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From one cell to the whole froth: A dynamical map
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We investigate two- and three-dimensional shell-structured-inflatable froths, which can be constructed by a
recursion procedure adding successive layers of cells around a germ cell. We prove that any froth can be
reduced into a system of concentric shells. There is only a restricted set of local configurations for which the
recursive inflation transformation is not applicable. These configurations are inclusions between successive
layers and can be treated as vertices and edges decorations of a shell-structured-inflatable skeleton. The
recursion procedure is described by a logistic map, which provides a natural classification into Euclidean,
hyperbolic, and elliptic froths. Froths tiling manifolds with different curvatures can be classified simply by
distinguishing between those with a bounded or unbounded number of elements per shell, witteoptiariy
knowledge on their curvature. A result, associated with maximal orientational entropy, is obtained on topo-
logical properties of natural cellular systems. The topological characteristics of all experimentally known
tetrahedrally close-packed structures are retrieved.

PACS numbds): 82.40.Ck, 82.70.Rr

[. INTRODUCTION structured-inflatable froth are connected through a set of dis-
joint edges with one vertex on shetl) (and the other on shell

A froth is a (topologically stablg division of space by (t+1). These two shells are closed loops of edges delimiting
cells, which are convex polytopefpolygons in two- the layer (+1) of cells which are at the distante 1 from
dimensions(2D), polyhedra in three dimension8D)] of  the germ cell. Shellt) divides the froth into an internal
various shapes and sizes. These geometrical systems hdaveth, constituted of cells at distancesst, and an external
attracted much attention in recent years, both theoreticall§roth, with cells at distances>t. The extension to 3D shell-
and experimentally1,2]. The aim in this work is to study a structured-inflatable froths is straightforward and is given in
specific class of froths, namely, those which are reducible t&\ppendix B 2.

a set of concentric shells. These particular froths are struc- In this paper we prove that the 2D and 3D shell-
tured as if constructed in the following way. In the first stage,structured-inflatable froths are constructed according to a re-
cells are added to a germ cell, forming a first layer around icursion procedure which is the logistic mggl, well known
whose external surface constitutes the second shell. In tha the theory of dynamical systems. The logistic map pro-
second stage, cells are added to the first shell so as to formvides a natural classification of these froths according to the
second layer of cells encircling the first one, and so on. Wévehavior of the number of edges per shell as the topological
emphasize that the words “germ” and “stage” are purely distancet increases.

pictorial and do not imply any particular mode of growth  Any given froth is not necessarily shell-structured inflat-
since any cell of a generic shell-structured froth may play theable. However, it has to be noted that a froth can always be
role of its germ cell. Such a froth is called shell-structureddecomposed into shells with respect to an arbitrarily chosen
inflatable from now on. germ cell. In this decomposition, each cell of the layBr (

A definition of a shell-structured-inflatable froth requires belongs to one of two categories. The cells of the first cat-
the notion of a topological distance between cells. The topoegory, individually, have neighbors in both layets-(1) and
logical distance between two cell$\ andB is defined as the (t+1) and, collectively, are building up a complete ring
smallest number of edges crossed by a path conneéting around the chosen germ cell. The set of all these rings con-
and B. The germ cell is therefore at the distanice0. A stitutes the “skeleton” of the shell structure. The cells of the
shell (t) is defined as the interface between two sets of cellsecond category have neighbors in only one of the two layers
distant byt andt+1 from the germ cell. A 2D froth is a (t—1) or (t+1). These cells can be considered as local
shell-structured inflatabldroth if it satisfies the following topological defects included between the rings of the “skel-
two conditions: eton” of the shell structure. The “skeleton” is itself a space-

(1) For any set of cells, equidistant to the germ cell, therfilling froth which is shell-structured inflatable. The recur-
exists a closed non-self-intersecting path which goes onlgion procedure that we are studying applies to such a

through these cells and connects all of them. structure.
(2) Any cell at distance from the germ cell is the neigh- The plan of this paper is the following. In Sec. Il, we
bor of at least one cell at the distanice 1. derive the recursion procedure associated with 2D shell-

Two consecutive shellstY and ¢+1) of a shell- structured-inflatable froths and show that it can be written as
the logistic map. The resulting classification into Euclidean,
hyperbolic, and elliptic froths is discussed. In Sec. lll, it is

*On leave from C.I.IL.M., Universitai Genova, Genova, Italy. shown that the recursion procedure in 3D is again described
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(NVP=4vP+ v 4y (2.2
The matrix form of this recursion equation is

VA s —1\/v®
V(_t+1) =11 0 V(_t) , (2.3

with the recursion parametsr=(n)— 4. Equation(2.3) gen-
erates recursively the whole froth from the germ cell. In
general, the quantityn) changes from one layer to the next.
Hence the recursion parameter should depend on the distance
t. However, the value ofn) associated to a layer of cells at
a distance from the germ cell must, as—«, converge to
the average value for any cell in the froth. Moreover, since
the choice of the germ cell is completely arbitrary, the quan-
tity (n) associated with layert] is an average. Conse-

