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We study the electrical conductivitys of a dispersion of randomly oriented and positioned particle inclu-
sions having common shape and conductivitysp , suspended in an isotropic homogeneous matrix of conduc-
tivity s0 . For this problem, the mixture conductivity is a scalar and we concentrate on the leading order
concentration virial coefficient, the ‘‘intrinsic conductivity’’@s#. Results for@s# are summarized for limiting
cases where there is a large mismatch between the conductivities of the inclusions and the suspending matrix.
For a general particle shape, we then treat the more difficult case of arbitrary relative conductivity
D[sp /s0 through the introduction of a Pade´ approximant that incorporates~exact or numerical! information
for @s(D)# in theD→`, D→01, andD'1 limits. Comparison of this approximation for@s(D)# to exact and
finite element calculations for a variety of particle shapes in two and three dimensions shows excellent
agreement over the entire range ofD. This relation should be useful for inferring particle shape and property
information from conductivity measurements on dilute particle dispersions. The leading order concentration
virial coefficient for other mixture properties~thermal conductivity, dielectric constant, refractive index, shear
modulus, bulk modulus, viscosity, etc.! are equally well described by a similar Pade´ approximant.@S1063-
651X~96!11106-5#

PACS number~s!: 61.41.1e, 72.60.1g

I. INTRODUCTION

Small amounts of additives are often quite effective in
modifying the properties of materials. The extent of the ef-
fect depends on the property involved, particle dispersion,
concentration, and shape, and tends to be larger the more
unlike the additive material properties are from those of the
suspending matrix. In the common situation of low additive
volume fraction,f, the effective properties can be developed
in a power series inf. The leading order ‘‘virial coeffi-
cient,’’ corresponding to the linear order concentration cor-
rection to the pure medium property, plays an important role
in understanding the influence of particle shape and property
mismatch on the effective property of the mixture@1#. The
low additive concentration regime is also important in the
inverse problemof inferring particle shape and/or properties
from measurements of effective mixture properties over a
range of low additive concentrations. This strategy is com-
monly followed in the polymer science literature to deter-
mine polymer molecular architecture@2#.

In a previous paper@1#, we made an extensive tabulation
of the leading order transport property virial coefficients for
a wide range of particle shapes, and a large set of material
properties ~electrical and thermal conductivity, dielectric
constant, refractive index, shear viscosity!. Almost all of
these previous calculations, analytical and numerical, were
restricted to the case where the ratio of the additive property
to the matrix property either vanished or diverged. Although
the property mismatch between the additive and the matrix
may be large, the limits considered previously are clearly
idealizations in comparison with real systems where the
transport property ratio is generally a finite, nonzero value.
The present paper develops an approximate description of
transport virial coefficients in terms of the relative conduc-
tivity D, the ratio of the inclusion conductivity to that of the

matrix, and limiting values of the transport virial coefficients
for large property mismatch.

In Sec. II we review basic results about the conductivity
virial expansion for suspensions of highly conducting and
insulating particles, which was the subject of our previous
paper@1#. A Padéapproximant describing the intrinsic con-
ductivity for general particle shapes andD is introduced in
Sec. III, and then compared to exact and numerical~finite
element! calculations of@s(D)#. Some approximations for
the limiting values of the transport virial coefficient for large
property mismatch are discussed in Sec. IV, which remain to
be checked in future numerical studies.

II. REVIEW OF CONDUCTIVITY VIRIAL EXPANSION
RESULTS

Maxwell @3# first treated the conductivitys of a particle
suspension in which the suspended spherical particles have a
different conductivitysp than the suspending mediums0 .
He recognized that the change in conductivity reflected the
average dipole moment induced by the particles on the sus-
pending medium in response to an applied field. For a dilute
suspension of hard spheres the effect is the simple additive
sum of the effects caused by the individuals particle dipoles.
The effective conductivitys of the dilute mixture, for the
case of hard spheres, then equals

s/s0511@3~D21!/~D12!#f1O~f2!, ~2.1a!

whereD5sp /s0 is the ‘‘relative conductivity,’’ andf is
the volume fraction of suspended spherical particles. Exact
results that go beyond this classic result are limited, how-
ever. There are effective medium calculations that attempt to
extend the ‘‘virial expansion’’~2.1a! to higher power off
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@4#, but only for the case of spherical inclusions. Sangani@5#
recently generalized Maxwell’s calculation for spherical par-
ticles tod dimensions,

s

s0
511

d~D21!f

~D1d21!
1O~f2!. ~2.1b!

