusion functionD¢(q,z) is related to the longitudinal part
()= fwdt So(a.H) _ Sp(9,0 50y  of the generalized self-friction functiotP + AZ4(q,2) by
0 Sp(q) Sp(q)

ith BS )=, 5
wi (9,2) 4 A7.q.2) (57)

where the nontrivial parAZS(q,z) arises from the potential
interactions(hydrodynamic interactions are neglected in this

1

6 )= ——— .
@2 z+9°Dy(q,2)

(56)

Sp(a,0=[1-X(9)]S(q,0 +X(9)G(q,0). (51

It can easily be seen from E¢44) that polydispersity will

alter the previous results for the nonexponentiality factor, inwork). o . cee
particular at small values of q. For q<gq,, The hydrodynamic limit of the generalized diffusion func-

G(q,t)=ex —g2W(t)] and Sp(q,t) can then be written in tion is equal to the long-time self-diffusion coefficient, i.e.,

the form D §=IimzﬁolimqﬂoDS(q,z), and with Eq.(57) follows
D° AZ(00] 7"
SD(q,t)~(1—952)S(0)exp{—q2%t} D*=|1+—%—| . (58
+9s% exf —g*W(1)], (52 whereD*=D./D° denotes the normalized long-time self-
diffusion coefficient. We are now in the position to show
wheres<1 and explicitly that Ap(0)#0. To this end, we combine the rela-
tion
W(t)=#([Ru(t) ~R1(0) %) (53
. . . ~ A~ 0
denotes the particle mean square displacement. The limiting ?D°G(q,0=1+ {s(a,0) (59

behavior of W(t) is W(t)=D5t for rg<t<r and 0
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with Eqg. (55). By observing Eq.(58) and noting that
A(0)=0, the following result is obtained:

S5(0)

Ao(0) =1~ 516)782(0) + X(0)/D* ’

(60)

which relatesAp(0) to D* and to static quantities. From this
expression the measurable nonexponentiality factor is seen to

be nonvanishing provided that-0.

To obtainAp(qg), we need to know the normalized self-

friction function A Z{(q,t)/£°, which is the one-particle irre-

ducible memory function in case of self-diffusion. To be

consistent with our earlier treatment afZ.(q,t)/Z°, this

function will also be evaluated in the MCA. We will employ

the following (positive definit¢ MCA expression, which was
derived by Hess and Kleif8] (cf. also[17,24)):

A¢(q,t)  nD°
¢ @l

Jd3k(€]~k)zcz(k)G(|q—k|,t)S(k,t).
(61)

6231

Sla)

0
0

FIG. 1. RMSA results of the static structure fact®fq) for
samplesB (solid ling), C (dashed ling andD (dotted ling. The
wave numberg is scaled by the mean particle diameter The
system parameters are taken from the experimental work of Taylor
and Ackersorj20] and are summarized in Table I.

V. RESULTS AND DISCUSSION

Our theoretical results for the nonexponential relaxation
of density fluctuations have been applied to strongly corre-
lated charge-stabilized suspensions, which have been inves-

The MCA expression given.here re_Iates the irreduciblqigated recently using DLS. These systems can be conve-
memory function to a convolution-type integral over the self-piandy described by the effective macroion fluid model. In

and collective correlation function§(q,t) and S(q,t),

this model, the effective pair potential(r) between two

weighted by a static vertex function proportional to theaticles consists of a hard core diameteand a screened
square of the direct correlation function. Similar to the col-cqy10omb potential

lective case, the MCA expression far/(q,t)/° becomes
exact in the weak coupling limit.

A closed set of equations f@&(q,t) andG(q,t) is given
by combining Eqgs(7), (25), (34), and (39) describing col-
lective diffusion with the corresponding Eq&6), (57), and

(61) for self-diffusion. Instead of attempting this fully self-

consistent calculation, we have calculated)) as explained
in Sec. lll[cf. Egs.(33) and(41)]. The integral on the right-
hand side of Eq(61) is approximated by substitutin§(q,t)
once again by its short-time expression, wherégg,t) is
replaced by its limiting hydrodynamic

and the angular integrations to obtain

" K k2e(K) 12S(K)
0

Al(q0 n f
L (2m)?

