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We study the electrical conductivity of a dispersion of randomly oriented and positioned particle inclu-
sions having common shape and conductivify, suspended in an isotropic homogeneous matrix of conduc-
tivity . For this problem, the mixture conductivity is a scalar and we concentrate on the leading order
concentration virial coefficient, the “intrinsic conductivity{'c]. Results fof o] are summarized for limiting
cases where there is a large mismatch between the conductivities of the inclusions and the suspending matrix.
For a general particle shape, we then treat the more difficult case of arbitrary relative conductivity
A=,/ through the introduction of a Padg@proximant that incorporatéexact or numericalinformation
for[o(A)] intheA—o<, A—0*, andA~1 limits. Comparison of this approximation fpe-(A)] to exact and
finite element calculations for a variety of particle shapes in two and three dimensions shows excellent
agreement over the entire range/of This relation should be useful for inferring particle shape and property
information from conductivity measurements on dilute particle dispersions. The leading order concentration
virial coefficient for other mixture propertigghermal conductivity, dielectric constant, refractive index, shear
modulus, bulk modulus, viscosity, etare equally well described by a similar Pageproximant[S1063-
651X(96)11106-3

PACS numbep): 61.41+e, 72.60+9g

[. INTRODUCTION matrix, and limiting values of the transport virial coefficients
for large property mismatch.

Small amounts of additives are often quite effective in In Sec. Il we review basic results about the conductivity
modifying the properties of materials. The extent of the ef-virial expansion for suspensions of highly conducting and
fect depends on the property involved, particle dispersioninsulating particles, which was the subject of our previous
concentration, and shape, and tends to be larger the mopaper[1]. A Padeapproximant describing the intrinsic con-
unlike the additive material properties are from those of theductivity for general particle shapes aadis introduced in
suspending matrix. In the common situation of low additiveSec. lll, and then compared to exact and numerifiaite
volume fraction, the effective properties can be developedelement calculations off o(A)]. Some approximations for
in a power series inp. The leading order “virial coeffi- the limiting values of the transport virial coefficient for large
cient,” corresponding to the linear order concentration cor-property mismatch are discussed in Sec. IV, which remain to
rection to the pure medium property, plays an important rolde checked in future numerical studies.
in understanding the influence of particle shape and property
mismatch on the effective property of the mixtyrg. The
low additive concentration regime is also important in the
inverse problenof inferring particle shape and/or properties
from measurements of effective mixture properties over a Maxwell [3] first treated the conductivity of a particle
range of low additive concentrations. This strategy is comsuspension in which the suspended spherical particles have a
monly followed in the polymer science literature to deter-different conductivityo, than the suspending mediuay,.
mine polymer molecular architectuf2]. He recognized that the change in conductivity reflected the

In a previous papefl], we made an extensive tabulation average dipole moment induced by the particles on the sus-
of the leading order transport property virial coefficients forpending medium in response to an applied field. For a dilute
a wide range of particle shapes, and a large set of materiguspension of hard spheres the effect is the simple additive
properties (electrical and thermal conductivity, dielectric sum of the effects caused by the individuals particle dipoles.
constant, refractive index, shear viscogitlmost all of  The effective conductivityr of the dilute mixture, for the
these previous calculations, analytical and numerical, wergase of hard spheres, then equals
restricted to the case where the ratio of the additive property
to the matrix property either vanished or diverged. Although
the property mismatch between the additive and the matrix
may be large, the limits considered previously are clearly
idealizations in comparison with real systems where thevhere A=o,/0 is the “relative conductivity,” and¢ is
transport property ratio is generally a finite, nonzero valuethe volume fraction of suspended spherical particles. Exact
The present paper develops an approximate description @ésults that go beyond this classic result are limited, how-
transport virial coefficients in terms of the relative conduc-ever. There are effective medium calculations that attempt to
tivity A, the ratio of the inclusion conductivity to that of the extend the “virial expansion’(2.13 to higher power of¢