Levine and McQuarrie@6# calculated the second order virial
coefficient for highly conducting (D→`) spheres, while Jef-
ferey @7# treated this quantity for arbitraryD.

The virial expansion~2.1a! has been verified experimen-
tally for dilute suspensions of numerous substances. For ex-
ample, Eq.~2.1a! implies that the leading order virial coef-
ficient for highly conducting spheres equals 3. This value has
been observed by Voet for nearly spherical iron particles
~diameter510mm) in linseed and mineral oils@8#, and has
also been found for emulsions of salt water in fuel oil and
mercury drops in different oils@9#. The corresponding pre-
diction for insulating suspended spheres,2 3

2 (D→0), has
been observed for suspensions of glass beads and sand par-
ticles in salt solutions@10#, and for gas bubbles in salt solu-
tions @11#. Good agreement with Eq.~2.1a! has also been
observed in fluidized beds, where the relative conductivity
D was tuned over a range of values@12#.

The practically important inverse problem of determining
the volume fraction of a suspension of complicated shaped
particles from electrical measurements motivated the gener-
alization of Eq.~2.1a! to particles having arbitrary shape and
conductivity. Fricke@13# treated the case of ellipsoidal par-
ticles and utilized a Clausius-Mosotti-style@14# effective me-
dium theory to approximate the higher concentration regime.
These effective medium calculations are exact in the dilute
regime where they reduce to a virial expansion of the form
~2.1a!. We avoid further discussion of the higher concentra-
tion regime where approximate methods must be employed.

The low concentrations virial expansion of randomly
oriented and arbitrarily shaped particles equals@1,15#:

s/s0511@s~D!#f1O~f2!, ~2.2a!

@s~D!#[ lim
f→0

~s2s0!/~s0f!, ~2.2b!

where@s(D)# is called the intrinsic conductivity. We adopt
this notation by analogy with the leading order concentration
virial for the suspension viscosity which is conventionally
called the ‘‘intrinsic viscosity’’ @h# @2#. The magnitude of
@s(D)# can be a strong function of particle shape for ex-
tended or flat particles, depending on the magnitude of the
relative conductivityD, so that the effect of adding a given
amount of material to a suspension can be greatly dependent
on particle shape.

The polarizabilitya is a second rank tensor@16,17# that
generally depends on particle orientation, shape, size, and
D. The average polarizability, which is 1/d times the trace of
the polarizability tensor, is an invariant under rotations
@18,19#, so that the virial coefficient@s#5^a&/Vp is a func-
tional of particle shape andD only. Calculation of the aver-
age polarizability is often easier than the full polarizability
tensor, since any three orthogonal directions can be chosen
for the field directions in the calculation of@s#. Equiva-
lently, we can angularly average the polarization tensor over

all orientation angles with uniform probability@18,19#. In
some applications it is useful to orient the suspended par-
ticles, in which case the effective conductivitys of the com-
posite is anisotropic and becomes explicitly dependent on the
components of the polarizability tensor@20#. Historically, the
anisotropic case was found to be very important in the design
of microwave lenses and other artificial dielectrics where
large scale conducting elements are arrayed in an insulating
matrix @21–24#. The anisotropic situation is also encountered
in the optical properties of sheared anisotropic particle sus-
pensions@25#. In the present paper, we emphasize the aver-
age polarizability^a&, which is relevant to suspensions in
which the particle orientation is completely random.

In an electrostatic context the polarizability describes how
the charges of a body of dielectric constantep , embedded in
a medium having a dielectric constante0 , are distorted in
response to an applied electric field@14,26#. The distorted
charge distribution gives rise to a dipolar field that reacts
upon the applied field, thereby modifying the net effective
field in the proximity of the body. This connection between
conductivity and the dielectric constant is natural since Eqs.
~2.1! and ~2.2! also describe the dielectric constant of sus-
pensions of particles with a relative dielectric constant
De5ep /e0 . Moreover, these equations also apply to the
magnetic permeability, the diffusion coefficient, and the ther-
mal conductivity of dilute suspensions, where the magnetic
field, the concentration gradient, and the temperature gradi-
ent are the corresponding ‘‘fields’’@27–29#.