FIG. 1. Schematic picture of a 2D She||-StI’UCtUred-iﬂﬂatab|equent|y, the recursion parameter can be taken as an effective
froth. guantity which is independent af and the quantityn) is

then the average number of edges per cell in the froth. The

by a logistic map. The curvature of the embedding space i%jtial conditions in Eq. (2.3 are then V{@=0 and
classified as for the 2D froths. Section IV gives examples ot\/(+0):<n>_
space-filling cellular structures which fit into the classifica- ; ; ;
tion of 3D shell-structured-inflatable froths provided by the The recursion procedure described in 2.3 appears

logisti In Sec. V. a bound on topological ; falso in other instances, such as in the computation by deci-
ogistic map. in Sec. V, a bound on topological properties Ol a4iqn of the electronic energy spectrum in the 1D tight-

natural cellular structures is obtained. The topological propc—F

inding model[4]. In this case, the variableg® are re-
laced by the components of the electronic wave functions in
he basis of the site states, and the recursion parareater

e (dimensionlessenergy of the electron.

erties of all experimentally known tetrahedrally close-packe
(t.c.p) structures are retrieved under the hypothesis of she
reducibility. A conclusion emphasizes the main results of th
' 20 Shell tucturectinfatable netwarke wih & ertex co.., C9UAUON (2.9 gives an immediate ik between the

shell-structured-inflatable froths and the logistic map.

ordination larger than three. Local topological defects in 2D : )\ f(t+1) 4 \s(1-1) t+1)
and 3D shell-reducible but not inflatable froths are consid-lfd?idz’) frog; the rel;a(fplr;s_\/%t)—vﬁt_;wr  SW
ered in Appendix B. Random 3D Euclidean froths are con-— V+ Vi, andsVim W=Vii+ Vi<, one gets
structed from 2D random shell networks in Appendix C. s, VD= V(2 y(-2) 2.4
Il. RECURSION PROCEDURE FOR 2D FROTHS with

This section is concerned with two-dimensional shell- s, =5%—2, (2.5
structured-inflatable froths. The recursion procedure is de-
rived here for froths and it is extended to networks with aand a similar relation fow_ . Iteratingj times, one obtains
vertex coordination larger than three in Appendix A. Figure _ _
1 shows an example of a froth with the various shells indi- sjvﬂ:)zvﬁf+2')+vﬂﬁ‘2'>, (2.6)
cated by bold lines and labeled by the indexthe shell
t=0 corresponding to the boundary of the germ)cdlet  with
V) be the number of vertices going out from shet) ( 5
towards shell (+ 1) [towards shell {—1)]. Let FY be the Sj+1=5~ 2, 2.7
number of cells in the layer between shelis &nd ¢+1). If
(n) is the average number of edges per cell in laygr the
edges in this layer are accounted for, as follows:

andsy=s. Equation(2.7) is the trace map of the recursion
matrix in Eq.(2.3). It is a logistic map[3], with two (un-
stablg fixed pointss* =2 ands*=—1. The logistic map
decomposes the axis of values of the recursion pararseter
into two different regions. Any point in the regids|>2 is
, ) i , . sent towards infinity by the successive iterations of the logis-
(t;n tf(]g right-hand side of this equation, the quantity ic map. By contrast, ifs|<2, successive iterations of the
VZI+VL' s the total number of vertices constituting shell |ogistic map remain all within this interval. The existence of
(t), the quantity "+ V(Y is the total number of verti- these two intervals classifies all 2D shell-structured-
ces constituting shell t¢-1) whereas the quantity inflatable froths. This classification corresponds to the curva-
v+ v gives the number of verticeounted twicg  ture of the manifold which the froth tiles. The space is ellip-
bounding the edges separating the cells comprised betweeia for |s|<2, hyperbolic for|s|>2, and Euclidean for the
shells ¢) and ¢+1). SinceVP =V andF®=v® one fixed points=s*=2. The map relates successive numbers
has the recursion equation V® of vertices per shell. Iterations of E42.3 generate

(NFO=VO 42y oyt byt (29
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trajectories in the planet(V,), starting from the initial smaller than two. However, the logistic map is also appli-
points V(" V=v@=0 andv(®=(n). cable in 3D where there is no Gauss-Bonnet theorem and the

When|s| <2, the trajectories are given by the equation Euler equation is homogeneoLf.

o Sie(t+1)]

vih=y IIl. RECURSION PROCEDURE FOR 3D FROTHS
o0t sing

: (2.9
This section extends the analysis of the previous one to

with COS((,D):S/Z. Equation(2_8) shows that all trajectories 3D shell-structured-inflatable froths. The froth hdsverti-
are finite and end at the poi’=0, with T=(m/¢)—1.  C€S,E edgesF faces, andC polyhedra. Every shell of the

Moreover, the values of/(j) are bounded by the quantity 3D froth is built up from two superposed different two-

V©/sin(p). These finite and bounded trajectories are qedimensional froths, and looks like a corrugated sphere. This

o . - ) ) is the same as in 2D, where a shell can be regarded as the
scribing the iterative tiling of the compact manifolds with a iy ;

" . . superposition of two 1D froths, one whose vertices are con-
positive curvature. Indeed, consider a froth tiling the surface -

hected to the “incoming” edges from shelt{ 1) to shell

of a sphere. Suppose that the north pole of the sphere ), and the other whose vertices are connected to the “out-
located in the germ cell; the successive shells are the paral 'oi’n " edges pointing from shellt] towards shell (+ 1)
lels on the sphere. The number of vertices per shell increas 9 ges p 9 . .
between the north pole and the equator, then decreases fro milarty, every spherical sheltf of the 3D froth is built-up

the equator to the south pole where the tiling ends. This i€ the superposition of two 2D froths, one whose edges are

