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The relaxation of density fluctuations in charge-stabilized colloidal suspensions is characterized by the
dynamic structure factorS(q,t), which can be measured by dynamic light scattering. Whereas the short-time
behavior of this quantity is well understood, its characteristics at longer times are more difficult to determine
due to memory effects, which lead to a nonexponential decay ofS(q,t). A suitable measure of the overall
nonexponential decay ofS(q,t) is the reduced memory functionD(q). Formally exact results forD(q) can be
obtained on the basis of the many-body Smoluchowski equation, but for its evaluation one has to introduce
approximations. Earlier calculations ofD(q) based on a particular form of the mode-coupling approximation
were found to be in qualitative disagreement with experimental results. In particular, for monodisperse sus-
pensions it was predicted thatD~q→0!50, whereas positive values forD~0! are extrapolated from experimental
data. It will be shown that surprisingly small amounts of polydispersity can give rise to finite values of the
measured reduced memory function atq50. For this reason, we have improved the mode-coupling approxi-
mation and extended the theory to moderately polydisperse suspensions. Our results are in good qualitative
agreement with available experimental data. We have also studied how the nonexponential decay ofS(q,t) is
affected by the amount of added electrolyte. The reduced memory function is found to depend significantly on
the ionic strength.@S1063-651X~96!08405-9X#

PACS number~s!: 82.70.Dd, 05.20.2y, 05.40.1j

I. INTRODUCTION

Since the invention of dynamic light scattering~DLS!
techniques, one has been able to determine the dynamic
structure factor of colloidal suspensions over a wide range of
time and length scales@1,2#. The dynamic structure factor
S(q,t) of monodisperse suspensions is the autocorrelation
function of microscopic density fluctuations, i.e.,

S~q,t !5
1

N
^dc~q,t !dc~2q,0!&, ~1!

wheredc~q,t!5c~q,t!2^c~q,t!& and

c~q,t !5(
l51

N

e2 iq•Rl ~ t ! ~2!

is the Fourier component of the microscopic particle density
c~r ,t!. HereRl(t) denotes the position vector of thel th col-
loidal particle,q is the scattering wave vector of modulusq,
N is the number of particles in the scattering volumeV, and
^ & denotes the canonical ensemble average. The function
S(q,t50)5S(q) is the static structure factor, which can be
determined by static light scattering experiments. It is related
to the radial distribution functiong(r ) by

S~q!511nE d3r e2 iq–r@g~r !21#, ~3!

with n5N/V. The radial distribution function gives the rela-
tive conditional probability of finding a particle a distancer
apart from another one.

The quantitiesS(q,t) and S(q) are specified once the
particle interactions are known. In colloidal suspensions, one
needs to distinguish two types of interparticle interactions:
direct ~i.e., potential! interactions, which are at the origin of
the equilibrium microstructure as quantified byS(q) and
g(r ), and indirect hydrodynamic interactions. The latter ac-
count for the fact that the velocity field, generated in the
supporting fluid by the motion of one particle, affects that of
the other particles. The suspension dynamics of charged par-
ticles, and henceS(q,t), is influenced both by direct~i.e.,
excluded volume plus electrostatic! and hydrodynamic inter-
actions.

The behavior ofS(q,t) depends crucially on the temporal
and spatial range probed in the scattering experiments. Typi-
cal DLS experiments on colloidal suspensions probe length
scalesl from l52p/q@ r̄ to l, r̄ , where r̄5n21/3 is the
mean interparticle distance. In the first case,S(q,t) is sensi-
tive to long-wavelength density fluctuations, which are typi-
cal of the hydrodynamic regime. In the other limit,S(q,t) is
essentially determined by single-particle dynamics, i.e., self-
diffusion.

Most of the DLS experiments are confined to correlation
times t.1026 s@tB , wheretB5M /z0 is the momentum re-
laxation time of a spherical colloidal particle of massM and
friction coefficientz053phs. Heres is the particle diameter
and h is the shear viscosity of the suspending fluid. For
typical aqueous suspensions, one finds thattB'1029–1028 s.
As a consequence, inertial effects arising from the momen-
tum relaxation of the particles are not resolved, so that only
the relaxation of the particle positions is probed. At the
shortest resolvable times,t'1026 s, the individual particles
have diffused only a distance that is a small fraction of their
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diameters, so that their dynamics is only determined by the
single-particle friction and by the hydrodynamic interactions,
which can be considered to act instantaneously whent@tB
@1#. The configurational relaxation of particles, which gives
rise to a change of the direct interactions, becomes important
at times of the order of the structural relaxation time
t I5s2/D0, whereD05kBT/z

0 is the Stokesian free diffu-
sion coefficient. For typical aqueous suspensions, one finds
that tI'1023 s such that the short-time regimetB!t!t I is
well separated from the long-time regimet@t I .

It is known thatS(q,t) only decays exponentially for all
timest@tB and for the experimentally accessible wave num-
bersq in case of a strongly diluted suspension of noninter-
acting monodisperse particles. For this limiting case, one
finds @1#

S0~q,t !5e2q2D0t, ~4!

where the superscript 0 inS0(q,t) indicates that both direct
and hydrodynamic interactions are vanishingly small. How-
ever, significant direct and hydrodynamic forces among the
particles give rise to an nonexponential decay ofS(q,t), as
long asq is not very small. Physically, this is due to the fact
that the particles get temporarily trapped in the dynamic cage
formed by their next neighbors. The time scale associated
with the onset of caging is of the order of the structural
relaxation timetI .

A phenomenological description of the overall nonexpo-
nential relaxation of density fluctuations can be accom-
plished by using what is known as generalized hydrodynam-
ics @3#. The starting point in a generalized hydrodynamic
description is the continuity equation

]

]t
c̄~r ,t !1“–j̄ ~r ,t !50, ~5!

which relates the particle density to the particle current den-
sity j̄ ~r ,t!, and it expresses the conservation of the number of
particles. The overbar indicates a nonequilibrium average
@3#. Close to thermal equilibrium, one can relate the current
j̄ ~r ,t! to the gradients in the particle density by a nonlocal
extension of the Fickean law

j̄ ~r ,t !52E
0

t

dt8E d3r 8Dc~ ur2r 8u,t2t8!•“8c̄~r 8,t8!.

~6!

This equation states that the averaged current density at po-
sition r and time t arises from gradients of the averaged
particle density at neighboring positionsr 8 and at earlier
times t8<t, as mediated by the phenomenological diffusion
kernelDc~ur u,t!. According to Onsager’s regression hypoth-
esis@4#, S(q,t) can be expected to obey the same evolution
equation as the Fourier componentc̄~q,t! of c̄~r ,t!. Hence,
by taking the Fourier-Laplace transform of Eqs.~5! and ~6!,
we find

S̃~q,z!5E
0

`

dt e2ztS~q,t !5
S~q!

z1q2D̃c~q,z!
, ~7!

whereD̃c(q,z)5q̂•D̃c(q,z)•q̂ is the longitudinal part of the
Fourier-Laplace transform ofDc~r ,t! and q̂5q/q. The wave
vector and frequency~i.e., z! dependence ofD̃c(q,z) will
give rise in general to a dynamic structure factorS(q,t) of
interacting particles that shows a more complicated depen-
dence ont andq than the simple exponential behavior given
by Eq. ~4!.

There is a limiting regime where Eq.~7! leads to an ex-
ponential form forS(q,t). This so-called hydrodynamic re-
gime is characterized by values ofq!qm and oft@t I , with
q2t kept constant at a value of the order of one. We denote
by qm the position of the principle peak of the static structure
factor S(q). Formally this corresponds to the limitq→0,
z→0 with q2/z constant. In the hydrodynamic regime,
S(q,t) is given by

S~q,t !5S~q!e2q2Dc
Lt, ~8!

whereD c
L5D̃c(q→0,z→0) is denoted as the long-time col-

lective diffusion coefficient. The diffusion coefficientD c
L

can be determined in an alternative way from macroscopic
gradient diffusion experiments.