Although simple in principle, calculations of the polariz-
ability tensor for objects of general shape is a mathematical
problem of notorious difficulty. Indeed, the ellipsoid@13,26#
is the only shape ind53 for which exact analytic results
have been obtained as a function ofD. There have been
recent numerical calculations of the polarizability tensor for
other objects in relation to Rayleigh scattering~e.g., radar!
applications@30,31#. The situation is better for limiting val-
ues of the relative conductivityD where the polarizability
tensora(D) simplifies. For highly conducting inclusions, the
polarizability tensor reduces to the electric polarizability
ae ,

lim
D→`

a~D![ae , ~2.3a!

and @s# for randomly oriented inclusions, having a much
higher conductivity than the matrix, then equals

@s~D→`!#[@s#`5^ae&/Vp . ~2.3b!

As above,^ae& denotes the average electric polarizability
tensor. The case of insulating inclusions in a conducting me-
dium corresponds formally toD→01, so that we similarly
have

lim
D→01

a~D![am , ~2.4a!

@s~D→0!#[@s#05^am&/Vp , ~2.4b!

wheream is the magnetic polarizability~see Ref.@1# for a
discussion of the magnetic-electric polarizability analogy!. In
theD→01 andD→` limits, @s# is simply a functional of
particle shape and spatial dimension. In our previous paper
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we discussed the important exact relation ofam to the hy-
drodynamic virtual mass of the particle, which yielded many
exact results for this quantity@1#.

The intrinsic conductivity is rather insensitive to particle
shape when the conductivity of the particles is similar to the
embedding medium (D'1), and a formal Taylor expansion
about this limit can be made. Explicit calculation shows that
this expansion does not depend on particle shape at all to
second order in (D21) @32,33#,

@s~D!#5~D21!1@s9#~D21!21O„~D21!3…, ~2.5!

@s9#[
1

2

]2@s~D!#

]D2 U
D51

,

where @s9#521/d @28# for the electrical problem ind di-
mensions. Equation~2.5! is found to be very useful in Sec.
III, where an approximant for@s(D)# is developed for par-
ticles of general shape.

More general results are possible for@s(D)# in the super-
conducting and insulating particle limits ind52 based on
general conformal mapping results. In particular, the intrinsic
conductivity of an arbitrarily shaped superconducting inclu-
sion @s#` can be exactly expressed@1# in terms of the
‘‘transfinite diameter’’CL of the inclusion@34,35# ~see be-
low!

@s#`52Ac /A, AC5pCL
2 , ~2.6!

whereA is the area of the inclusion. Moreover, the Keller-
Mendelson inversion theorem@36# for d52 implies that
@s# for an insulating inclusion,@s#0 , is related to@s#` by a
change of sign,

@s#052@s#`, d52. ~2.7!

The transfinite diameterCL is a basic measure of the average
size of a bounded plane set, and can be defined in a variety of
equivalent ways@35,37#. CL , for example, is defined as the
conformally invariant magnitude of Dirichlet’s integral asso-
ciated with the exterior of the region defining the particle
@35#. The equivalent transfinite diameter can be expressed in
terms of the Euclidean metric defining the distance between
points in the set@37#. Perhaps the most useful definition of
CL involves the purely geometrical construction of mapping
the exterior of a regionS having an arbitrary but simply
connected shape and finite area onto a circular region in such
a fashion that the points at a large distance fromS are as-
ymptotically unaffected by the transformation@38#. The ra-
dius of this uniquely defined transformed circular region
equalsCL . This transformation is basically the content of the
Riemann mapping theorem@39#. SinceCL is a central object
of harmonic analysis in two dimensions, there exist extensive
tabulations ofCL @34,35#. We may combine this information
with ~2.6! and ~2.7! to obtain exact results for @s#0 and
@s#` in d52. An extensive tabulation of exact analytic re-
sults for symmetrically shaped regions and numerical esti-
mates of these virials for irregularly shaped regions have
been given in our previous paper ford52 and also for
d53 @1#.

Unfortunately, real inclusions often do not correspond to
the ideal limits of perfectly insulating (D50) and perfectly

conducting (D→`) inclusions, and explicit calculation~see
Sec. III! shows that the extent to which these limits apply
depends on particle asymmetry. There is a need for accurate
estimates of@s(D)# for variableD if accurate inference of
particle shape from conductivity~or other related property!
measurements is required.