1 wu?
<) o e e @

wherek’ = (g?+k?—2qku) Y2 Substitution of Eq(62) into
Eq. (58) gives the self-consistent equation

> [S(k)—17%]"*
fo dk K 1+D*S(k)|

which can be solved iteratively for the unique solutibri

D*=|1+ (63

67°n

form
exp(—q?’D°D*t). One can now perform the time integral

—k(r—o)

Bu(r)=Ko f

(64)

for r>¢. The dimensionless coupling constdftis given,
within the Derjaguin-Landau-Verwey-Overbeek theory, by
[26]

Lg

K=— (65)
g

Z 2
1+ KO'/Z) '

with Lg=e?/ekgT being the Bjerrum lengthe the elemen-
tary charge, and the dielectric constant of the suspending
solvent. The effective charg@n units of e) of a colloidal
particle is denoted by. The equation
k?>=47Lg[n|Z|+2n4] (66)

defines the Debye-Hikel screening parameter wheren, is
the number density of an added 1-1 electrolyte and the coun-
terions are assumed to be monovalent.

The only input needed to calculadq) andA(q) is the
static structure facto8(q). We have calculate®(q) from
the pair potential Eq64) by using the rescaled mean spheri-
cal approximation(RMSA). This integral equation method
has been found to be an efficient fitting device of experimen-
tally determined structure factof8,27]. The parameters in
Egs. (64)—(66) are chosen to correspond to several experi-
ments that have been performed to determine the nonexpo-

[25]. This completes our calculation of the nonexponentialitynentiality factor. The effective chargéused in our calcula-
factor Ap(q) for a polydisperse suspension in decouplingtions is determined from fitting the peak height of the
approximation. The only input needed is the static structurealculatedS(q) to the experimentally determined one. This
factor S(q) or, equivalently, the direct correlation function fitting procedure leads to an optimized static input.

c(a).

Figure 1 shows the RMSA fit results &(q) for three
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TABLE |. Parameters characterizing a selection of charge-stabilized suspensions of spherical particles
investigated, respectively, by Taylor and Ackerg$@f], Hart et al.[22], and Muler [21]. For clarity, these
samples are denoted as in the original references. Particle diameteumber densityn; volume fraction,
d=mnc’/6; total screening parameter, coupling factorK ; effective valencyZ; effective surface potential,
Yo=[4KI(Bea) 2.

Taylor and Ackerson Miller

Parameters B C D Hartl et al. ST WX YZ
o (nm) 109 109 109 80 100 100 100
nx107° nm=3 6.0 5.2 5.3 1.95 2.2 2.4 25
dx107°3 4.1 3.5 3.6 0.52 1.15 1.28 1.3
KO 0.574 0.248 0.173 0.22 0.9 0.7 0.28
K 500 619 741 1002 358 860 708
Z 360 350 370 373 329 475 364
o (MV) 92 103 113 151 82 127 115
qmo 1.36 1.30 1.30 0.69 1.05 0.96 0.93