II. REVIEW OF CONDUCTIVITY VIRIAL EXPANSION
RESULTS

olog=1+[3(A—1)/(A+2)]¢+0(¢?), (2.13
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[4], but only for the case of spherical inclusions. Sang&hi all orientation angles with uniform probability18,19. In
recently generalized Maxwell’s calculation for spherical par-some applications it is useful to orient the suspended par-
ticles tod dimensions, ticles, in which case the effective conductivigyof the com-
posite is anisotropic and becomes explicitly dependent on the
components of the polarizability tend@0]. Historically, the
anisotropic case was found to be very important in the design
of microwave lenses and other artificial dielectrics where
Levine and McQuarri¢6] calculated the second order virial |arge scale conducting elements are arrayed in an insulating
coefficient for highly conductingX— ) spheres, while Jef- matrix[21—24. The anisotropic situation is also encountered
ferey[7] treated this quantity for arbitrar. in the optical properties of sheared anisotropic particle sus-
The virial expansior(2.1a has been verified experimen- pensiong25]. In the present paper, we emphasize the aver-
tally for dilute suspensions of numerous substances. For exge polarizability( «), which is relevant to suspensions in
ample, Eq.(2.1a implies that the leading order virial coef- which the particle orientation is completely random.
ficient for highly conducting spheres equals 3. This value has |n an electrostatic context the polarizability describes how
been observed by Voet for nearly spherical iron particleghe charges of a body of dielectric constapt embedded in
(diameter=10um) in linseed and mineral oilg8], and has 3 medium having a dielectric constagg, are distorted in
also been found for emulsions of salt water in fuel oil andresponse to an applied electric figlti4,26. The distorted
mercury drops in different oil§9]. The corresponding pre- charge distribution gives rise to a dipolar field that reacts
diction for insulating suspended spheres; (A—0), has  ypon the applied field, thereby modifying the net effective
been observed for suspensions of glass beads and sand pgétd in the proximity of the body. This connection between
ticles in salt solution$10], and for gas bubbles in salt solu- conductivity and the dielectric constant is natural since Egs.
tions [11]. Good agreement with E¢2.13 has also been (2.1) and (2.2) also describe the dielectric constant of sus-
observed in fluidized beds, where the relative COﬂdUCtiVitypensionS of particles with a relative dielectric constant
A was tuned over a range of valugs?]. A.=e€,/€y. Moreover, these equations also apply to the
The practically important inverse problem of determining magnetic permeability, the diffusion coefficient, and the ther-
the volume fraction of a suspension of complicated shapeghal conductivity of dilute suspensions, where the magnetic
particles from electrical measurements motivated the genefie|d, the concentration gradient, and the temperature gradi-
alization of Eq.(2.13a to particles having arbitrary shape and ent are the corresponding “fields27—29.
CondUCtiVity. Fr|Ck9[13] treated the case of enipSOidaI par- A|th0ugh Simp|e in princip|e, calculations of the po|ariz_
ticles and utilized a Clausius-Mosotti-styb4] effective me-  apility tensor for objects of general shape is a mathematical
dium theory to approximate the higher concentration regimeproblem of notorious difficulty. Indeed, the ellipsditi3,26]
These effective medium calculations are exact in the dllutﬁs the 0n|y shape ird=3 for which exact ana|ytic results
regime where they reduce to a virial expansion of the formhayve been obtained as a function &f There have been
(2.13. We avoid further discussion of the higher concentra-recent numerical calculations of the polarizability tensor for
tion regime where approximate methods must be employechther objects in relation to Rayleigh scatterifeyg., radar
‘The low concentrations virial expansion of randomly applicationg30,31]. The situation is better for limiting val-
oriented and arbitrarily shaped particles eqyald5]: ues of the relative conductivith where the polarizability
tensora(A) simplifies. For highly conducting inclusions, the

o d(A-1)¢
O_—O=1+(A+T1)+O(¢2). (2.1b

— 2
olog=1+[c(A)]p+0O(4), (229 polarizability tensor reduces to the electric polarizability
[o(A)]=1im (o= 00)/ (Tob), (22h e
$—0 lim a(A)=a,, (2.33