Exact results for general values ofD are very limited,
however. Maxwell’s@3# and Sangani’s@4# result for spheres
were mentioned in Eq.~2.1!. The ellipsoid ind53 is also
analytically tractable, although no simple closed form ana-
lytic expression exists for@s(D)#, even for this simple class
of particle shapes~except for ellipsoids of revolution@1#!.
The final known@s(D)# expression is for an elliptical inclu-
sion ind52,

@s~D!#5
~D221!~11x!2

2~11Dx!~D1x!
, ~2.8!

where x is the ratio of the semimajor to semiminor axis
lengths. In Sec. III we provide an approximant for@s# for
particles of general shape based on previously tabulated val-
ues of@s#0 and @s#` @1#, the spatial dimensiond, andD.

III. INTRINSIC CONDUCTIVITY FOR GENERAL D

The limiting values of@s# for D→` andD→0 and the
expansion of@s(D)# to second order in (D21) provides
five pieces of information about@s(D)# corresponding to
bodies of general shape. Explicit numerical and analytical
calculations~see below! of @s(D)# indicate that this function
always seems to increase monotonically withD. Based on
these results, we introduce a Pade´ approximant@41# to de-
scribe@s(D)# for general shaped bodies and values ofD,

@s~D!#5
@s#`~D21!21a~D21!

~D21!21~@s#`2a@s9# !~D21!1a
.

~3.1a!

a[
@s#`2@s#01@s#`@s#0
11~11@s9# !@s#0

~3.1b!

Equation~3.1a! was constructed by starting with a ratio of
two quadratic polynomials inD. This ratio has five indepen-
dent coefficients. These five coefficients are then determined
from the five pieces of information mentioned above: the
value of@s(D)# and its first two derivatives atD51, and the
values of@s#0 and @s#` . An approximation with a similar
mathematical form was introduced previously by Eyges and
Gianino @42# to summarize their numerical results for the
polarizability of a cube (d53) as a function of the relative
dielectric constant of the cube to the surrounding medium
~see below!. We also observe that Eq.~3.1! in d52 reduces
to the exact result for an ellipse, Eq.~2.8!. TheD→` limit
for an ellipse is given by

@s#`5~11x!2/~2x!. ~3.2!

Eq. ~3.1! also recovers@s(D)# for hyperspheres ind dimen-
sions given in~2.1b!. It is a good test of our approximate
formula that it reduces to the exact equations in known lim-
its.
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As a further test of Eq.~3.1!, we consider@s(D)# for
ellipsoids of revolution where exact analytical results are
known. In Figs. 1~a! and 1~b!, we compare the exact results
for @s(D)# to the approximant Eq.~3.1! for oblate and pro-
late ellipsoids of revolution where the ratio of the larger to
the smaller axis lengths in each case equals 100. Each ex-
ample reveals a nontrivial variation of@s# with D, which is
accurately described by the approximant~3.1!. Deviations
were less than 0.2% for the prolate case, and were exact
within computer roundoff error~ten significant digits! for the
oblate case.

Some further insight into these crossover curves for
@s(D)# at high aspect ratios can be obtained from the exact
d52 ellipse result. Figure 2 shows this function covering six
orders of magnitude in the aspect ratiox. The inflection
points in Fig. 2 scale linearly withx on the log10 D scale
~there are no inflection points on a regularD scale!. Evi-
dently,D must be increasingly large or small as the aspect

ratio of the particles increases for these particle shapes to
correspond to the limiting superconducting or insulating par-
ticle limits.

We next consider some finite element calculations of
@s(D)# that generalize our previous calculations for insulat-
ing and highly conducting particles@1#. In these calculations
particles are represented as digital images built up from cu-
bical elements. A standard lattice of size 1203 was used,
which is the largest that was practical considering both com-
puter memory and running time. Because of the overall com-
putational cell size limit, a compromise had to be taken be-
tween using enough pixels to give a good representation of
the particle, and keeping the particle small compared to the
overall unit cell, so as to keep the volume fraction small
enough to be in the linear regime in concentration. The size
and complexity of the objects that could be treated in this
fashion is necessarily limited, but a good approximation to a
wide range of physically interesting objects could still be

FIG. 1. The intrinsic conductivity@s(D)# vs
the relative conductivityD for an ~a! oblate and a
~b! prolate ellipsoid of revolution, with the ratio
of the longest axis to the shortest axis equal to
100. The solid line is the Pade´ approximant Eq.
~3.1!, and the circles are the exact result for a
selected number of values ofD.
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obtained. The typical computational time for about 20 values
of D and a particular shape was about 10 h on a Convex
3820 supercomputer. Details of our computational procedure
were given in our previous paper@1#. Comparisons of these
calculations against exactly soluble examples showed a sys-
tematic overestimation of@s#` of about 5–6 % ind53, for
higher values ofD, and a smaller underestimation, of 2–3 %,
in d52 @1#.