As a phenomenological approach, generalized hydrody-
namics provides no methods to predict the diffusion kernel
D̃c(q,z). This can only be accomplished on the basis of a
microscopic theory that relies on the many-body Smolu-
chowski equation as the appropriate time evolution equation.
Using Mori-Zwanzig projection operator methods, one can
derive a memory equation that expressesS(q,t) in terms of a
memory functionMc(q,t), the latter being closely related to
D̃c(q,z) @3#.

In this study we are concerned with the calculation of a
reduced memory functionD(q) ~also termed a nonexponen-
tiality factor!, which characterizes the deviation ofS(q,t)
from a simple exponential in time. The precise definition of
D(q) is given in the following section. For calculatingD(q),
it is necessary to know the time integral of the memory func-
tion Mc(q,t). For this purpose, we use a version of the
mode-coupling approximation~MCA!, as developed recently
by Szamel and Lo¨wen @5#. Their MCA scheme is based on
earlier work of Cichocki and Hess@6#, where it was shown
thatMc(q,t) can be further reduced in terms of an irreduc-
ible memory function. It is the irreducible memory function
to which the MCA scheme of Szamel and Lo¨wen is applied.

Our MCA results forD(q) will be shown to be in good
qualitative agreement with all available experimental data,
when the theory is extended to account in an approximate
way for size polydispersity. Within this extension, it is also
necessary to know the time integral of the autocorrelation
functionG(q,t) of the microscopic one-particle density. We
have calculated this time integral in a mode-coupling ap-
proximation applied to an irreducible memory function re-
lated toG(q,t). It should be pointed out that size polydis-
persity is present to some extent in almost all colloidal
systems. It is quite remarkable that already small amounts of
polydispersity can give rise to positive values for the small-q
limit of the measurable reduced memory function, in contrast
to a vanishingD~q→0! found for a genuinely monodisperse
suspension.

The direct forces acting between the charged particles are
quite sensitive to the amount of residual salt ions dissolved
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in the suspension. For this reason, and in order to promote
further experimental work, we have also investigated to what
extent the nonexponential decay ofS(q,t) is influenced by
the amount of added electrolyte. We have found that the
reduced memory function depends significantly on the ionic
strength.

In the following section we outline the Smoluchowski dy-
namics of collective diffusion, introduce the concept of the
reduced memory function, and discuss the general properties
of D(q). Section III contains the description of the mode-
coupling approximation used together with another simplify-
ing approximation for calculating the reduced memory func-
tion of monodisperse systems. The effects of intrinsic size
polydispersity are considered in Sec. IV on the basis of what
is known as decoupling approximation. Our results, in com-
parison with experimental and computer simulation data, are
presented and discussed in Sec. V. Section VI contains our
concluding remarks.

II. SMOLUCHOWSKI DYNAMICS
OF COLLECTIVE DIFFUSION

As mentioned in the Introduction, the time and length
scales accessible by DLS experiments are restricted to cor-
relation times t@tB and corresponding distances
l@(D0tB)

1/2. This fact allows for a coarse-grained configu-
ration space description based on the generalized Smolu-
chowski equation~GSE!

]

]t
c~RN,t !5V̂~RN!c~RN,t !, ~9!

where

V̂~RN!5 (
i , j51

N
]

]Ri
•Di j ~R

N!•F ]

]Rj
2bFj G ~10!

is the Smoluchowski operator@1–3#. HereRN5$R1,...,R
N%

denotes the positions of the centers of the spherical particles,
the Di j ~R

N! are diffusivity tensors describing the solvent-
mediated hydrodynamic interactions between particlesi and
j , andFj52]U/]Rj denotes the force that all other~N21!
colloidal particles exert on particlej through potential inter-
actionsU~RN!. The GSE is the time evolution equation for
the configuration space distribution functionc~RN,t!. Using
Eq. ~1!, the dynamic structure factor can be written as

S~q,t !5
1

N
^dc~q!eV̂tdc~2q!&, ~11!

where the angular bracket denotes the canonical ensemble
average

^ &5E dRN•••ceq~R
N!. ~12!

Hereceq~R
N!5exp@2bU~RN!#/*dRN exp@2bU~RN!# is the

equilibrium distribution function. In writing Eq.~11!, it is
understood that the time evolution operator expV̂t acts on
everything to its right, including also the equilibrium distri-
bution function.

By employing Mori-Zwanzig projection operator meth-
ods, one can derive a memory equation forS(q,t) @7#

]

]t
S~q,t !52q2Deff~q!S~q,t !1E

0

t

du Mc~q,t2u!
S~q,u!

S~q!
,

~13!

which is valid for t@tB . In Eq. ~13!

Deff~q!5D0
H~q!

S~q!
~14!

is the effectiveq-dependent short-time collective diffusion
coefficient, which is determined by the hydrodynamic func-
tion @1,2#

H~q!5
1

ND0 (
l , j51

N

^q̂•Dl j ~R
N!•q̂eiq•@Rl2Rj #& ~15!

and by the static structure factorS(q). The hydrodynamic
functionH(q) contains the configuration averaged effect of
the hydrodynamic interactions on the short-time dynamics. It
is a positive definite function, since the 3N33N matrix of
diffusivity tensorsDl j ~R

N! is also positive definite. For neg-
ligibly small hydrodynamic interactionsH(q)51. When hy-
drodynamic interactions are important, thenH(q) becomesq
dependent.

The second term in Eq.~13! does not contribute at short
times tB!t!t I . Therefore, the short-time expression for
S(q,t) is given by

S~q,t !5S~q!e2q2Deff~q!t ~ t!t I !. ~16!

The effective diffusion coefficient reduces, for small wave
numbers q!qm , to the short-time collective diffusion
D c

S5Deff~q→0!, which describes the initial decay of long-
wavelength density fluctuations. In systems with strong re-
pulsive forces, and hence low osmotic compressibility~e.g.,
charge-stabilized suspensions at low ionic strength!, D c

S is
found at finite concentrations to be substantially larger than
the free particle diffusion coefficientD0. We further note that
q2Deff(q) constitutes a contribution to the rate of change of
S(q,t) solely determined by the conserved variablec(q,t),
whereas the additional rate of change due to all other dy-
namical variables is contained in the second~memory! term
in Eq. ~13!, where the collective memory functionMc(q,t)
appears. The memory term describes the caging effect, and
for longer times (t*t I) this term will change the time be-
havior ofS(q,t) as compared to its exponential form in Eq.
~16!.

In the following we discuss general properties of collec-
tive diffusion that are related to the form Eq.~13! of the time
evolution equation ofS(q,t). For this purpose, we do not
need to display here explicitly the microscopic expression of
Mc(q,t), which is given, e.g., in@1#. By taking the Laplace
transform of Eq.~13!, and by comparing with the form of

S̃(q,z) given in Eq.~7!, it follows

D̃c~q,z!5Deff~q!2
M̃ c~q,z!

q2S~q!
, ~17!
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so that the phenomenologically introduced diffusion kernel
D̃c(q,z) is now expressed in terms of microscopically de-
fined quantities. As a result,D c

L can be expressed as

Dc
L5Dc

S2 lim
z→0

lim
q→0

M̃ c~q,z!

q2S~q!
, ~18!

with q2/z kept constant. From Eq.~18! and the mathematical
structure of the GSE, one can easily prove the following
general ordering relation existing between the long-time and
short-time collective diffusion coefficients@8#:

0,Dc
L<Dc

S . ~19!