aqueous suspensions of charged latex spheres investigatedthity determined structure factor. It is interesting to note that
Taylor and Ackersof20]. The system parameters character-Sy(q) is nearly identical toS(q). The only differences be-
izing these samples are listed in Table I. Sample® have tween the two functions are observedgt g, and, most
been treated by ion exchange resins, so that essentially algnificantly, atq~0, where Sy(q) becomes larger than
excess ions have been removed. This gives rise to very lo\8(q).
osmotic compressibility, i.e., very low values 8fq=0) as We proceed now to discuss our theoretical results for
shown in Fig. 1. A(q) andAp(q) in comparison with the experimental find-
Another careful study of the relaxation of the dynamicings. Figure 4 shows our MCA results for the deionized
structure factor was done very recently by'IMu[21]. In  samplesB-D investigated by Taylor and Ackersdr20].
Fig. 2 we display the RMSA fit results o(q) for his  The graphs going to zero witd(q?) for q—0 correspond to
samples(id83)ST, (id83)WX, and (id83)YZ, calculated for treating these systems as ideally monodisperse, whereas the
system parameters as quoted in Table I. There are residuather three graphs are obtained by assuming a polydispersity
salt ions left in samples ST and WX, leading to less pro-of s=0.05. The predictions of the mode-coupling theory
nounced variations 08(q) and an enhanced osmotic com- used in this work are that both(q) andA(qg) have a local
pressibility. minimum (maximum nearq=q,, (q=1.59,,) and both are
Similar experiments have been performed byrtHat al.  declining with increasing for q>1.5q,,,. Most importantly,
[22] on dilute suspensions of polymer colloid particles.very small amounts of size polydispersity can give rise to a
These authors estimated the polydisper§ig, relative stan- dramatic difference betweef(q) and Ap(q) for g<qy,.
dard deviatioh as s=0.062. A comparison betwee®(q),  This difference can qualitatively be understood by extending
corresponding tes=0, and the measurable static structurethe reasoning given in Sec. IV following E@53): since
factor Sp(q) evaluated in decoupling approximatidfor  S(q)<1 for g<q,, (in deionized suspensionst follows that
s$=0.062 is presented in Fig. 3. Also shown in this figure is
the form factorP(q)=b(qo/2)?, with b(x) as defined fol- 3
lowing Eq.(43). BothS(q) andSp(q) are obtained using the
RMSA, with the RMSAS(q) being fitted to the experimen-

S{q)

0 1 2 3
Q/4n

FIG. 3. Comparison between the static structure fa&far),
corresponding to vanishing polydispersity, and the measurable
_ static structure factoB(q) evaluated in decoupling approximation
qd for relative standard deviatios—=0.062. BothS(q) and Sp(q) are

calculated using the RMSA and are plotted verguscaled by the

FIG. 2. RMSA results of5(q) for samples id83STsolid line), position q,,, of the principal peak o5(q). System parameters are
id83WX (dashed ling and id83YZ(dotted ling. The system pa- taken from Hatl et al.[22] and are listed in Table I. The dotted line
rameters are taken from Mer [21] and are listed in Table I. shows the form factoP(q).
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FIG. 6. Measurable nonexponentiality factog(q) for an aque-
FIG. 4. Comparison between the MCA results for nonexponenous suspension of polymer colloid spheres studied byt Ha al.
tiality factors A(q) and Ap(q) versusg/q,, for s=0 and 0.05, [22]. The symbolsC] denote dynamic light scattering data, taken
respectively. The results shown in this figure correspond to samplef§om [22]. Solid line, MCA result with static inpuBp(q) as shown
B (solid line), C (dashed ling andD (dotted ling of Taylor and  in Fig. 3. Dashed line, Brownian dynamics result fo5(q), taken
Ackerson[20]. Note that already a small amount of polydispersity from[22]. The same valus=0.062 has been used in both the MCA
gives rise toAp(q—0)>0. The corresponding RMSA of tg(q)  calculation and in the simulation.

of Fig. 1 are used as static input. . . .
g P good at smally, where polydispersity becomes most impor-

the measurable structure factor is essentially determined ifnt: We notice further that both experiment and theory show
this regime by the second term of E§2). Furthermore, the the e_xpected increase Afy(q) with increasing particle cor-
decay rate of5(q,t) is for smallq approximately given by relz_itlons. At larger, the MCA has the tendency_ to under-
9?DY/S(q), whereas the smadj- decay rate ofG(q,t) is estimate somewhat the amount of honexponentiality created
qZW(t) which is much smaller. The slow decay 6{q,t) by the particle interaction, with the exception of sample
gives rise to a comparatively large valuemj(q), such that  (Cf- also Figs. 6 and)7 _ ,
according to Eq(48), Ap(q<q,,) attains a value close to _Figure 6 displays the calculatefip(q) in comparison

one. In short, the decay &(q,t) atq<g,, is dominated by ~With the corresponding DLS result of Hhet al. [22]. The
self-diffusion. authors also performed Brownian dynami@D) simula-