Figure 3 shows the important case of a cube as a function
of D where the solid line denotes the approximant Eq.~3.1!
using the numerical estimates of Eyges and Gianino@42#,

@s#0521.59, @s#`53.40. ~3.3!

The results in Fig. 3 agree with the numerical results of
Eyges and Gianino@42# to within 1%, and usually the agree-

ment is much better. Eyges and Gianino evaluated@s(D)#
based on a numerical solution of an integral equation de-
scribing this problem.

Finite element calculations were performed for rectangu-
lar parallelipipeds having dimension ratios 2:2:1 and 1:1:2.
Equation~3.1! again gives an excellent description, and thus
we only summarize the limiting values of@s# needed to
reproduce these results:

@s~2:2:1!#0521.68, @s~2:2:1!#`54.15, ~3.4a!

@s~1:1:2!#0521.65, @s~1:1:2!#`54.22. ~3.4b!

We emphasize that these are finite element estimates of the
intrinsic conductivity rather than the exact values.

FIG. 2. The intrinsic conductivity@s(D)# di-
vided by the superconducting limit@s#` vs the
relative conductivityD for a series ofd52 el-
lipses with varying aspect ratiox.

FIG. 3. The intrinsic conductivity@s(D)# vs
the relative conductivityD for a cube, as com-
puted by Eyges and Gianino@42#, and the Pade´
approximant of the text.
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The important physical example of a right circular cylin-
der is considered next. Precise analytical calculations of the
polarizability in the superconducting particle limit have been
made@43#, and@s#` values based on these calculations are
given in Table I. In addition,@s#0 has been calculated using
finite element methods, and these results are also given in

Table I. This comparison shows a 5–6 % error in our nu-
merical calculations for the superconducting limit. The error
for the insulating limit, while we have no exact values
against which to compare them, is probably in the range of
2–3 %, based on experience with other shapes@1#. We have
found that the insulating limit is usually computed more ac-
curately with our finite element method than is the supercon-
ducting limit. Better accuracy is possible, of course, if suffi-
cient computer memory is available, at the expense of much
greater computational times. Accurate numerical data for
@s#` and @s#0 , for a wide range of diameter-height ratios,
could be used to obtain approximants for these virials that
then could be used in conjunction with Eq.~3.1! to make
more general analytical estimates of@s(D)# for comparison
with experiments on cylindrical conducting fibers.

In our next example we treat an idealized ‘‘spongelike’’
body. Consider a cube of unit edge length, in which a square

FIG. 4. ~a! Image of a ‘‘sponge.’’~b! The
intrinsic conductivity@s(D)# vs the relative con-
ductivity D for the sponge model form523/27.
The solid line is the Pade´ approximant, and the
circles are the result of finite element calculations
for a selected number of values ofD.

TABLE I. Limiting intrinsic conductivities for circular cylin-
ders.

Diameter3height Exact@s#` Numerical@s#` Numerical@s#0

13
1
2 4.106 4.32 21.60

131 3.401 3.56 21.57
132 3.622 3.79 21.64
134 4.704 4.93 21.86
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channel is cut through the center of each face, where each
channel passes completely through the cube. A picture of an
object of this kind is shown in Fig. 4~a!. The parameterm is
taken to be the edge length of the cutout face in units of the
total cube edge length. We obtain a rigid cubic wire frame
whenm approaches 1. Notice that cutting out the center,
which makes the particle more spongelike, has a very large
effect on @s#` , as can be seen in Table II. It would be
interesting to push the effect to the extreme in a different
way by generating a Menger sponge@44# fractal by a re-
peated decimation of the cube at different scales, so that
@s#` would diverge in a fashion related to the fractal dimen-
sion of the sponge. The memory capacity of our computer
was not large enough to allow us to consider more than one
or two generations of such an iteratively constructed ‘‘dif-
fuse’’ object, so we presently confine ourselves to the first
generation wire frame structure shown in Fig. 4~a!.