When only pairwise additive hydrodynamic interactions are
important, it can be shown for smallq that
limq→0Mc(q,t)/q

250 @9#. In this case we need not distin-
guish betweenD c

L andD c
S, i.e., D c

L5D c
S5Dc . Moreover,

from Eq. ~17! follows then

D̃c~q→0,z!5Dc5D0
H~0!

S~0!
, ~20!

so that in the long-wavelength limitS(q,t) is a single expo-
nential function in time, given by Eq.~16! for q→0. A proof
of this result for many-body hydrodynamic interactions does
not exist. The assumption of pairwise additive hydrodynamic
interactions is justified for the important case of dilute
charge-stabilized suspensions at low ionic strength. In these
systems, the particles are kept far apart from each other due
to strong electrostatic forces acting among them@10#. As a
consequence, only the far-field part of the hydrodynamic in-
teractions contributes to the suspension dynamics and this
part is pairwise additive

A suitable measure of the overall nonexponential behav-
ior of S(q,t) is the nonexponentiality factorD(q) defined as
@3#.

D~q!512
tS~q!

t̄~q!
, ~21!

wheretS(q)5@q2Deff(q)#
21 is the characteristic decay time

of the short-time expression Eq.~16! and

t̄ ~q!5E
0

`

dt
S~q,t !

S~q!
5
S̃~q,z50!

S~q!
~22!

is the mean relaxation time ofS(q,t). The definition~21! of
D(q) is such thatD(q)[0 if S(q,t) were a simple exponen-
tial. The nonexponentiality factorD(q) can be rewritten, us-
ing Eqs.~7! and ~17!, as

D~q!512
D̃c~q,0!

Deff~q!
5

M̃ c~q,0!

q2D0H~q!
, ~23!

so that it is essentially determined by the time integral of the
collective memory function. For this reason,D(q) is also
called reduced memory function. Equation~23! implies that
D~q→`!50.

For noninteracting particlestS(q)5 t̄(q)5(q2D0)21 and
henceD(q)50, whereas interactions may give rise to an

overall slower decay ofS(q,t) as compared to its short-time
behavior. Therefore it must generally be true thatt̄ (q)

>tS(q) or, equivalently, that

0<D~q!<1. ~24!

The ordering relation Eq.~24! can be rewritten with Eq.~23!
into the form 0<D̃c(q,0)<Deff(q). A proof of the latter or-
dering relation has been given by Felderhof and Vogel@11#
on the basis of the Smoluchowski dynamics. Notice also that
D̃c(q,z).0 for all z.0. This inequality follows from Eq.~7!
and from the fact that any autocorrelation function is mono-
tonically decaying in time when described within the Smolu-
chowski dynamics @8#. From these properties follow

S̃(q,z).0 andzS̃(q,z),S(q), and these inequalities imply
that D̃c(q,z).0.

Because of Eq.~23!, D~q→0!50 whenever hydrodynamic
interactions can be considered as pairwise additive. How-
ever, finite valuesD~0!.0 are extrapolated from many ex-
perimental data on dilute suspensions of highly charged par-
ticles. As will be explained in Sec. IV, this experimental
observation can be understood by accounting for size poly-
dispersity, which gives rise to an incoherent background of
scattered light.

In the following section we describe howD(q) can be
computed in mode-coupling approximation. Clearly, any re-
alistic approximation forD(q) must be consistent with Eq.
~24!.

III. MODE-COUPLING APPROXIMATION

For the calculation ofD(q), it is necessary to know the
time integral of the collective memory functionMc(q,t). For
simplicity, we will neglect hydrodynamic interactions in cal-
culating D(q). This allows us to use a mode-coupling ap-
proximation in the form developed by Szamel and Lo¨wen
@5#, based on earlier work by Cichocki and Hess@6#. The
latter authors have shown thatM̃ c(q,z), or equivalently
D̃c(q,z), can be further reduced and expressed in terms of a
so-called irreducible collective memory function. Using pro-
jection operator techniques, one obtains the expression@3,6#

D̃c~q,z!5
kBT

S~q!

1

z̃c~q,z!
, ~25!

where

z̃ c~q,z!5z0F11
Dz̃c~q,z!

z0 G ~26!

is a generalized friction function. It consists of the bare fric-
tion coefficientz0, and a contributionDz̃c(q,z) arising from
potential interactions. Note that hydrodynamic interactions
are neglected in Eq.~26!. HereDz̃c(q,z)/z

0 is the Laplace
transform of the irreducible collective memory function
Dzc(q,t)/z

0. This function is related to the memory function
M̃ c(q,z) in Laplace space by

M̃ c~q,z!5q2D0
Dz̃c~q,z!/z0

11Dz̃c~q,z!/z0
. ~27!
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For this function, Cichocki and Hess have derived the exact
result @6#

Dzc~q,t !

z0
5q2b2D0

1

N
^s i~q!eV̂ irrts i~2q!&, ~28!

where si~q! is the microscopic expression for the
momentum-averaged longitudinal stress fluctuations, i.e.,

s i~q!52Q̂c(
l51

N

~ iq•Fl /q
21kBT!e2 iq•r l, ~29!

and

V̂irr~R
N!5Q̂cD

0(
i51

N
]

]Ri
Q̂i•F ]

]Ri
2bFi G•Q̂c ~30!

is denoted as the one-particle irreducible Smoluchowski op-
erator. Moreover,b51/kBT, Q̂c512 P̂c , andP̂c is the pro-
jection operator

P̂c5dc~2q!&
1

NS~q!
^dc~q! ~31!

on the subspace of density fluctuations. In Eq.~30!, there
appears a second operatorQ̂i512 P̂i , where P̂i is defined
for qÞ0 as

P̂i5eiq•Ri&^e2 iq•Ri. ~32!

It can be shown that the irreducible memory function
Dzc(q,t)/z

0 is closely related to the longitudinal component
of the generalized dynamic viscosity function@6#.

It is interesting to note that Eq.~25! has the form of a
Stokes-Einstein relation generalized for interacting particles
to wave vector and frequency dependence. Indeed, neglect-
ing interactions gives rise toS(q)51 and z̃c(q,z)5z0, so
that Eq.~25! reduces toD05kBT/z

0.
The nonexponentiality factor can be expressed in terms of

the time integral of the irreducible memory function by com-
bining Eqs.~25! and ~26! with Eq. ~23!:

D~q!5
Dz̃c~q,0!/z0

11Dz̃c~q,0!/z0
. ~33!

The MCA is now used to obtain a microscopic expression
for Dzc(q,t). We can be rather brief in describing the vari-
ous steps that lead to the MCA expression forDzc(q,t),
since these have been already discussed in detail by Szamel
and Löwen @5#, by Wagner@12#, and by Kawasaki@13#. The
first step of the MCA consists of projecting the longitudinal
stress fluctuationssi(q) in Eq. ~28! onto the subspace
spanned by bilinear products of density fluctuations. The sec-
ond step amounts to a factorization approximation for the
resulting four-point correlation function and replacing the
irreducible operatorV̂ irr by the Smoluchowski operatorV̂.
As a result of these two steps, the MCA expression for
Dzc(q,t) is obtained

Dzc~q,t !

z0
5

V

2~2p!3
E d3kuV~k,q!u2S~k,t !S~ uq2ku,t !,

~34!

whereV denotes the system volume. In Eq.~34! the irreduc-
ible memory function is expressed in terms of the dynamic
structure factor and in terms of the static vertex function

V~k,q!5
~D0!1/2

N3/2S~k!S~ uq2ku! H q

S~q!
^c~k!c~q2k!c~2q!&

2N@ q̂•kS~ uq2ku!1q̂•~q2k!S~k!#J , ~35!

which contains both two-point and three-point correlation
functions.