; - - : connected to the “incoming” faces of layet<{ 1), and the
precisely the behavior described by Eg.8). The quantity ¥ .
T+1=mle is the topological distance between both poIes.Other whose edges are connected to the “outgoing” faces of

(t) (t) i
Here are a few examples of regular froths wigh<2. To  1aYer @). Let Vi, andEY(, be the numbers of vertices
s=—1 corresponds a froth made with four triangles, i.e., the?d edges of shelit), bounding the cells of layert) be-
surface of a tetrahedron. The recursion parameted cor-  (ween shells ) and (¢+1) [layer (t—1) between shells
responds to a froth made with six squares, i.e., the surface ¢f) and ¢—1), respectively, which are making the “outgo-

a cube. Finallys=1 is associated with a froth which is the ing” (“incoming”) froth. LetF%Y\ ) be the number of faces
surface of a dodecahedron. of such froths. Both froths are characterized by the identities

In the casds|>2, the solution of Eq(2.3) is

Vo Set+ D]
+ + sinhe '

with cosh(p)=s/2. Equation(2.9 shows that, contrary to
th.e previous.case-, the vaIues.‘«bS‘.ﬁ) -increase exponentially (since in both 2D froths, any vertex is connected by three
with t. All trajectories are now infinite and unbounded in the edges and any edge is bounded by two verfices

plane ¢.V.). They are there_:fore de_scribing th_e iterative til- One has the following relations between two successive
ing of the noncompact manifolds with a negative curvature.q, o is-

At the fixed points=s* =2, Eq.(2.3) has the solution

) _ g [(9
VO —EQ +FY =2 (3.)
(2.9  (Euler's formula and

3Vl =2eY (3.2

(t+1) /(1)
vO=(t+1)vO. (2.10 VIV
(t . E(t+1): E(t) (3 3)
The values oV’ have again no upper bound, but here they - +o '
are increasing linearly with as expected for the Euclidean (1) ()
plane by simple geometrical considerations. The fixed point Fo =k,

s* =2 describes shell-structured-inflatable froths covering ) ) ) 9
the Euclidean plane with cells with six edges on average. Aishell () is a spherical surface tiled by a network i

example of such froths is the hexagonal tiling. faces. One has
We have shown that the logistic map provides, in a natu- (t+1) ® e
ral way, the topological classification of the tilings of the FN O =(f)FY—2EV—Fy/ . (3.9

manifolds without anya priori knowledge of their Gaussian ) ) .
curvature. In 2D this classification by the logistic map is!N this equation{f) is the average number of faces per cell

identical to that provided by the combination of the Gaussn the layer €). _ ,

Bonnet theorenfi5] and Euler's equation Since the whole shellt] is a polyhedron, both Euler's
formula and the incidence relations are applicable between
the number of edgeg{", the number of vertice¥", and

o o
ff" da=Z(6—(M)F=3(2-s)F. (211  the number of faces( of the shell polyhedron, namely,

Here, is the Gaussian curvature and it is integrated over the VN —EY+FN =2 (3.5
whole manifold.F is the total number of cells in the mani-

fold. The tiled manifold is hyperbolic, Euclidean, or elliptic and

when the integrated curvature is negative, zero, or positive, ® ®

i.e., when the recursion parameteiis larger, equal to, or (MnFN'=2E . (3.9
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1
(_o9y =
Vi'=2+3

2
1- m) 3VP+3vl+4vh) (3.9

Combining Eqs(3.7) and(3.9), it is possible to express the
variableV{) in terms of the variable¥?) andVv") alone as

4(n)n (6_<n>N>
(1) — _ (v (t)
e VO ] @0

2V

which, with Egs.(3.6) and(3.8), yields

t t
FIG. 2. Any 3D shell f) is tiled with a network generated by (t)=8—(V(+)+V(,))
the intersection of the faces coming to and going away from its N 4—(n)y
surface. This shell-network has four-connected vertiég (with _ _ o
all four edges belonging to the shell netwpeind three-connected Putting Eq.(3.11) into Eq.(3.4), we obtain, with the help of
verticesv')_, (with three edges belonging to the shell network and EQS- (3.1)-(3.3), the following relation:
the last one going away from)it

(3.1

VD=3 [(f)—6)((n)n—4) — 4]V -V
Here (n)y is the average number of edges per face of the +2[8+(F)((n)n—4)]. (3.12
shell polyhedron. Since it is an elliptic tiling with a vertex
coordination=3, then(n)y<6. The shell network is the Fjnally, by shifting the variable¥, _, as
superposition of two 2D froths, it has therefore three-
connected vertice¥ , (_y corresponding to the “outgoing” ~ © 8+(f)((n)y—4)
(“incoming”) froth, and also four-connected verticds at Vi=Vi,—4 8- (D —6)(My—a)," (3.13
the intersections between the edges of the two 2D froths. The N
three types of vertices are represented in Fig. 2. Figure 3pe optains the recursion equation
shows the shell network in the particular case of the “Kelvin
froth” [7,8], and indicates a three-connected vertex and a S'\“,(+t):§“/<+t+1)+'\7$—1>, (3.14
four-connected vertex.