Figure 4~b! presents our numerical results as a function of
D for the sponge withm523/27. Note that@s(D)# is quite
insensitive toD for relatively insulating particles (D,1),
which is typical for extended or diffuse objects. As in previ-
ous comparisons, the approximant Eq.~3.1! describes the
numerical data very well. Table II includes numerical data

for @s#0 corresponding to other representative shapes con-
sidered in our previous paper@1#. A ‘‘jack’’ is a sphere punc-
tured by three intersecting rectangular parallelipipeds. The
square ring and square hollow tube are self-explanatory. Val-
ues of @s#0 were not given in our previous paper, which
focused on comparisons between@s#` and the intrinsic vis-
cosity @h#.

Numerical calculations of@s(D)# for inclusions having
sharp corners give rise to subtle variations of this virial co-
efficient with D. Such cases provide a good test for our
approximant Eq.~3.1!. In Fig. 5 we consider finite element
calculations for a 12:1 rectangular region ind52 ~the lattice
size in d52 was 18002). Observe the subtle feature of a
‘‘wavy’’ variation of @s(D)# for this type of inclusion,
which is followed by Eq.~3.1! remarkably well. In the insu-
lating limit, we found

@s~12:1!#0526.2952@s~12:1!#` . ~3.5!

The exact value of@s#0 for a 12:1 rectangle is26.38 @40#,
indicating an error of only 1.4% for the finite element
method at this resolution ind52. The values of@s# for
finite D should have even less error. To save computer time,
in all the d52 finite element computations we took advan-
tage of the Keller-Mendelson inversion theorem@36# and
only calculated@s(D)# for D,1.

As a final example, we considered a completely asymmet-
ric inclusion to make sure that particle asymmetry did not
invalidate our approximant. Two dimensions was chosen to
allow a higher resolution to be used in order to obtain more
accurate computational results. TheL-shaped asymmetric
particle, of no particular symmetry, chosen to illustrate this
case is shown in the inset of Fig. 6. Equation~3.1! again
provides a very good approximation of the intrinsic conduc-
tivity data ~Fig. 6!, where we found

@s~L !#0523.1152@s~L !#` . ~3.6!

TABLE II. Numerical estimates of intrinsic conductivity for
various shapes (d53).

Shape m @s#` @s#0

Sponge 15/27 8.74 21.75
Sponge 21/27 27.1 21.72
Sponge 23/27 55.0 21.66
Sponge 25/27 192 21.43
Sponge 33/35 311 21.43
Jacka 4.50 21.51
Ringa 127 21.42
Hollow tubea 16.7 24.27

aSee Ref.@1# for the dimensions of these structures.

FIG. 5. The intrinsic conductivity@s(D)# vs
the relative conductivityD for 1312 rectangular
region ind52. The solid line is the Pade´ approx-
imant, and the circles are the result of finite ele-
ment calculations for a selected number of values
of D.
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This agreement for many different kinds of particles, includ-
ing a completely anisotropic one, suggests that Eq.~3.1!
should be a very reasonable approximation for a wide range
of complex-shaped particles.

IV. DISCUSSION

The problem of calculating the effective properties of a
medium containing dispersed particles having complex
shape and different properties than the suspending matrix
arises in many applications. For many properties~refractive
index, dielectric constant, magnetic permeability, thermal
and electrical conductivity, tracer diffusion constant! this
general problem reduces to a common mathematical descrip-
tion @1,27–29#. In the present paper we have specialized the
language to electrical conductivity to make our discussion
more concrete. We have also confined our attention to the
dilute regime where each inclusion independently influences
the properties of the medium, and where exact calculations
for special shapes become possible, at least for limiting val-
ues of the relative conductivityD and specially shaped in-
clusions.

The computationally more difficult and practically impor-
tant problem of the conductivity virial coefficient@s(D)# for
arbitraryD has been attacked by the pragmatic procedure of
developing an approximant incorporating exact information
for D'1 and numerical~and sometimes exact analytical!
information for@s(D)# in the insulating (D→0) and super-
conducting (D→`) limits. Numerical calculations of
@s(D)# for particles having a variety of shapes have shown
very good agreement with this approximant. However, the
utilization of Eq. ~3.1! for estimating@s(D)# for generally
shaped particles ind53 is still limited by the difficulty in
calculating the virial coefficients in these limits.