We have pointed out above that any realistic approxima-
tion for D(q) needs to be consistent with Eq.~24!. The given
MCA expression forDzc(q,t) is positive definite and, ac-
cording to Eqs.~25! and ~33!, this indeed makes the MCA
compatible with Eq.~24! and with the inequalityD̃c(q,z).0
for z.0. Moreover, the MCA applied to the irreducible
memory function allows for the possibility of an ideal glass
transition in colloidal suspensions@5,14–16#.

It should be stressed that the physical compatibility of the
MCA might get lost when it is applied toMc(q,t) instead of
the irreducible memory functionDzc(q,t)/z

0, as already ob-
served in early applications of the MCA to colloidal fluids
@17#. Indeed, Cichocki and Hess@6# and later Kawasaki@13#
have clearly demonstrated that approximations such as the
MCA are performed in a safer way for the irreducible
memory function than forMc(q,t).

We focus now on the three-point correlation function in
Eq. ~35!, which can be expressed in the form

^c~k!c~q2k!c~2q!&5N@221S~q!1S~k!1S~ uq2ku!

1n2ĝ~3!~k,q2k!#, ~36!

whereĝ~3!~k,k8! is the Fourier transform of the static triplet
correlation functiong~3!~r ,r 8! @18#, i.e.,

ĝ~3!~k,k8!5E d3r E d3r 8e2 ik•re2 ik8•r8g~3!~r ,r 8!.

~37!

Three-body correlations are difficult to calculate and require
additional approximations. Following Szamel and Lo¨wen
@5#, we employ as a third approximation the so-called con-
volution approximation in Fourier space@19#

^c~k!c~q2k!c~2q!&5NS~k!S~ uq2ku!S~q!. ~38!

Substitution of Eq.~38! into Eq. ~35! leads to the expression

V~k,q!5S nD0

V D 1/2@ q̂•kc~k!1q̂•~q2k!c~ uq2ku!#

~39!

for the vertex function. Herenc(k)512S21(k) andc(k) is
the Fourier transform of the Ornstein-Zernike direct correla-
tion function. This quantity should not be confused with the
microscopic densityc~q!. The form of the vertex function in
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Eq. ~39! has been successfully used in the study of the glass
transition in simple fluids and of colloidal suspensions
@5,13–16#.

The MCA becomes exact in the weak coupling limit. In
this limit, the particles are assumed to interact by a weak and
continuous pair potentialu(r ), with bu(r )!1. Ackerson@7#
has derived the exact weak coupling expression for the
memory functionMc(q,t). It is easily seen that the weak
coupling limit is recovered from Eqs.~34! and~39! by noting
that Mc(q,t)5q2D0Dzc(q,t)/z

01O(u4), c(q) reduces to
2bu(q) to first order inu, and S(q,t)5exp~2q2D0t! to
zeroth order inu.

Equations~39!, ~34!, ~25!, and ~7! form a closed set of
equations from whichS(q,t) could, in principle, be calcu-
lated self-consistently with the static structure factorS(q) as
input. However, a full self-consistent calculation would be
very tedious, particularly since one part of the equations is
expressed in the time domain and the other part in the space
of Laplace transforms.

Instead of solving this complicated nonlinear problem, we
rather consider a simplified version, which amounts to re-
placing the dynamic structure factor under the integral in Eq.
~34! by its short-time expression, i.e., byS(q,t)
5S(q)exp@2q2D0t/S(q)#. This allows one to perform the
angular integration to obtain
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wherek85uq2ku5Aq21k222qkm andm5q̂•k̂. The time
integral of this expression gives
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~41!

The functionD(q) is then calculated using Eq.~33!. There-
fore,D(q) is solely expressed in terms of the static structure
of the suspension.

A related procedure to determineD(q) has been used by
Hess and Klein@3#, who based their calculation on the
Fokker-Planck equation in the overdamped limit and made
use of a somewhat different mode-coupling ansatz for
Dzc(q,t), which gives rise to a vertex functionV~k,q! dif-
ferent from the one in Eq.~39! ~cf. also@12#!. Their result for
D(q) has been compared to experiments, but particularly for
small q no good agreement was found. This finding raised
some doubts on the validity of the MCA@20#.

We will show that the version of MCA based on the ver-
tex function in Eq.~39! gives results forD(q), which com-
pare favorably with available experimental data. The com-
parison is particularly good for smallq when polydispersity
effects are taken into account. The experimental data seem to

extrapolate in general to a finite value ofD(q) as q→0
@20–22#, whereas theory predicts thatD(q)5O(q2) for
q→0 as long as the suspension is genuinely monodisperse.
We will show in the following that even small amounts of
polydispersity can give rise to a finite value of the~measur-
able! nonexponentiality factor.

IV. POLYDISPERSITY EFFECTS

A polydisperse suspension can be described as an
m-component mixture. In DLS experiments, a measurable
dynamic structure factor is determined, which reads@1,2,8#

SM~q,t !5
1

f 2~q!
(

a,b51

m

~xaxb!1/2f a~q! f b~q!Sab~q,t !.

~42!

HereSab(q,t) is the correlation function of density fluctua-
tions of componentsa and b, and f a(q) is the scattering
amplitude of particles of componenta, described by

f a~q!5Dnpsa
3b~qsa/2!. ~43!

In this expression,Dnp is the particle refractive index relative
to the solvent andsa and xa5Na/N are, respectively, the
particle diameter and molar fraction of componenta. The
form amplitudeb(qsa/2) of ana-type homogeneous spheri-
cal particle is given byb(x)53 j 1(x)/x, where j 1(x) is the
spherical Bessel function of first order.

In the following we will restrict our analysis to the impor-
tant case where the distribution of the particle diameters is
rather narrowly peaked around a mean diameters̄. Then, it
is possible to neglect the effects of polydispersity on the
correlation functionsSab(q,t) and to consider only the size
related scattering polydispersity described by thef a(q).
With this assumption the measurable dynamic structure fac-
tor reduces to what is known as decoupling approximation
@1,2,8,23#

SM~q,t !'SD~q,t !5@12X~q!#S~q,t !1X~q!G~q,t !,
~44!

where

X~q!512
f̄ ~q!2

f 2~q!
'9s2 ~45!

ands5(^s2&2s̄2)1/2/s̄ is the relative standard deviation of
the distribution of particle diameters. Furthermore,

f n~q!5 (
a51

m

xa f a
n~q! ~46!

is the nth moment of the distribution of scattering ampli-
tudes. The function X(q) is bounded according to
0<X(q)<1 and, for smalls, is well approximated by 9s2 as
expressed in Eq.~45!.

The self-intermediate scattering functionG(q,t), appear-
ing in Eq. ~44!, is the autocorrelation function of the micro-
scopic one-particle density, i.e.,

G~q,t !5^eiq•@R1~ t !2R1~0!#&, ~47!
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where the index 1 refers to a representative particle. Both
S(q,t) andG(q,t) on the right-hand side of Eq.~44! corre-
spond to the effective monodisperse system for which all
particles are of the same diameters̄ @1,2,8#. The first term on
the right-hand side of~44! is due to interparticle correlations
and will therefore be addressed as the coherent part. The
second term in~44! proportional toG(q,t) arises from single
particle diffusion and leads to an incoherent scattering con-
tribution. Hence we refer to it as the incoherent part. We will
show in the following that the incoherent part strongly influ-
ences the nonexponential decay of the dynamic scattering
function particularly whenq is small.