The total number of verticeg{) on shell ¢) is the sum of  with the recursion parameter
all three- and four-connected vertices, i.e.,

s= 3 [((f)—6)((n)n—4)—4]. (3.15
V=V + v v 3.7 . _ _ _ '
This recursion equation has the same matrix form as in the
The total number of edge&) on shell ¢) satisfies the equa- 2D case
tion Q‘/<+t+1> s 1 ’\7(+t>
T | = Tm . (3.16
2EQ =3V + 3V +aviy. (3.9 V= 1o Jive
Using Egs.(3.5), (3.6), and(3.8), one obtains As in the 2D caséf) and(n)y can be supposed to be inde-

pendent of the distande The variation of the 3D recursion

parametes [the trace of the transfer matrix in E(B.16)] is
3-connected described by the logistic maf2.7), as in the 2D case. Con-
sequently, the classification of the 3D shell-structured-
inflatable froths is the same as in 2D.

Elliptic shell-structured-inflatable froths are associated
with |s| <2. They are tiling iteratively the 3D compact mani-
folds with a positive curvature. Indeed, the corresponding
solution of Eq.(3.16) is finite and bounded in thd V) plane

8+(f>2(<_nS)N—4))' (3.17

4—connected

VI=A sin(ot+B)+2

with cos(p) =s/2. The coefficient®\ andB can be deduced
from the initial conditionsv(®=2((f)—2) andv{ V=0.
Hyperbolic shell-structured-inflatable froths are associ-
FIG. 3. An example of 3D shell-structured-inflatable froth, the ated with|s|>2. They are tiling iteratively 3D noncompact
Kelvin froth. A portion of the shell network is brought out by hatch- manifolds with a negative curvature. Indeed, the correspond-
eries. ing solution of Eq.(3.16 is unbounded in thet(V) plane
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. _ 8+(f)((n)y—4) sets the value ofn)y. Therefore Eq.(4.1) allows us to
VP=A sini(ot+B)+2 T) (3.18  construct systematically 3D Euclidean shell-structured-
inflatable froths starting from the 2D shell networks.
with cosh(p) =s/2. As previously, the coefficients and B The simplest 2D froth is the hexagonal lattice. The ex-

amples displayed in Figs. 4, 5, and 6 illustrate the construc-
tion of ordered, monotiled 3D froths from a shell network
generated by different superpositidieé Figs. 4a), 5(a), and
8+(F)((n)y—4) 6(a)] of two hexagonal lattices. Figuregb}4 and 4c) show

2

can be determined from the initial conditions.
For s= —2 the solution reads

vIV=(-1){(At+B)+ ,  (3.19 two 3D unit cells constructed from the netwdr(a)] (see
also [12]). The cell [4(b)] is topologically equivalent to
Kelvin's a tetrakaidecahedrofv,8] (it builds up the Kelvin
froth shown in Fig. 3, and the cell[4(c)], to its twisted
variant[13]. Both structures havéf) =14 and(n)y=5, i.e.,
s=0 Eq.(3.195. They are indeed Euclidean space fillers.
(t) _ 0) _ Figure 5a) shows part of a shell network with five-sided
Vi _(Hl){V(* FUBHH(Mv=4)] (320 faceg, generated bypthe superposition of two “squeezed”
The quadratic dependence tnis the one expected from hexagonal latticessee alsg12]). Figures b) and Sc) show
simple geometrical reasoning for a tiling of the 3D Euclideanth® 3D unit cells constructed from the netwdfa)]. These
space. cell; have agaigf)=14. Thg- unit cel[5(b)] is to_pploglcally
As in 2D, the logistic map gives a natural description of€quivalent to theg tetrakaldecahe_dronthe W|II|§1ms cell
the tilings of the three-dimensional manifolds without the [14)- Ithas(n)y=5, and is an Euclidean space filler accord-
need of anya priori information on their curvature. Conse- N9 10 Eq.(3.19. , _ _
quently, the logistic map is able to characterize curved mani- 1€ unit cell of Fig. §c) is topologically equivalent to the
folds even when the Gauss-Bonnet formula is not applicabld4-sided celithe Goldberg cel[15]) which occurs, among
[9,10]. The generation of tilings of the curved manifold by others, in clathratgl$], in t.c.p. structurefl6,17], and in the

the recursion procedure has therefore a wider applicabilitftinimal froth of Weaire and Pheldi8]. The space can be
than the Gauss-Bonnet formula. filled layer by layer with Goldberg cells only. The layers

(Fig. 5 are Euclidean and the netwof&(a@)] is the same as
that of the Williams space filler. However, successive layers
are more and more distort¢#i9], as shown in Fig. &l). This
distortion, which stretches the network in one direction and

In order to illustrate the previous considerations, we givecompresses it in the other, strongly suggests that we are fill-
some known examples of 3D froths and show that they fiing the hyperbolic 3D space with a stack of Euclidean layers.
our classification. All are monotiled.e., constituted of to- It is possible to prove this contention by filling the space
pologically identical cellg apart from the last example. shell by shell instead of layer by layer. When doing so, one