On the other hand, fag=q,,,, it is the first term(i.e., the  tions to determine(q) and Ap(q) and found a difference
coherent contributionin Eq. (44) that essentially determines P€tween the two fog<gp, in accordance with the present
Sp(a,t), and this finding originates fromX(q)«<9s?<1 findings. In the simulations, hydrodynamic interaction is not
from S(q=q,,) =O(1), andfrom the fact that the decay rate considered and\p(q) is calculated also on the basis of the
of S(q,t) is now of the same order as the one®fq.t). decpupllng approximation fd8y,(q,t). The figure |IIustratgs
This explains whyAp(q) is practically equal ta\(q) when ~ @gain the tendency of the MCA to somewhat underestimate
9>0,. the degree of nonexponentiality. The work of rtiaet al.

In Fig. 5 the experimental results fdi,(qg) of Taylorand ~ Includes, to the best of our knowledge, the only BD data
Ackerson are compared to the calculated ones. The qua|it§_ubllshed so far for the nonexponentiality factor. This is not
tive predictions of the MCA noted above are nicely con-Surprising since BD simulations of collective properties are

firmed by the experiment and the agreement is particularly/€’Y demanding and time consuming when carried over ex-
tensive ranges of times and wave numbers. Therefore, there

is a need for approximations such as the MCA, which give at

least a qualitatively correct description &f(q).
Aplq) The experimental results of Mar [21] are shown in Fig.
08 7 together with the MCA determination df5(q). In calcu-
lating Ap(q) for this figure, we used the inp@&(q) of Fig.
06 2. We find the results of Miler to be well reproduced by our
calculations. For sampléid83)ST, Ap(0) is significantly
sl smaller than one; this system is weakly correlated due to the
' presence of residual salt ions, i.e., it has only a weak struc-
0 ture inS(q) (cf. Fig. 2 and the value foko given in Table
< | ).
In all three sets of experiments the lingjt=0 of Ay(q)
00 ' ’ ' 2 ' 3 was not achieved, although all results seem to indicate that

a/qm Ap(g—0) is indeed finite. To illustrate this point, we have
calculatedA(gq=0) as a function of the polydispersity in-
FIG. 5. Experimental results for the measurable nonexponentidexs for the system parameters corresponding to Figs. 7 and
ality factor of sample® (A), C (O), andD (O) taken from Taylor 2. The results are shown in Fig. 8. They clearly show that in
and Ackersori20]. For comparison, the corresponding MCA results strongly correlatede.g., deionizefdsuspensions already very
for Ap(q) are included, by assuming thsi=0.05. small amounts of polydispersity give rise to a finite value of
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FIG. 7. Experimental results for the nonexponentiality factor of
samples id83ST+), id83WX (L)), and id83YZ(M) as given by £ 9. Continuous Schulz distributiop(o;os) of particle
Muller [21]. Large symbols, data obtained from averaged relaxationy;,es for values of the relative standard deviaioas indicated in
spectra including long-time dynamic light scattering; small sym- figure.
bols, data obtained from temporal integration of the dynamic struc-
ture factor. The MCA results for samples id83%3olid line),
id83WX (dashed ling and id83YZ(dotted ling have been calcu-
lated usings=0.05.

an interaction-free systerfindicated by the superscript),0
which is defined as

0S

™ (0)
the measurable nonexponentiality factor 0. It will A&(Q):l——Tcr(q), (67)
therefore be very difficult, if not impossible, to show experi- M

mentally whether the smadj-limit of the dynamic structure \yith

factor of a one-component system is a single exponential of .