It is now crucial to realize that it is the nonexponentiality
factor DD(q) of SM(q,t)'SD(q,t), and notD(q), that is
determined in conventional DLS experiments. Similar to Eq.
~21!, DD(q) is defined as

DD~q!512
tD
S~q!

t̄D~q!
, ~48!

where t D
S(q)5SD(q)/(q

2D0) is the relaxation time of
SD(q,t) at short times, as obtained from a first cumulant
analysis ofSD(q,t). This should be contrasted with the re-
laxation time tS(q)5S(q)/(q2D0) for the monodisperse
case. The ratio of the two relaxation times is

tD
S~q!

tS~q!
5
SD~q!

S~q!
'119s2S 1

S~q!
21D , ~49!

showing that the initial relaxation ofSD(q,t) is faster than
that ofS(q,t) for those valuesq for which S(q),1.

The expression found fort D
S(q) is also due to the short-

time expression forG(q,t), which is given by exp~2D s
Sq2t!.

HereD s
S is the short-time self-diffusion coefficient, which is

equal to the free diffusion coefficientD0 when hydrody-
namic interactions are neglected. The mean relaxation of
SD(q,t) is characterized, in analogy to Eq.~22!, by

t̄ D~q!5E
0

`

dt
SD~q,t !

SD~q!
5
S̃D~q,0!

SD~q!
, ~50!

with

S̃D~q,0!5@12X~q!#S̃~q,0!1X~q!G̃~q,0!. ~51!

It can easily be seen from Eq.~44! that polydispersity will
alter the previous results for the nonexponentiality factor, in
particular at small values of q. For q!qm ,
G(q,t)5exp@2q2W(t)# andSD(q,t) can then be written in
the form

SD~q,t !'~129s2!S~0!expF2q2
D0

S~0!
t G

19s2 exp@2q2W~ t !#, ~52!

wheres!1 and

W~ t !5 1
6 ^@R1~ t !2R1~0!#2& ~53!

denotes the particle mean square displacement. The limiting
behavior of W(t) is W(t)'D s

St for tB!t!t I and

W(t)'D s
Lt for t@t I , whereD s

Lt denotes the long-time self-
diffusion coefficient. It can be shown thatD s

S.D s
L @8#,

which is due to the hindrance of the Brownian motion of a
particle by its direct and hydrodynamic interactions with
neighboring particles. The relative osmotic compressibility
S~0! of a strongly correlated system is very small~of order
1022!. Therefore, the more slowly decaying second term in
Eq. ~52!, which represents the incoherent scattering contri-
bution@1,2#, is particularly important and gives rise to values
DD~0!.0, as suggested by the experiment.

The time integral ofS(q,t) can be expressed in terms of
D(q) using Eqs.~7! and ~23! as

S̃~q,0!5
S2~q!

q2D0@12D~q!#
. ~54!

Since from Eqs.~48! and ~50!

DD~q!512
SD
2 ~q!

q2D0S̃D~q,0!
, ~55!

the only quantity needed besidesD(q) to calculate the mea-
surable nonexponentiality factorDD(q) is the time integral
G̃(q,0) of the self-intermediate scattering function. It is ob-
tained by a projection operator method, similar to the one
used for the collective case. We only outline here the major
steps. First, the Laplace transform ofG(q,t) is expressed,
similar to Eq.~7!, in terms of a generalized wave-number-
and frequency-dependent self-diffusion functionD̃s(q,z) ac-
cording to@3#

G̃~q,z!5
1

z1q2D̃s~q,z!
. ~56!

From the general properties of the Smoluchowski equation it
follows that D̃s(q,z) is positive definite forz.0. The self-
diffusion functionD̃s(q,z) is related to the longitudinal part
of the generalized self-friction functionz01Dz̃s(q,z) by

D̃s~q,z!5
kBT

z01Dz̃s~q,z!
, ~57!

where the nontrivial partDz̃s(q,z) arises from the potential
interactions~hydrodynamic interactions are neglected in this
work!.

The hydrodynamic limit of the generalized diffusion func-
tion is equal to the long-time self-diffusion coefficient, i.e.,
D s

L5limz→0limq→0D̃s(q,z), and with Eq.~57! follows

D*5F11
Dz̃s~0,0!

z0 G21

, ~58!

whereD*5D s
L/D0 denotes the normalized long-time self-

diffusion coefficient. We are now in the position to show
explicitly that DD~0!Þ0. To this end, we combine the rela-
tion

q2D0G̃~q,0!511
Dz̃s~q,0!

z0
~59!
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with Eq. ~55!. By observing Eq.~58! and noting that
D~0!50, the following result is obtained:

DD~0!512
SD
2 ~0!

@12X~0!#S2~0!1X~0!/D*
, ~60!

which relatesDD~0! to D* and to static quantities. From this
expression the measurable nonexponentiality factor is seen to
be nonvanishing provided thats.0.

To obtainDD(q), we need to know the normalized self-
friction functionDzs(q,t)/z

0, which is the one-particle irre-
ducible memory function in case of self-diffusion. To be
consistent with our earlier treatment ofDzc(q,t)/z

0, this
function will also be evaluated in the MCA. We will employ
the following~positive definite! MCA expression, which was
derived by Hess and Klein@3# ~cf. also@17,24#!:

Dzs~q,t !

z0
5

nD0

~2p!3
E d3k~ q̂•k!2c2~k!G~ uq2ku,t !S~k,t !.

~61!

The MCA expression given here relates the irreducible
memory function to a convolution-type integral over the self-
and collective correlation functionsG(q,t) and S(q,t),
weighted by a static vertex function proportional to the
square of the direct correlation function. Similar to the col-
lective case, the MCA expression forDzs(q,t)/z

0 becomes
exact in the weak coupling limit.

A closed set of equations forS(q,t) andG(q,t) is given
by combining Eqs.~7!, ~25!, ~34!, and ~39! describing col-
lective diffusion with the corresponding Eqs.~56!, ~57!, and
~61! for self-diffusion. Instead of attempting this fully self-
consistent calculation, we have calculatedD(q) as explained
in Sec. III @cf. Eqs.~33! and~41!#. The integral on the right-
hand side of Eq.~61! is approximated by substitutingS(q,t)
once again by its short-time expression, whereasG(q,t) is
replaced by its limiting hydrodynamic form
exp~2q2D0D* t!. One can now perform the time integral
and the angular integrations to obtain

Dz̃s~q,0!

z0
5

n

~2p!2
E
0

`

dk@k2c~k!#2S~k!

3E
21

1

dm
m2

k2/S~k!1k82D*
, ~62!

wherek85(q21k222qkm)1/2. Substitution of Eq.~62! into
Eq. ~58! gives the self-consistent equation

D*5F11
1

6p2n E
0

`

dk k2
@S~k!21#2

11D*S~k!G21

, ~63!

which can be solved iteratively for the unique solutionD*
@25#. This completes our calculation of the nonexponentiality
factor DD(q) for a polydisperse suspension in decoupling
approximation. The only input needed is the static structure
factor S(q) or, equivalently, the direct correlation function
c(q).

V. RESULTS AND DISCUSSION

Our theoretical results for the nonexponential relaxation
of density fluctuations have been applied to strongly corre-
lated charge-stabilized suspensions, which have been inves-
tigated recently using DLS. These systems can be conve-
niently described by the effective macroion fluid model. In
this model, the effective pair potentialu(r ) between two
particles consists of a hard core diameters and a screened
Coulomb potential

bu~r !5Ks
e2k~r2s!

r
~64!

for r.s. The dimensionless coupling constantK is given,
within the Derjaguin-Landau-Verwey-Overbeek theory, by
@26#

K5
LB
s S Z

11ks/2D
2

, ~65!

with LB5e2/ekBT being the Bjerrum length,e the elemen-
tary charge, ande the dielectric constant of the suspending
solvent. The effective charge~in units of e! of a colloidal
particle is denoted byZ. The equation

k254pLB@nuZu12ns# ~66!

defines the Debye-Hu¨ckel screening parameterk, wherens is
the number density of an added 1-1 electrolyte and the coun-
terions are assumed to be monovalent.