The only regular elliptic froths in 3D ar8,3,3 (packing  finds that most of the shell network is composed of penta-
of tetrahedrg {4,3,3 (packing of cubes and{5,3,3 (pack- gons(12 out of 14 in each 3D cgll but a finite density of
ing of dodecahedya[11]. They correspond tos=—1, hexagong2 out of 14 in each 3D cellis needed in order to
s=—2, ands=1, respectively. Note that the case 0 does close a shell. Thugn)\>5 which, according to Eq.3.15),
not correspond to any regular froth. Indeed, the only solutiorimpliess>2. Hence the 3D manifold tiled by Goldberg cells
s=0 of Eq.(3.19 with (f) and(n)y<6 both being integers is hyperbolic.
is (f)=10, (n)y=5, which is not regular. With another intersection of the two “squeezed” hexago-

Consider Eg.(3.195 in the Euclidean casé.e., s=2). nal lattices, one generates the shell network shown in Fig.
This equation gives a relationship between the average nun®(@. The corresponding 3D unit cefl6(b)] has (f)=16
ber of neighbors per cell)) in the 3D froth and the aver- (eight quadrilaterals, six hexagons, and two octap@mel
age number of edges per cefh{y) in the 2D spherical shell (n)y=4.8. As far as we know, this unit cell is a monotile
network Euclidean space filler.

Figure 7 shows an example of an Euclidean shell-

structured-inflatable froth made of two different celB.
The shell networ{7(a)] also has two different tiles. The
associated 3D unit cefl7(b)] has(f)=12.
This equation gives the condition for the Euclidean space Any Euclidean shell-structured-inflatable froth made with
filling by a shell-structured-inflatable froth. Note that, from topologically identical cells can be constructed from a shell
Eq. (4.1, the minimal number of faces per cell of such anetwork generated by superposition of two hexagonal lat-
froth is ten, since(n)y<6. It is known that the minimal tices. The construction of 3D disordered froths from 2D dis-
number of neighbors per cell is eight for an Euclidean froth.ordered shell networks is discussed in Appendix C.

with A andB deducible from the initial conditions.
The solution of Eq.(3.16 associated to the fixed point
s=s*=2is

IV. EXAMPLES OF 3D
SHELL-STRUCTURED-INFLATABLE FROTHS

(f)=6+ (4.2)

(Mn—4"

Thus an Euclidean froth with<8(n)\y<10 necessarily con- Although a construction of 3D froths layer by layer has
tains local topological defects of the kind discussed in Ap-been given if12], it must be emphasized that our approach,
pendix B.. combining spherical shells with the logistic map, is more

Recall that the shell network is the superposition of twogeneral and provides a unifying way to deal with 3D space-
elliptic 2D froths, the “incoming” and the *“outgoing” filling structures, whether regular or not, whatever the curva-
froths. The pattern of edges constituting the shell networkure of the manifold which they are tiling.
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FIG. 4. The two 3D space-filling unit cells constructed from the t t+1
shell network (a). The cell (b) is topologically equivalent to (d)
Kelvin's « tetrakaidecahedron and the o@ll to its twisted variant.
Both have 14 faces. FIG. 5. The two 3D space-filling unit cells constructed from the

shell network (a) generated by the superposition of two
“squeezed” hexagonal lattices. The cé) is topologically equiva-

V. BOUNDS ON TOPOLOGICAL PROPERTIES lent to the B tetrakaidecahedron. The celt) is topologically
OF NATURAL CELLULAR SYSTEMS equivalent to the Goldberg celld) shows the distortion of the 2D
AND T.C.P. STRUCTURES cells in the successive shell networks resulting from filling with

Euclidean layers of Goldberg cells a space which is hyperbolic.
The average numbef1f)) of edges per face of a 3D froth

is in general different from the average number of edges per

face in the shell-network{f)y). For example, the froths in . . )

Fig. 4 and %b) have(n)y=>5 and(n)=5.14, the froth in tiS only when the equal|tjn>=§n}N=<n> (whlch corre-
Fig. 6 has(n)y=4.8 and(n)=>5.25 and the froth in Fig. 7 SPonds to(f)* =13.29 - -) is satisfied that an arbitrary cell

has(n)y=>5.33 and(n)=5. has the freedom to adhere to a preexisting shell by any subset
The value of n) is related to the average number of facesOf its faces, without adjustment. This freedom grants, there-
per 3D cell by fore, a larger number of possibilities for building up a froth
and its maximizes the orientational entropy per cell. Indeed,
12 Eq. (5.1) is a constraint on any single 3D cell, whereas Eq.
(fy= 6——(n> (5.1 (4.1) is a constraint on the set of 3D cells in a layer. When

(ny=(n)y=(n)*, one of the two constraints is automati-

It is interesting to study the competition between ES}1) pally satisfied by the other and the orientational entropy is
and the Euclidean space-filling condition given by E41).  increased20].

These two relationsf)((n)) (labeled “space filling’) and Note that the valugf)* =13.29 - - falls within the range
(H)((n)) (labeled 3D cell”) are plotted in Fig. 8. They of several already known bounds. It is consistent with the
meet at the point{f)*,(f)*) given by values 13.2 and 13.33- resulting from the decurving of the

dodecahedral packing with 14- and 18-sided cells or 14- and
10+247 16-sided cells, respective]21]. Kusner[22] has shown that
3 ' (5.2 a single cell with minimal interfaces in a froth which is lo-

(> (f)*)=
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monotiled froth$. The lower bound corresponds to configu-
rations with a maximal orientational entropy, whereas the
upper bound corresponds to configurations with a minimal
interfacial energy.