time for allt, which is predicted for truly monodisperse par- 95(q)=—[Sy(q,t=0)]"* (68)

ticles when hydrodynamic interactions are assumed to be

pairwise additive. ObviouslyAp(q) reduces toA(q) for  and

s—0. From Eq.(60), we find thatA(0)~9s%/[D* S*(0)],

provided thatS(0) is small compared to one and that 70 (q)= fmdt %(q 1)

s2<S(0). Forcomparison, our RMSA calculations gi®0) M 0 n

~0.165 for sample ST an8(0)~0.003 for the most strongly

correlated sample YZ. The dynamic structure factor of a size polydisperse system of
The calculations ofA5(q) shown in this work are based noninteracting and uniform particles redds

on the decoupling approximatids,(q,t) for Sy (q,t). This

(69)

approximation predicts a vanishing nonexponentiality factor 1 o 3 2~ q2D% o)t

A8(q) in case of a size polydisperse system of noninteract-Sm(d4:1) = =——— jo do p(o)[a°b(qoi/2)]%e :
ing particles. While this is not exact, we will now show by b*(qo/2)

an exact calculation that % (q)~0 as long as<0.1. Here (70

A$(q) denotes the measurable nonexponentiality factor O{Nith Do) =kgT/(3770) and
— B

) v e b2 = ) 3 2
B i P(a02)- | “do p(o)[obao2 . (71
o8 f LTWX . o
: y In Egs. (70) and (71), p(o) denotes the distribution of par-
sk / | ticle diameters. Forp(o), we chose the two-parametric
i / Schulz distributiorp(o; o;S), characterized by the mean di-

L ametero and the polydispersity indes [8,28]. This distri-
0hE ) ST ] bution function allows for good fits of the experimentally
) determined size distribution in many sorts of colloidal sus-
0z¢ ] | pensiong 8,28]. While other choices exist for the size distri-
/ bution function, the detailed shape of this distribution is not
0 002 00 006 008 o crucial for sufficiently smalk. Figure_ 9 shqws the_ graphs of
s p(o;o;s) for three values o$ as indicated in the figure. The
corresponding results f@%(q,t), plotted versus?D°(o)t,
FIG. 8. MCA results forAp(q=0) as a function of the relative are given in Fig. 10. Large size polydispersity gives rise to a
standard deviatiors for samples id83ST(solid ling), id83WX  slower decay oBY(q,t). We note further that there is only
(dashed ling and id83YZ(dotted line. a minor change in the decay &%(q,t) as long ass is
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FIG. 10. Measurable dynamic structure facg(q,t) of a size
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as far as the calculation of the measurable static structure
factor is concerned. This finding was obtained[28] (cf.
also[8]), where decoupling approximation results f8j(q)
have been tested against a more sophisticated multicompo-
nent calculation o5y,(q) based on a discretized Schulz dis-
tribution of particle sizes. The dynamical properties of inter-
acting colloidal particles are expected to be more affected by
polydispersity than the static ones, which limits the range of
validity of the decoupling approximation to somewhat
smaller values o§. For the example of tracer diffusion, this
is demonstrated also {23].

We point out, however, that all experimental systems con-
sidered in this work are weakly polydisperse wik0.06.
For these small amounts of polydispersity, we expect the
decoupling approximation to be sufficiently good for the cal-

polydisperse system of noninteracting particles. Results for severgulation of the nonexponentiality factor. For larger values of

values ofs are shown as obtained using the continuous Schuls, the decoupling approximation becomes unreliable and one
distribution. has to resort to a more elaborate multicomponent description
for calculating the amount of nonexponentiality. The present
authors are currently extending the MCA scheme proposed
in this work to substantially polydisperse systems and to

mixtures.