The only input needed to calculateD(q) andDD(q) is the
static structure factorS(q). We have calculatedS(q) from
the pair potential Eq.~64! by using the rescaled mean spheri-
cal approximation~RMSA!. This integral equation method
has been found to be an efficient fitting device of experimen-
tally determined structure factors@8,27#. The parameters in
Eqs. ~64!–~66! are chosen to correspond to several experi-
ments that have been performed to determine the nonexpo-
nentiality factor. The effective chargeZ used in our calcula-
tions is determined from fitting the peak height of the
calculatedS(q) to the experimentally determined one. This
fitting procedure leads to an optimized static input.

Figure 1 shows the RMSA fit results ofS(q) for three

FIG. 1. RMSA results of the static structure factorS(q) for
samplesB ~solid line!, C ~dashed line!, andD ~dotted line!. The
wave numberq is scaled by the mean particle diameters̄. The
system parameters are taken from the experimental work of Taylor
and Ackerson@20# and are summarized in Table I.
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aqueous suspensions of charged latex spheres investigated by
Taylor and Ackerson@20#. The system parameters character-
izing these samples are listed in Table I. SamplesB–D have
been treated by ion exchange resins, so that essentially all
excess ions have been removed. This gives rise to very low
osmotic compressibility, i.e., very low values ofS(q50) as
shown in Fig. 1.

Another careful study of the relaxation of the dynamic
structure factor was done very recently by Mu¨ller @21#. In
Fig. 2 we display the RMSA fit results ofS(q) for his
samples~id83!ST, ~id83!WX, and ~id83!YZ, calculated for
system parameters as quoted in Table I. There are residual
salt ions left in samples ST and WX, leading to less pro-
nounced variations ofS(q) and an enhanced osmotic com-
pressibility.

Similar experiments have been performed by Ha¨rtl et al.
@22# on dilute suspensions of polymer colloid particles.
These authors estimated the polydispersity~i.e., relative stan-
dard deviation! as s50.062. A comparison betweenS(q),
corresponding tos50, and the measurable static structure
factor SD(q) evaluated in decoupling approximation~for
s50.062! is presented in Fig. 3. Also shown in this figure is
the form factorP(q)5b(qs/2)2, with b(x) as defined fol-
lowing Eq.~43!. BothS(q) andSD(q) are obtained using the
RMSA, with the RMSAS(q) being fitted to the experimen-

tally determined structure factor. It is interesting to note that
SD(q) is nearly identical toS(q). The only differences be-
tween the two functions are observed atq5qm and, most
significantly, at q'0, where SD(q) becomes larger than
S(q).

We proceed now to discuss our theoretical results for
D(q) andDD(q) in comparison with the experimental find-
ings. Figure 4 shows our MCA results for the deionized
samplesB–D investigated by Taylor and Ackerson@20#.
The graphs going to zero withO(q2) for q→0 correspond to
treating these systems as ideally monodisperse, whereas the
other three graphs are obtained by assuming a polydispersity
of s50.05. The predictions of the mode-coupling theory
used in this work are that bothD(q) andDD(q) have a local
minimum ~maximum! nearq5qm (q51.5qm) and both are
declining with increasingq for q.1.5qm . Most importantly,
very small amounts of size polydispersity can give rise to a
dramatic difference betweenD(q) and DD(q) for q,qm .
This difference can qualitatively be understood by extending
the reasoning given in Sec. IV following Eq.~53!: since
S(q)!1 for q!qm ~in deionized suspensions!, it follows that

TABLE I. Parameters characterizing a selection of charge-stabilized suspensions of spherical particles
investigated, respectively, by Taylor and Ackerson@20#, Härt et al. @22#, and Müller @21#. For clarity, these
samples are denoted as in the original references. Particle diameter,s ; number density,n; volume fraction,
F5pns3/6; total screening parameter,k; coupling factor,K; effective valency,Z; effective surface potential,
c05@4K/~bes!#1/2.

Parameters

Taylor and Ackerson

Härtl et al.

Müller

B C D ST WX YZ

s ~nm! 109 109 109 80 100 100 100
n31029 nm23 6.0 5.2 5.3 1.95 2.2 2.4 2.5
F31023 4.1 3.5 3.6 0.52 1.15 1.28 1.3
ks 0.574 0.248 0.173 0.22 0.9 0.7 0.28
K 500 619 741 1002 358 860 708
Z 360 350 370 373 329 475 364
c0 ~mV! 92 103 113 151 82 127 115
qms 1.36 1.30 1.30 0.69 1.05 0.96 0.93

FIG. 2. RMSA results ofS(q) for samples id83ST~solid line!,
id83WX ~dashed line!, and id83YZ~dotted line!. The system pa-
rameters are taken from Mu¨ller @21# and are listed in Table I.

FIG. 3. Comparison between the static structure factorS(q),
corresponding to vanishing polydispersity, and the measurable
static structure factorSD(q) evaluated in decoupling approximation
for relative standard deviations50.062. BothS(q) andSD(q) are
calculated using the RMSA and are plotted versusq scaled by the
positionqm of the principal peak ofS(q). System parameters are
taken from Ha¨rtl et al. @22# and are listed in Table I. The dotted line
shows the form factorP(q).
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the measurable structure factor is essentially determined in
this regime by the second term of Eq.~52!. Furthermore, the
decay rate ofS(q,t) is for smallq approximately given by
q2D0/S(q), whereas the small-q decay rate ofG(q,t) is
q2Ẇ(t), which is much smaller. The slow decay ofG(q,t)
gives rise to a comparatively large value oft̄D(q), such that
according to Eq.~48!, DD(q!qm) attains a value close to
one. In short, the decay ofSD(q,t) atq!qm is dominated by
self-diffusion.

On the other hand, forq>qm , it is the first term~i.e., the
coherent contribution! in Eq. ~44! that essentially determines
SD(q,t), and this finding originates fromX(q)}9s2!1,
from S(q>qm)5O(1), andfrom the fact that the decay rate
of S(q,t) is now of the same order as the one ofG(q,t).
This explains whyDD(q) is practically equal toD(q) when
q.qm .

In Fig. 5 the experimental results forDD(q) of Taylor and
Ackerson are compared to the calculated ones. The qualita-
tive predictions of the MCA noted above are nicely con-
firmed by the experiment and the agreement is particularly

good at smallq, where polydispersity becomes most impor-
tant. We notice further that both experiment and theory show
the expected increase ofDD(q) with increasing particle cor-
relations. At largerq, the MCA has the tendency to under-
estimate somewhat the amount of nonexponentiality created
by the particle interaction, with the exception of sampleB
~cf. also Figs. 6 and 7!.

Figure 6 displays the calculatedDD(q) in comparison
with the corresponding DLS result of Ha¨rtl et al. @22#. The
authors also performed Brownian dynamics~BD! simula-
tions to determineD(q) andDD(q) and found a difference
between the two forq,qm in accordance with the present
findings. In the simulations, hydrodynamic interaction is not
considered andDD(q) is calculated also on the basis of the
decoupling approximation forSM(q,t). The figure illustrates
again the tendency of the MCA to somewhat underestimate
the degree of nonexponentiality. The work of Ha¨rtl et al.
includes, to the best of our knowledge, the only BD data
published so far for the nonexponentiality factor. This is not
surprising since BD simulations of collective properties are
very demanding and time consuming when carried over ex-
tensive ranges of times and wave numbers. Therefore, there
is a need for approximations such as the MCA, which give at
least a qualitatively correct description ofDD(q).