Given these difficulties, it is useful to also develop some
simple approximations for@s#0 and @s#` appropriate for
commonly encountered classes of inclusions. In Fig. 7 we
give exact results for@s#0 and@s#` for an ellipsoid of revo-
lution as a function of the aspect ratiox ~dimension of ellip-

soid along axis of symmetry relative to dimension normal to
axis of symmetry!. This figure shows that for needlelike par-
ticles @s#0 is insensitive to particle shape. For a sphere,
@s#052 3

2, and for an infinitely thin needle@s#052 5
3, so

we expect that the average of these results,

@s#0'2 19
1260.15, ~4.1!

should be a useful approximation for insulating particles
modestly extended along one direction. Equation~4.1!
should perhaps also apply to diffuse spongelike structures, as
in Fig. 4, and to random-coil polymers, which have a low
density. A similar approximation is often employed in aero-
dynamic literature for the virtual mass of an object@45#,
which is directly related to@s#0 @1#. The approximation Eq.
~4.1! is poor for sheetlike insulating structures, which
strongly modify the conductivity of a conducting matrix~see
Fig. 7!, so the approximation should not be employed un-
critically.

FIG. 6. The intrinsic conductivity@s(D)# vs
the relative conductivityD for a 13234
L-shaped region ind52. The solid line is the
Padéapproximant, and the circles are the result
of finite element calculations for a selected num-
ber of values ofD.

FIG. 7. Intrinsic conductivities@s#0 and @s#` for ellipsoids of
revolution as a function of aspect ratiox.
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There are actually few previous calculations of@s#0 for
any shape, so some comment on other applications of this
shape functional are worth mentioning. Wang@46# ~with On-
sager’s advice! investigated the role of protein particle shape
on the self-diffusion coefficientDs of water in protein solu-
tions, and found the concentration dependence

Ds /Ds~f→0!511@s#0f1O~f2!, ~4.2!

wheref is the protein volume fraction. The notation of the
present paper is adopted in Eq.~4.2! ~see also Appendix A of
Ref. @1# for further discussion!. Recent NMR measurements
on the diffusion of water in swollen gels by Geissler and
Hecht @47# have shown that@s#0'21.66, which is the ex-
pected result for slender particles@see Eq.~4.1! and Fig. 7#.
Wang discusses the importance of virial expansions such as
Eq. ~4.2! for inferring the particle shape and surface proper-

ties of suspended particles@46#, and there are also many
classic polymer science studies devoted to this general prob-
lem @48#.

The @s#` virial exhibits a more complex shape depen-
dence. In our previous paper we established a general ap-
proximate relation between@s#` and the intrinsic viscosity
@h# of a suspension of rigid particles,@h#'@(d12)/
2d] @s#` . A slender body approximation of Debye@49# for
@h#, and an approximation relating the translational friction
f T of a Brownian particle to the capacity of the particleC
@50# ~Newtonian capacityC rather than the logarithmic ca-
pacity CL discussed above!, suggests a general approxima-
tion for @s#` corresponding to linearly extended particles
such as polymer chains, needlelike inclusions, etc.:

@s#`'~6p/5!Rg
2C/Vp , ~4.3!

FIG. 8. The intrinsic shear modulus@G(D)#
vs the relative shear modulusDG for ~a! a prolate
and~b! an oblate ellipsoid of revolution, with the
ratio of the longest axis to the shortest axis equal
to 100. The solid line is the Pade´ approximant
Eq. ~3.1!, and the circles are the exact result for a
selected number of values ofD.
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whereRg is the average particle radius of gyration andVp is
the particle volume. The scaling@s#`;Rg

2C/Vp is consistent
with exact calculations for long ellipsoidal particles where
@s#` scales with aspect ratiox as @1,51#

@s#`;~x2/3!/ ln~x!. ~4.4!

Equation ~4.3! is potentially a useful approximation since
Rg is readily calculated from simple geometry, and accurate
and efficient numerical methods have recently been devel-
oped for calculatingC of general shaped objects@49,52#.
Future numerical work should examine the ratioG,

G5
Rg
2C

@s#`Vp
, ~4.5!

to determine the degree of its universality, at least for bodies
extended along one direction. The development of readily

implemented and accurate approximations for@s#0 and
@s#` should be very useful in estimating@s(D)# of poly-
meric particles. For example, the relation Eq.~4.3! implies a
nontrivial molecular weight dependence of@s# for suspen-
sions of highly conducting polymers@1#, and a correspond-
ingly strong influence on the conductive properties of solu-
tions of these polymers.