From this discussion it should be clear that in a polydis-
perse sample there are two sources of nonexponential behav-
ior of the measurable dynamic structure facgy(q,t): the
one arising from the memory effects and a trivial one that is
already present when the particles are noninteracting. The
above consideration of this trivial contributian},(q) shows
that it is smaller than 0.01 f=0.1 and smaller than 0.003
for s=0.05. These values for the nonexponentiality factor
should be compared with the “nontrivial” ones calculated
for the realistic systems and displayed in Figs. 4-8; these
latter factors are much larger for practically all valuesgof
As a conclusion, the nonexponential behavior of the measur-
able dynamic structure factor, for the systems investigated in
his paper, is almost exclusively due to the memory effects.
In the final part of this section, we investigate how the
nexponential decay of the dynamic structure factor is af-
: i . ; » ““fected by the amount of added electrolyte. Since there is no
least for noninteracting particles, the decoupling approximag, o imental study so far concerning this interesting issue,

tion is gseful whers<0.1_. For the same range of size pon—. our investigations are intended to encourage further work on
dispersity, the decoupling approximation performs suffi-;

. : ; ] it. Let us consider, e.g., the effect of adding salt to the
ciently well also for systems of strongly interacting partlcles,Strongly coupled sampléd83)YZ, investigated by Mler in

the salt-free limit only. The calculated(q) for s=0.05
and various concentratioms of added 1-1 electrolyte, rang-
ing from O to 100uM, are shown in Fig. 1@). For com-
parison, the corresponding results for vanishing polydisper-
sity are displayed in Fig. 1B). From these figures, we
observe that adding salt leads to a drastic decrease in the
magnitude of the nonexponential decay of the dynamic scat-
tering functionsS(q,t) and Sy(q,t). In particular, the local
minimum (maximum at q~gq,, (q~1.5q,,) is disappearing
with increasingng.

From Fig. 13, which shows the radial distribution function
g(r) for values ofng corresponding to Figs. 18 and 12b),

sufficiently small, says<0.1. This finding is mirrored in
Fig. 11, where results fak §,(q) are shown for various. As
noted aboveA %(q) is very small whers<0.1. Indeed, the
nonexponentiality factor is maximal fay=0. It is easy to
show that
62
AY(0)=1- i s?,

<0_5><0,7> ~ (72)

with

(o™= f;do p(o;0;s)o" (73

denoting thenth moment of the size distribution. The ap-
proximate equality on the right-hand side of Eg_2) is valid
for smalls only. t
The limiting case of noninteracting particles was used
here as the most simple test for assessing the range of valigy)
ity of the decoupling approximation. It is fair to state that, at

0.06 T T T T T T
AQ(q)

005

0.04

FIG. 11. Measurable nonexponentiality factdf,(q) corre-
sponding to Fig. 10.

we find that the two-particle correlations become signifi-
cantly reduced with increasing salt, the height of the princi-
pal peak ofg(r) decreases, and the peak position is shifted
towards smaller distances. As a result, the correlation-
induced particle caging becomes less pronounced, giving rise
to a smaller nonexponentiality factor.
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Apla) \

60 80 100

(a) 9/ 0 20 40
ne (M]

1 T T T T T
bla) FIG. 14. RMSA results of sample id83YZ & (0) (solid line)
and forS(0) (dotted ling as functions of the concentration of added

1-1 electrolyteng.

tweenSp(0) and S(0) becomes very small at larger amounts

051 RN e~ =
74 " ~N

4 - T T of salt. According to Eq(60), Ap(0) depends explicitly on

/ B e - B the normalized long-time self-diffusion coefficient. Figure 15
/,}/‘-:./'ﬁéz“)'é,‘?.:\\'fv_—»::1:fi;flf ST contains our finding foD* as a function ofng, calculated

I ST e e from solving Eq. (63) for the parameters of sample

(b) 9/qm (id83)YZ. The effect of adding salt is to enhance the self-

diffusion at long times, i.e., for correlation timés 7, .

FIG. 12. (a) Nonexponentiality factoAp(q) of sample id83YZ

for s=0.05. Comparison of the theoretical results for various con- VI. CONCLUDING REMARKS

centration:ng of added 1-1 electrolyte, ranging from O to 1pM.