The experimental results of Mu¨ller @21# are shown in Fig.
7 together with the MCA determination ofDD(q). In calcu-
lating DD(q) for this figure, we used the inputS(q) of Fig.
2. We find the results of Mu¨ller to be well reproduced by our
calculations. For sample~id83!ST, DD~0! is significantly
smaller than one; this system is weakly correlated due to the
presence of residual salt ions, i.e., it has only a weak struc-
ture inS(q) ~cf. Fig. 2 and the value forks given in Table
I!.

In all three sets of experiments the limitq→0 of DD(q)
was not achieved, although all results seem to indicate that
DD(q→0) is indeed finite. To illustrate this point, we have
calculatedDD(q50) as a function of the polydispersity in-
dexs for the system parameters corresponding to Figs. 7 and
2. The results are shown in Fig. 8. They clearly show that in
strongly correlated~e.g., deionized! suspensions already very
small amounts of polydispersity give rise to a finite value of

FIG. 4. Comparison between the MCA results for nonexponen-
tiality factors D(q) and DD(q) versusq/qm for s50 and 0.05,
respectively. The results shown in this figure correspond to samples
B ~solid line!, C ~dashed line!, andD ~dotted line! of Taylor and
Ackerson@20#. Note that already a small amount of polydispersity
gives rise toDD(q→0).0. The corresponding RMSA of theS(q)
of Fig. 1 are used as static input.

FIG. 5. Experimental results for the measurable nonexponenti-
ality factor of samplesB ~n!, C ~h!, andD ~s! taken from Taylor
and Ackerson@20#. For comparison, the corresponding MCA results
for DD(q) are included, by assuming thats50.05.

FIG. 6. Measurable nonexponentiality factorDD(q) for an aque-
ous suspension of polymer colloid spheres studied by Ha¨rtl et al.
@22#. The symbolsh denote dynamic light scattering data, taken
from @22#. Solid line, MCA result with static inputSD(q) as shown
in Fig. 3. Dashed line, Brownian dynamics result forDD(q), taken
from @22#. The same values50.062 has been used in both the MCA
calculation and in the simulation.
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the measurable nonexponentiality factor atq50. It will
therefore be very difficult, if not impossible, to show experi-
mentally whether the small-q limit of the dynamic structure
factor of a one-component system is a single exponential of
time for all t, which is predicted for truly monodisperse par-
ticles when hydrodynamic interactions are assumed to be
pairwise additive. Obviously,DD(q) reduces toD(q) for
s→0. From Eq.~60!, we find thatDD(0)'9s2/[D*S2(0)],
provided that S~0! is small compared to one and that
s2!S(0). Forcomparison, our RMSA calculations giveS~0!
'0.165 for sample ST andS~0!'0.003 for the most strongly
correlated sample YZ.

The calculations ofDD(q) shown in this work are based
on the decoupling approximationSD(q,t) for SM(q,t). This
approximation predicts a vanishing nonexponentiality factor
D D

0 (q) in case of a size polydisperse system of noninteract-
ing particles. While this is not exact, we will now show by
an exact calculation thatD M

0 (q)'0 as long ass,0.1. Here
D M

0 (q) denotes the measurable nonexponentiality factor of

an interaction-free system~indicated by the superscript 0!,
which is defined as

DM
0 ~q!512

tM
0,S~q!

t̄M
0 ~q!

, ~67!

with

tM
0,S~q!52@ṠM

0 ~q,t50!#21 ~68!

and

t̄ M
0 ~q!5E

0

`

dt SM
0 ~q,t !. ~69!

The dynamic structure factor of a size polydisperse system of
noninteracting and uniform particles reads@1#

SM
0 ~q,t !5

1

b2~qs/2!
E
0

`

ds p~s!@s3b~qs/2!#2e2q2D0~s!t,

~70!

with D0(s)5kBT/(3phs) and

b2~qs/2!5E
0

`

ds p~s!@s3b~qs/2!#2. ~71!

In Eqs. ~70! and ~71!, p~s! denotes the distribution of par-
ticle diameters. Forp~s!, we chose the two-parametric
Schulz distributionp(s;s̄;s), characterized by the mean di-
ameters̄ and the polydispersity indexs @8,28#. This distri-
bution function allows for good fits of the experimentally
determined size distribution in many sorts of colloidal sus-
pensions@8,28#. While other choices exist for the size distri-
bution function, the detailed shape of this distribution is not
crucial for sufficiently smalls. Figure 9 shows the graphs of
p(s;s̄;s) for three values ofs as indicated in the figure. The
corresponding results forSM

0 (q,t), plotted versusq2D0(s̄)t,
are given in Fig. 10. Large size polydispersity gives rise to a
slower decay ofSM

0 (q,t). We note further that there is only
a minor change in the decay ofSM

0 (q,t) as long ass is

FIG. 7. Experimental results for the nonexponentiality factor of
samples id83ST~1!, id83WX ~h!, and id83YZ ~j! as given by
Müller @21#. Large symbols, data obtained from averaged relaxation
spectra including long-time dynamic light scattering; small sym-
bols, data obtained from temporal integration of the dynamic struc-
ture factor. The MCA results for samples id83ST~solid line!,
id83WX ~dashed line!, and id83YZ~dotted line! have been calcu-
lated usings50.05.

FIG. 8. MCA results forDD(q50) as a function of the relative
standard deviations for samples id83ST~solid line!, id83WX
~dashed line!, and id83YZ~dotted line!.

FIG. 9. Continuous Schulz distributionp(s;s̄;s) of particle
sizes for values of the relative standard deviations, as indicated in
the figure.
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sufficiently small, say,s,0.1. This finding is mirrored in
Fig. 11, where results forD M

0 (q) are shown for variouss. As
noted above,D M

0 (q) is very small whens,0.1. Indeed, the
nonexponentiality factor is maximal forq50. It is easy to
show that

DM
0 ~0!512

^s6&2

^s5&^s7&
's2, ~72!

with

^sn&5E
0

`

ds p~s;s̄;s!sn ~73!

denoting thenth moment of the size distribution. The ap-
proximate equality on the right-hand side of Eq.~72! is valid
for small s only.

The limiting case of noninteracting particles was used
here as the most simple test for assessing the range of valid-
ity of the decoupling approximation. It is fair to state that, at
least for noninteracting particles, the decoupling approxima-
tion is useful whens,0.1. For the same range of size poly-
dispersity, the decoupling approximation performs suffi-
ciently well also for systems of strongly interacting particles,

as far as the calculation of the measurable static structure
factor is concerned. This finding was obtained in@23# ~cf.
also@8#!, where decoupling approximation results forSM(q)
have been tested against a more sophisticated multicompo-
nent calculation ofSM(q) based on a discretized Schulz dis-
tribution of particle sizes. The dynamical properties of inter-
acting colloidal particles are expected to be more affected by
polydispersity than the static ones, which limits the range of
validity of the decoupling approximation to somewhat
smaller values ofs. For the example of tracer diffusion, this
is demonstrated also in@23#.

We point out, however, that all experimental systems con-
sidered in this work are weakly polydisperse withs<0.06.
For these small amounts of polydispersity, we expect the
decoupling approximation to be sufficiently good for the cal-
culation of the nonexponentiality factor. For larger values of
s, the decoupling approximation becomes unreliable and one
has to resort to a more elaborate multicomponent description
for calculating the amount of nonexponentiality. The present
authors are currently extending the MCA scheme proposed
in this work to substantially polydisperse systems and to
mixtures.