The problem of calculating transport virial coefficients as
a function of the relative propertyD is commonly encoun-
tered. The treatment of the conductivitys applies equally as
well to thermal conductivity, dielectric constant, refractive
index, magnetic permeability, and other properties@27–29#.
There are also many applications involving the elastic con-
stants of solid composites and the viscosity of suspensions
that involve similar, but somewhat more complicated math-
ematics. For example, the virial coefficient@G# for the shear
modulus of an elastic particle in an incompressible medium

FIG. 9. The intrinsic bulk and shear moduli
@K(D)# and @G(D)#, vs the relative bulk and
shear moduliD5DK5DG for ~a! a prolate and
~b! an oblate ellipsoid of revolution (d53), with
the ratio of the longest axis to the shortest axis
equal to 100. The solid line is the Pade´ approxi-
mant Eq.~3.1!, and circles are the exact result for
a selected number of values ofD. The matrix
Poisson’s ration055/22.
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depends on the ratioDG of the shear modulus of the particle
to that of the embedding medium and the intrinsic shear
viscosity @h# of a suspension of fluid particles depends on
the relative viscosityDh @1#. These virials can also depend
on the surface boundary condition~partial slip! and on other
parameters~Poisson ratio, surface shear viscosity, or modu-
lus, etc.! in addition to a general dependence on particle
shape. It turns out to be possible to treat this general class of
problems by basically the same Pade´ approximant method.

To illustrate this generality, we also consider the calcula-
tion of the intrinsic shear modulus@G#. For this generaliza-
tion we simply replaces by G in Eq. ~2.5! and note the
corresponding result for@G9# in d52 andd53,

@G9#522/~d12!, ~4.6!

which can be inferred from Refs.@29,53,54#. In Figs. 8~a!
and 8~b! we compare exact results@55# to the approximant
Eq. ~3.1! with G replacings for randomly oriented prolate
and oblate ellipsoids of revolution with relative shear modu-
lus DG . As in the conductivity virial case, the agreement is
excellent. The calculation of the intrinsic viscosity@h# is
very similar to the calculation of@G# @1,56#, so it should be
possible to extend Eq.~3.1! to these properties as well.

For the general elastic case, when particles with bulk and
shear moduliKp andGp are embedded in a matrix withK0
andG0 (DK5Kp /K0 andDG5Gp /G0), the same Pade´ ap-
proximant again holds. The quantities@G9# and @K9# are
given, ind53, by

@G9#5
22~425n0!

15~12n0!
, ~4.7!

@K9#5
2~11n0!

3~12n0!
, ~4.8!

and ind52 by

@G9#52
1

4
~32n0! ~4.9!

@K9#52
1

2
~11n0!, ~4.10!

where n0 is the Poisson’s ratio of the matrix@54#. In the
small (DK21) and (DG21) limits, the expansion forK de-
pends only on (DK21) and that forG only on (DG21), to
second order in these quantities@54#. These quantities can
also be obtained from the Hashin elastic bounds@29,53# for
the moduli, which are known to be exact to second order in
(DK21) and (DG21). Using the exact solution for@G# and
@K# for ellipsoids of revolution (d53) @55#, Eq. ~3.1! again
agrees very well for randomly oriented prolate and oblate
ellipsoids of revolution, as can be seen in Figs. 9~a! and 9~b!.
Having worked well for both electric and elastic cases, for a
wide variety of particle shapes, we then expect the Pade´
approximant may apply to other properties as well.
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@34# G. Pólya and G. Szego¨, Isoperimetric Inequalities in Math-

ematical Physics ~Princeton University Press, Princeton,
1951!.

@35# N. S. Landkof, Foundations of Modern Potential Theory
~Springer-Verlag, New York, 1972!.

@36# J. B. Keller, J. Math. Phys.5, 548~1964!; K. S. Mendelson, J.
Appl. Phys.46, 917 ~1975!.

@37# G. Szego¨, in Proceedings of the Conference on Differential
Equations,edited by J. B. Diaz and L. E. Payne~University of
Maryland Bookstore, College Park, MD, 1956!, p. 139; M.
Schiffer, Proc. Cambridge Philos. Soc.37, 373 ~1941!.
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