The remaining system parameters are the same as in Talilg |. In the present work, we have used a mode-coupling ap-

Same as ina), but for s=0. proximation for calculating the nonexponentiality factce-
duced memory function On the basis of the decoupling ap-

Most sensitive to the presence of salt ions is the longproximation, we have extended the theory to moderately

wave-number limit ofAp(q), which strongly decreases on polydisperse suspensions. From the comparison of the theo-
retical results with available experimental data, the overall

increasingn,. In fact, at smallg the effect of polydispersity
becomes less important when salt is added, i.e.agreement is considered to be satisfactory. We point out
again that the present treatment of the dynamics introduces

Ap(g)=A(q) is found already for values af/qg,, smaller
than one. This finding can easily be understood consideringig adjustable parameter. The only input is the static structure

Egs.(52) and(60). The smallg limits of S(q) andSp(q) are  factor, which was chosen to fit the static light scattering data.
very sensitive to the salt concentration as can be observed oyr analysis has shown that already a very small amount
from Fig. 14, where5(0) and Sy (0) are found to increase on of polydispersity leads to a finite value @fp(q=0) in

increasingns . Adding salt gives more weight to the first term strongly correlated systems and that the effect of polydisper-

in Eq. (52), since its magnitude and decay rate are proporsjty on the nonexponential decay of concentration fluctua-
tions is most pronounced at small wave numbers. Further-

tional, respectively, t0S(0) and S(0)"%. Thus, Ap(0) de-

creases strongly on increasing. more, we have found that the strength of the nonexponential
We can reach the same conclusion from Ef) and by  decay is significantly affected by the amount of added elec-

noting that the relative differenckSp(0)—S(0)|/S(0) be-  trolyte. Enlarging the salt concentration gives rise to smaller

05
02}

0 . . . .
40 60 80 100
ns [UM]

t
5

0 3

FIG. 13. RMSA results for the radial distribution functigr) FIG. 15. Mode-coupling result for the normalized long-time
for the same amounts of added 1-1 electrolyte as in Fig. 12. self-diffusion coefficienD* of sample id83YZ as a function of.
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values of Ap(q=0) and to larger values of the long-time pronounced than for a suspension of hard spheres at the same
self-diffusion coefficient. volume fraction.

In spite of the good qualitative agreement found between Contrary to hard sphere suspensions, wigme attains
our theoretical approach and the experiment, there remaiits maximum at contact distance, i.e., ato", g(r) for
some quantitative deviations. In particular, at larger wavecharged particles remains essentially zero for separations
numbers our MCA results have the tendency to underesticomparable to the Debye-ldkel screening length. There-
mate somewhat the amount of nonexponentiality when théore! in dilute charg_e-stabllllzed suspensions at sufficiently
system is strongly correlated. The quantitative agreemerl_PW ionic strength, it is possible to only account for the lead-

with the experimental data might be further improved byM9 far-_field _contributio_n_ of the hydrodynamic interactions,
attempting a full self-consistent solution of the mode-Which is pairwise additivei8,10,29. This should be con-

coupling scheme. However, before getting involved into thiStrasted with suspensions of strongly correlated hard spheres,

numerically very demanding task, it is necessary to investiyvhere one needs to consider many-body hydrodynamic in-

’ ” : L teractions.
ate first the additional influence of hydrodynamic interac- .
g y y The present authors are currently extending the MCA

tions on the nonexponential relaxation ,1). Hydrody- . ) 4 L
P $(q,0). Hy Y cheme of this work to include, besides potential interac-

namic interactions have been ignored in the present wor : lso the far-field tributi f the hvdrod S
since from the theoretical point of view it is important to tons,t_a SO gtar— e tpor_ltrl_ l;I'on orthe ny rodyna[r)nﬂc In-
understand first the effects of direct interactions on the suseractions and to quantify its influence dp(q) and onD s.

pension dynamics Our preliminary calculations indicate that(q) andD | are

Effects of the hydrodynamic interactions have been fre_mdeed influenced to some extent by the hydrodynamic inter-

guently considered in the past to be negligible in the case Ozrlctions. Thgsg calculatiqns indicate further that our findings
dilute suspensions of charged particles, for the reason th the qualitative behavior QXD(Q). remain esgenually un-
the strong electrostatic forces keep the particles far apart. O anged when also hydrodynamic interparticle forces are
the other hand, recent theoretical investigations have clearlflons'dered'
demonstrated for such suspensions that hydrodynamic inter-

actions are important, in particular with regard to the small-

limit of the hydrodynamic functiotd (q) [8,10,29,30 and to Helpful discussions with Jgen Muler and Andrea Fer-
the long-time self-diffusion coefficiefB1]. For example, for rante are gratefully acknowledged. This work has been sup-
a charge-stabilized suspension the effect of hydrodynamiported by the Deutsche Forschungsgemeinsdi@nt No.
interactions onH(q) was shown to be substantially more SFB 306.