There exists a class of natural structures, the Frank and
Kasper phasesgor the larger class of the t.c.p. structures
[16,17), for which (f) falls within these bounds. These
structures are periodic and made of 12-, 14-, 15-, and 16-
sided cells whose faces are either pentagons or hexagons. It
can be verified that some of them fulfil the condition of
Euclidean space filling given by E¢4.1). We can therefore
assume that the t.c.p. structures are Euclidean shell-
structured-inflatable froths. Then their shell network is a pe-
riodic tiling made of pentagons and hexagons only. Let the
2D unit cell of the shell network consist df>) pentagons
and f(®) hexagons, belonging tdl* polyhedra within the
layer between the two subsequent shells. The number of
polyhedra in the 3D unit cell is a multiple &f*. The aver-
age number of edges per face in the shell network is

6(6)+ 55
<n>N:—f(6)+f(5) : (5.3

FIG. 6. The 3D space-filling unit celb) (which has 16 facds  Substituting into Eq(4.1), one obtains
resulting from the shell networta) generated by the superposition
of two “squeezed” hexagonal lattices. 20f(®)+ 14f(®
cally Euclidean or hyperbolic cannot have less than 13.39
faces on average. It is also known that the minimal numbefrhe number of polyhedra in the 3D unit cell can be calcu-
of faces per cell of a periodic, monotiled froth is 14. Weairelated with the help of the numbers of faces of the “outgo-
and Phelan have recently given an example of froth withng” (f,) and “incoming” (f_) froths in the unit cell of the
(f)=13.5 (the so-calledA15 phasg which minimizes the shell network. These numbers coincide with the numbers of
total interfacial are418] (see alsd23)). polyhedra in the layers abové () and below §_) the shell
Natural  froths minimize their free energy which have one or more faces belonging to the 2D unit cell.
[(configurational energy- (temperaturgx (entropy]. With  In the limit of large shell networks, one has the relation
the bounds given above, this condition is realized when the , (—y=2f, ), with v, (respectively,v ) counting the
value of(f) is between 13.29 - and 13.50r 14 for periodic

Space filling 3D cell
<f>
Kelvin
T4 i\
| periodic
13.9 1 monotiled
13.8 1
13.7 1
13.61
1857 fhn Surt N Frank
13.41--extension A\ [ Kasper
1N phases
183 1 i e TN T
13.2 1
13.11
—] 13—
— 49 5 51 52
-1
/

FIG. 8. The average numbéf) of faces per cell in a froth
plotted as a function of the average numbe) of edges per 2D
cell in the shell networKEq. (4.1), curve labeled “space filling]

FIG. 7. Example of a 3D periodic shell-structured-inflatable and of the average numbén) of edges per face in the frofitq.
froth (with (f)=12) whose unit cell has two different elementary (5.1), curve labeled “3D"]. The abscissa represents botkin)y
cells. (a) Shell network.(b) 3D unit cell. and(n).
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number of three-connected vertices in the 2D unit cell which(elliptic) shell surface. As an example of the power and gen-
belong to the “outgoing”(respectively, “incoming’) froth.  erality of this approach, we have been able to retrieve the
Equation(3.10 can then be written in terms of the quantities topological properties of all experimentally known t.c.p.

associated with the 2D unit cell only structures by studying the tiling of the shell surface by pen-
—4 tagons and hexagons.
(Mn
f++f,=v>< 6_— (55)
<n>N ACKNOWLEDGMENTS

(v« counts the number of four-connected vertices in the 2D
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N*:T l+2m) (56)

APPENDIX A: INFLATION OF TWO-DIMENSIONAL
If one puts into Eq(5.4) the simplest combinations of inte- z-VALENT NETWORKS WITH z=4
gersf(® andf(® which are such thaf) falls within the two

bounds 13.29- - and 13.5, one retrieves the average numberZDThr? lglgeneralizagqnﬂof Eb(i(sz) irr: th‘? r(]jescrigltion. of the
of faces of the 3D unit cell of all experimentally known 20 Shell-structured-inflatable froths with coordination num-

t.c.p., which are listed in Table [The table gives all the PErz=4 is as follows. Every shell hag{1) different types
possible combinations f(5),£®) up to f®=4 and, for of vertices. Extending the notation of Sec. Il, the various

£(6)=4, only those corresponding to known natural struc-ypes of vertices are labeled Mg), the number of vertices

tures] Also given are the corresponding valuesif, ob-  Pelonging to shell §) from which a=01,...,z—2, (re-
tained from Eq(5.6). These values oi* are exactly equal SPeCtively,z—2—a) edges are pointing towards(t)the shell
to the sum of the lowest noncongruent numbers of pg-( (t+1) [respectively, shellt—1)]. Every vertexVy’ adds
15-(q), 14-(r), and 12-sided polyhedra) in the structural @ cells between shellst and (t+;). The total number of
formula of the corresponding t.c.pL7]. The table presents Cells F") between the two shells is

also several simple combination$(®,f(®)) which corre- 22 22

spond to structures ndyet) observedthey are indicated by FO=> avl=> (z-a—2)v{*Y. (A1)
blanks in the last columnNotably, combination$2,23 and a=o a=o