From this discussion it should be clear that in a polydis-
perse sample there are two sources of nonexponential behav-
ior of the measurable dynamic structure factorSM(q,t): the
one arising from the memory effects and a trivial one that is
already present when the particles are noninteracting. The
above consideration of this trivial contributionD M

0 (q) shows
that it is smaller than 0.01 fors50.1 and smaller than 0.003
for s50.05. These values for the nonexponentiality factor
should be compared with the ‘‘nontrivial’’ ones calculated
for the realistic systems and displayed in Figs. 4–8; these
latter factors are much larger for practically all values ofq.
As a conclusion, the nonexponential behavior of the measur-
able dynamic structure factor, for the systems investigated in
this paper, is almost exclusively due to the memory effects.

In the final part of this section, we investigate how the
nonexponential decay of the dynamic structure factor is af-
fected by the amount of added electrolyte. Since there is no
experimental study so far concerning this interesting issue,
our investigations are intended to encourage further work on
it. Let us consider, e.g., the effect of adding salt to the
strongly coupled sample~id83!YZ, investigated by Mu¨ller in
the salt-free limit only. The calculatedDD(q) for s50.05
and various concentrationsns of added 1-1 electrolyte, rang-
ing from 0 to 100mM , are shown in Fig. 12~a!. For com-
parison, the corresponding results for vanishing polydisper-
sity are displayed in Fig. 12~b!. From these figures, we
observe that adding salt leads to a drastic decrease in the
magnitude of the nonexponential decay of the dynamic scat-
tering functionsS(q,t) andSD(q,t). In particular, the local
minimum ~maximum! at q'qm (q'1.5qm) is disappearing
with increasingns .

From Fig. 13, which shows the radial distribution function
g(r ) for values ofns corresponding to Figs. 12~a! and 12~b!,
we find that the two-particle correlations become signifi-
cantly reduced with increasing salt, the height of the princi-
pal peak ofg(r ) decreases, and the peak position is shifted
towards smaller distances. As a result, the correlation-
induced particle caging becomes less pronounced, giving rise
to a smaller nonexponentiality factor.

FIG. 10. Measurable dynamic structure factorSM
0 (q,t) of a size

polydisperse system of noninteracting particles. Results for several
values of s are shown as obtained using the continuous Schulz
distribution.

FIG. 11. Measurable nonexponentiality factorD M
0 (q) corre-

sponding to Fig. 10.
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Most sensitive to the presence of salt ions is the long-
wave-number limit ofDD(q), which strongly decreases on
increasingns . In fact, at smallq the effect of polydispersity
becomes less important when salt is added, i.e.,
DD(q)'D(q) is found already for values ofq/qm smaller
than one. This finding can easily be understood considering
Eqs.~52! and~60!. The small-q limits of S(q) andSD(q) are
very sensitive to the salt concentration as can be observed
from Fig. 14, whereS~0! andSD~0! are found to increase on
increasingns . Adding salt gives more weight to the first term
in Eq. ~52!, since its magnitude and decay rate are propor-
tional, respectively, toS~0! and S~0!21. Thus, DD~0! de-
creases strongly on increasingns .

We can reach the same conclusion from Eq.~60! and by
noting that the relative differenceuSD(0)2S(0)u/S(0) be-

tweenSD~0! andS~0! becomes very small at larger amounts
of salt. According to Eq.~60!, DD~0! depends explicitly on
the normalized long-time self-diffusion coefficient. Figure 15
contains our finding forD* as a function ofns , calculated
from solving Eq. ~63! for the parameters of sample
~id83!YZ. The effect of adding salt is to enhance the self-
diffusion at long times, i.e., for correlation timest@t I .

VI. CONCLUDING REMARKS

In the present work, we have used a mode-coupling ap-
proximation for calculating the nonexponentiality factor~re-
duced memory function!. On the basis of the decoupling ap-
proximation, we have extended the theory to moderately
polydisperse suspensions. From the comparison of the theo-
retical results with available experimental data, the overall
agreement is considered to be satisfactory. We point out
again that the present treatment of the dynamics introduces
no adjustable parameter. The only input is the static structure
factor, which was chosen to fit the static light scattering data.

Our analysis has shown that already a very small amount
of polydispersity leads to a finite value ofDD(q50) in
strongly correlated systems and that the effect of polydisper-
sity on the nonexponential decay of concentration fluctua-
tions is most pronounced at small wave numbers. Further-
more, we have found that the strength of the nonexponential
decay is significantly affected by the amount of added elec-
trolyte. Enlarging the salt concentration gives rise to smaller

FIG. 12. ~a! Nonexponentiality factorDD(q) of sample id83YZ
for s50.05. Comparison of the theoretical results for various con-
centrationsns of added 1-1 electrolyte, ranging from 0 to 100mM.
The remaining system parameters are the same as in Table I.~b!
Same as in~a!, but for s50.

FIG. 13. RMSA results for the radial distribution functiong(r )
for the same amounts of added 1-1 electrolyte as in Fig. 12.

FIG. 14. RMSA results of sample id83YZ forSD~0! ~solid line!
and forS~0! ~dotted line! as functions of the concentration of added
1-1 electrolytens .

FIG. 15. Mode-coupling result for the normalized long-time
self-diffusion coefficientD* of sample id83YZ as a function ofns .

6236 53PETER BAUR, GERHARD NAGELE, AND RUDOLF KLEIN



values ofDD(q50) and to larger values of the long-time
self-diffusion coefficient.

In spite of the good qualitative agreement found between
our theoretical approach and the experiment, there remain
some quantitative deviations. In particular, at larger wave
numbers our MCA results have the tendency to underesti-
mate somewhat the amount of nonexponentiality when the
system is strongly correlated. The quantitative agreement
with the experimental data might be further improved by
attempting a full self-consistent solution of the mode-
coupling scheme. However, before getting involved into this
numerically very demanding task, it is necessary to investi-
gate first the additional influence of hydrodynamic interac-
tions on the nonexponential relaxation ofS(q,t). Hydrody-
namic interactions have been ignored in the present work,
since from the theoretical point of view it is important to
understand first the effects of direct interactions on the sus-
pension dynamics.

Effects of the hydrodynamic interactions have been fre-
quently considered in the past to be negligible in the case of
dilute suspensions of charged particles, for the reason that
the strong electrostatic forces keep the particles far apart. On
the other hand, recent theoretical investigations have clearly
demonstrated for such suspensions that hydrodynamic inter-
actions are important, in particular with regard to the small-q
limit of the hydrodynamic functionH(q) @8,10,29,30# and to
the long-time self-diffusion coefficient@31#. For example, for
a charge-stabilized suspension the effect of hydrodynamic
interactions onH(q) was shown to be substantially more

pronounced than for a suspension of hard spheres at the same
volume fraction.

Contrary to hard sphere suspensions, whereg(r ) attains
its maximum at contact distance, i.e., atr5s1, g(r ) for
charged particles remains essentially zero for separations
comparable to the Debye-Hu¨ckel screening length. There-
fore, in dilute charge-stabilized suspensions at sufficiently
low ionic strength, it is possible to only account for the lead-
ing far-field contribution of the hydrodynamic interactions,
which is pairwise additive@8,10,29#. This should be con-
trasted with suspensions of strongly correlated hard spheres,
where one needs to consider many-body hydrodynamic in-
teractions.

The present authors are currently extending the MCA
scheme of this work to include, besides potential interac-
tions, also the far-field contribution of the hydrodynamic in-
teractions and to quantify its influence onDD(q) and onD s

L.
Our preliminary calculations indicate thatDD(q) andD s

L are
indeed influenced to some extent by the hydrodynamic inter-
actions. These calculations indicate further that our findings
on the qualitative behavior ofDD(q) remain essentially un-
changed when also hydrodynamic interparticle forces are
considered.
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