ACKNOWLEDGMENTS

[1] P. N. Pusey, irLiquids, Freezing and Glass Transitipadited 2nd ed.(Academic, New York, 1986
by J.-P. Hansen, D. Levesque, and J. Zinn-Jughiorth- [19] H. W. Jackson and E. Feenberg, Rev. Mod. PI84. 686
Holland, Amsterdam, 1991 (1962.
[2] P. N. Pusey and R. J. A. Tough, Bynamic Light Scattering: [20] T. W. Taylor and B. J. Ackerson, J. Chem. Phg8, 2441
Application of Photon Correlation Spectroscomdited by R. (1985.
Pecora(Plenum, New York, 1986 [21] J. Miler, Ph.D. thesis, UniversitKiel, Germany, 1993un-
[3] W. Hess and R. Klein, Adv. Phy82, 173(1983. published.
[4] B. J. Berne, inStatistical Mechanics: Part Aedited by B. J.  [22] W. Hartl, H. Versmold, U. Wittig, and P. Linse, J. Chem.
Berne(Plenum, New York, 1977 Phys.97, 7797(1992.
[5] G. Szamel and H. Lwen, Phys. Rev. A4, 8215(1991). [23] G. Nagele, T. Zwick, R. Krause, and R. Klein, J. Colloid In-
[6] B. Cichocki and W. Hess, Physica 241, 475 (1987). terface Scil61, 347 (1993.
[7] B. J. Ackerson, J. Chem. Phy&9, 684 (1978. [24] A. V. Indrani and S. Ramaswamy, Phys. Rev. L&®, 360
[8] G. Nagele, Phys. Repto be published (1994.
[9] R. B. Jones and G. S. Burfield, PhysicalAl, 562 (1982. [25] G. Nagele, M. Medina-Noyola, R. Klein, and J. L. Arauz-Lara,
[10] G. Nagele, O. Kellerbauer, R. Krause, and R. Klein, Phys. Physica A149, 123(1988.
Rev. E47, 2562(1993. [26] E. J. W. Verwey and J. T. G. Overbeéieory of the Stability
[11] B. U. Felderhof and J. Vogel, Physica183 54 (1992. of Lyophobic ColloidgElsevier, Amsterdam, 1948
[12] N. J. Wagner, Phys. Rev. #9, 376 (1994. [27] R. Krause, B. D’Aguanno, J. M. Mendez-Alcaraz, G.gste,
[13] K. Kawasaki, Physica 208 35 (1994. R. Klein, and R. Weber, J. Phys. & 4459(199J).
[14] W. van Megen and S. M. Underwood, Phys. Rev¥:4206  [28] S. R. Aragon and R. Pecora, J. Chem. Pl64.2395(1976.
(1994. [29] G. Nagele, B. Steininger, U. Genz, and R. Klein, Phys. S§j.
[15] W. Gaze, inLiquids, Freezing and the Glass TransitiGRef. 119(19949.
[1]), p. 287. [30] D. Thies-Weesie, A. P. Philipse, G."ygle, B. Mandl, and R.
[16] W. Gaze and L. Sjgren, Rep. Prog. Phy85, 241(1992. Klein, J. Colloid Interface Scil76, 43(1995.
[17] R. J. A. Tough, Mol. Phys46, 465(1982. [31] B. Cichocki and B. U. Felderhof, J. Chem. Phyl, 556

[18] J.-P. Hansen and I. R. McDonald@heory of Simple Liquids (199).