(2,29 - - may be good candidates for the t.c.p. structures yef et (n) denote the average number of edges per cell in the
to be observed. On the other hand, combinati®49, |ayer (t). If one sums over all cells in this layer, one obtains
(3,28, (3,29, and (4,39 may be too distorted to qualify as
t.c.p. structures. They may be realized with atoms of very
different sizes. Note finally that whel) is represented as a (MFV=2 (a+)VY'+ > (z—a-1ViHY. (A2)
function of the ratiof ®)/f(®), the structures in Table | tend to a=o a0
gather into distinct groups. This may indicate either thesjnce
existence of unfavorable configurations or structural
mode locking into the simplest t.c.p. structures
(A15, Z,0, ... ,C15). All these facts strongly suggest that

the t.c.p. are shell-structured-inflatable froths.

z—-2 z—-2

at+l= a+

1 1 )
l+§ E (z—a—2) (A3)

and

VI. CONCLUSION
z—a—1=

. ) 1+ i)(z—a—Z)Jr(i a, (A4
In this paper we have introduced a way to study froths z-2 z-2

which emphasizes their shell structure. We have studied an
important subclass of shell-structured froths, i.e., thosé@"
which can be generated in a recursive way according to an
inflationary procedure. For 2D frotifand networks with any  (n)F(t)=
coordination numbérand 3D froths we have found that this

recursive procedure is described by the logistic map. This

map allows for a natural differentiation between froths tiling +
elliptic, hyperbolic, or Euclidean manifolds, without aay

priori imposed curvature condition. In particular, the logistic 72
map is able to characterize 3D curved manifolds, thereby xS (z—a-2)Vi+D
providing a way to define the curvature from topological =6 a
considerations when the Gauss-Bonnet theorem is not appli-
cable. The logistic map in the 3D case enables us to recover
known space-filling configurations, and also to suggest other
ones. It is clear that the approach using the logistic map is
very powerful, since classification of the 3D space-filling
configurations is reduced to the study of the 2D tilings of the

e has
z—2

1 1 z-2
[ (O R —a— (t)
1+Z_2>a20 aVa+(z—2)aZO (z—a—2)V§

1 \%22 1
- (t+1) -
2_2)2 aVi! +(1+ 2_2)

a=0

1
1+ —=|FW+

z—2

1
_— |pt-D
e L

1
_ |+
z—Z)F

+

1 (t)
1+§ F%. (A5)
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TABLE |. Average number of face&) and(minimal) number of elements in the 3D unit c&l* of all
the t.c.p. structures known experimentdlgbeled in the last columrand of the hypothetical t.c.p. structures
(indicated by a blank in the last columrThe integerg, q, r, andx indicate, respectively, the proportions
of 3D cells with 16, 15, 14, and 12 faces present in the 3D unit cell.

Number of Number of (f) N* p q r X t.c.p.

hexagons pentagons

1 10 13.33333 3 1 0 0 2 C15;C14

1 11 13.384 62 3 2 2 2 7 po; K;Csg; s M

1 12 13.428 57 7 0 2 2 3 z

2 24 13.428 57 4 1 2 5 6 P; &6

1 13 13.466 67 g 0 2 8 5 o, H

1 14 13.5 4 0 0 3 1 A15

2 19 13.304 35 23

2 21 13.36 3 6 2 2 15 C

2 23 13.407 41 27

2 25 13.448 28 29

2 27 13.483 87 31

3 28 13.294 12 17

3 29 13.314 29 35

3 31 13.351 35 37 10 2 2 23 X

3 32 13.368 42 9 4 2 2 11 |

3 34 134 20

3 35 13.414 63 41

3 37 13.441 86 43

3 38 13.454 55 1 0 2 5 4 J

3 40 13.478 26 23

3 41 13.489 36 47

4 39 13.319 15 47

4 41 13.346 94 49

4 43 13.372 55 51

4 45 13.396 23 53 8 6 12 27 R

4 47 13.418 18 55 7 4 19 25 K*

7 90 13.461 54 52 0 4 13 9 F

9 92 13.34545 55 16 2 2 35 Mgn-,

11 142 13.463 41 41 7 4 19 25 K

13 136 13.358 02 81 20 6 6 49 T

13 136 13.358 02 81 23 0 9 49 SM

13 160 13.440 86 93 6 10 40 37 v
One obtains finally the recursion relation APPENDIX B: NONINFLATABLE FROTHS

1. Noninflatable 2D froths

Some 2D shell-structured froths cannot be constructed ac-
. _ _ o cording to the recursion procedure of E8.3). These froths
The matrix form of this recursion relation is the same ashave local inclusions which are topological defects in the

[(n)(z—2)—2(z—1)JFV=FD+F-D (A6)

for z=3 [Eq. (2.3], with recursion parameters= recursion procedure. An inclusion in a layer is a cell with
(n)(z—2)—2(z—1). The initial conditions are F(%) neighboring cells in this layer and only in one of the two
=(z—2)(n) andF©=1. neighboring layers. Topological defects fall in two classes:
Euclidean tilings are associated with the fixed pointvertex decorationgFigs. 9@ and 9b)] and edge decorations
s*=2, i.e., to the equation [Fig. 9c)]. In all cases the inclusion is on the side of the
shell ().
27 Defects can be eliminated by removing one or more of the
(n)= et (A7)  edges and their surrounding vertices. A vertex-decoration de-

fect is then replaced by an ordinary verfgsig. 10a)]. An
edge-decoration defect is then replaced by edges on the shell
The only regular solutionfz and{n) integerg of this equa- [Fig. 10b)].
tion are (6,3 (tiling by triangles, (4,4 (tiling by squarey The removal of one edge reduces by one unit the number
and(3,6) (tiling by hexagong[(dual of (6,3)]. of faces in the layer. This operation corresponds to the trans-
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by the froth is not modified by the defect eliminatiin is
indeed given by the Euler-Poincacharacteristic which is a
topological invariant

t+1 t+1

t t
t 2. Noninflatable 3D froths
By analogy with the 2D case, one can define a topological
t-1 t-1 distancer between two cell$\ andB as the minimal number
(a) (b) of faces that must be crossed by a path that connfeetad
B. A 3D shell-structured-inflatable froth is defined by the
t+1 following two conditions:
t+1 -
(1) For any set of cells equidistant from a germ cell, there
t+1 t+l t+1 . . .
_ exists a closed non-self-intersecting surface that cuts these
¢ t+i g = ¢ ¢ N cells and no others.
t (2) Any cell at the distancé from the germ cell is the
t—1 -1 neighbor of at least one cell at the distarieel.

(c) Shells are closed surfaces tiled by the faces of cells; they
bound layers of equidistant cells. It is possible to connect
FIG. 9. Local topological defects in the 2D recursion proceduretwo adjacent shellst]f and ¢+ 1) through a set of faces,
(8 and (b) are examples of vertex decorations wherégsis an  each with one edge on shell)(and one on shellt¢-1).
example of edge decoration. The indexlenotes the topological ghe|| (t) separates the whole froth into an inner froth, con-
distance. stituted of cells at a distanae<t, and an outer froth, with
cells at a distance>t.

formations E—~E—3,V—V-2,F—F—1. Consequently, There are local defects which violate ruléb or (2).
since (n)=2E/F, the average number of edges per cellthese noninflatable configurations in the 3D froths are
changes as shown in Fig. 11. These are particular examples of the three
1 general classes of the 3D topological defects: vertex, edge,
(n)'=(n)+ m“n)_@)_ (B1) and face decoration. As in 2D these noninflatable configura-

tion can be eliminated. Defects elimination is made by re-
. moving one(or more facds), together with the surrounding
The recursion parameter=(n)—4 changes therefore as  gqges and vertices. The removal of one face witedges

1
S ' =s+ m(S—Z). (B2 t+1

\K
One sees that the fixed poist =2 remains unchanged by t A\ (2)
the defect elimination. Moreover, elliptic froths become *QQ/
more elliptic(i.e., (n)’<(n)<6) whereas hyperbolic froths
become more hyperboliG.e., (n)’>{(n>6). Thus the Eu- t-1
clidean, hyperbolic, or elliptic character of the manifold tiled

j _________ i t+1 A_(

(b)

t
RN t—-1
T
t+1
( ( M o
= B ey
v (c)
..... t—-1

FIG. 11. Local topological defects in the 3D recursion proce-
dure, (a) is a vertex decoration defed)) is an edge decoration

FIG. 10. Schematic representations of the elimination of a 2Ddefect, andc) is a face decoration defect. The indedenotes the
local topological defect(@) Vertex decoration(b) Edge decoration. topological distance.
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reduces by one unit the total numb@rof cells. This opera- where we used the identity\&(_)(t)ZZE(j)(,). Using Eq.

tion corresponds to the transformatioB—C—1 and (3.10 itis possible to express™ in terms of(n)y. One has
F—F—1-n. Consequently, sincéf)=2F/C, the average
number of faces per cell changes as L 2 6—(N)n a(n)y

1 P73 =4 (-2 (VI+VT) |
(f) =(F)+ g7 [(H—2(n+1)], (83)

(C2

When the number of network cells is much larger than unity,
In contrast to the 2D case, this transformation depends on tHene hasp™=(2/3)(6—(nyy)/({n)y—4). Substituting into
parameten. This is not surprising since it is well known that (4.1), one obtains
in the 3D case the value f) is not directly related to the

curvature of the manifold tiled by the froth. (fy=10+6p™. (C3
APPENDIX C: RANDOM 3D EUCLIDEAN FROTHS In principle, in random frothsp™ can take any value
FROM 2D RANDOM SHELL NETWORKS between zero and infinitfbut only between 2/3 and 1 for the

periodic monotiled froths For examplep™ = corresponds

to a froth made with layers of infinitely long bricks disposed,
layer by layer, with orientation alternating by 90°. In this
case the network is a square lattice. The opposite limit
(p*=0) corresponds, for example, to a 3D froth made with
layers of large and small cells, when the ratio between the
cell sizes tends to infinity. In this case the network is the

Equation (4.1) implies that a 3D random froth can be
constructed from the superposition of two 2D random froths
To study this general case it is useful to rewrite E41) in
term of the numbep™ of intersections of edges of the in-
coming froth by edges of the outgoing froth and vice versa
For a given shellt) this quantity is equal to

oy o 2y result of the superpos_,ition of a froth with p_ells of Iar_ge sizes
pX=—5 x =3 =0 al T (C1) qnd a froth of small sizes and the'proba'blll'ty of the intersec-
EV+EY 3 (VY+VD) tion of edges of these two froths is vanishingly small.
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