A—o0

where[ g (A)] is called the intrinsic conductivity. We adopt

this notation by analogy with the Ieading order Concentratiorand [0-] for random]y oriented indusionS, having a much

virial for the suspension viscosity which is conventionally higher conductivity than the matrix, then equals

called the “intrinsic viscosity”[ 7] [2]. The magnitude of

[0(A)] can be a strong function of particle shape for ex- [o(A—o)]=[0].=(ae)/V,. (2.3b

tended or flat particles, depending on the magnitude of the ) L

relative conductivityA, so that the effect of adding a given AS above,(ae) denotes the average electric polarizability

amount of material to a suspension can be greatly depende??cnsor- The case of insulating InC|liSIOnS ina cond_uc_tlng me-

on particle shape. dium corresponds formally td —0™, so that we similarly
The polarizabilitye is a second rank tenspt6,17 that ~ nave

generally depends on particle orientation, shape, size, and ; _

A. The average polarizability, which isdLfimes the trace of im a(8)=an, 243

the polarizability tensor, is an invariant under rotations

[18,19, so that the virial coefficiernto]=(a)/V, is a func- [(A—0)]=[c]o=(am)/V,, (2.4b

tional of particle shape anfl only. Calculation of the aver-

age polarizability is often easier than the full polarizability where «,, is the magnetic polarizabilitysee Ref[1] for a

tensor, since any three orthogonal directions can be chosatiscussion of the magnetic-electric polarizability analodyy

for the field directions in the calculation ¢fr]. Equiva- the A—0* andA—c limits, [o] is simply a functional of

lently, we can angularly average the polarization tensor oveparticle shape and spatial dimension. In our previous paper

A—0"
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we discussed the important exact relationagf to the hy-  conducting A —<) inclusions, and explicit calculatiofsee
drodynamic virtual mass of the particle, which yielded manySec. Ill) shows that the extent to which these limits apply
exact results for this quantifyi]. depends on particle asymmetry. There is a need for accurate
The intrinsic conductivity is rather insensitive to particle estimates of o(A)] for variable A if accurate inference of
shape when the conductivity of the particles is similar to theparticle shape from conductivitfor other related property
embedding mediumA=1), and a formal Taylor expansion measurements is required.
about this limit can be made. Explicit calculation shows that Exact results for general values df are very limited,
this expansion does not depend on particle shape at all toowever. Maxwell’d 3] and Sangani'$4] result for spheres
second order in4—1) [32,33, were mentioned in Eq2.1). The ellipsoid ind=3 is also
, ) 3 analytically tractable, although no simple closed form ana-
[o(A)]=(A-1)+[c"](A-1)"+O((A-1)), (2.9 Iytic expression exists fdro(A)], even for this simple class
of particle shapegexcept for ellipsoids of revolutiofl]).

2
" — E o 1o(a)] The final known o(A)] expression is for an elliptical inclu-
[o"]= 2 ) i N A —
2 J9A A1 sion ind=2,
where[¢”]=—1/d [28] for the electrical problem i di- (A2—1)(1+x)?
mensions. Equatiof2.5) is found to be very useful in Sec. [o(A)]= 20+ A (ATx)’ (2.9
[ll, where an approximant fofo(A)] is developed for par-
ticles of general shape. where x is the ratio of the semimajor to semiminor axis

More general results are possible for(A) ] in the super-  |engths. In Sec. Il we provide an approximant far] for
conducting and insulating particle limits =2 based on particles of general shape based on previously tabulated val-

general conformal mapping results. In particular, the intrinsicyes of[ o], and[o].. [1], the spatial dimensiod, andA.
conductivity of an arbitrarily shaped superconducting inclu-

sion [o],, can be exactly expressdd] in terms of the
“transfinite diameter”C, of the inclusion[34,35 (see be-
low) The limiting values of o] for A—~ andA—0 and the
2 expansion off 6(A)] to second order inX—1) provides
[o]==2Ac/A,  Ac=mCL, 26 five pieces of information aboUto(A)] corresponding to
bodies of general shape. Explicit numerical and analytical
calculationgsee belowof [ o(A)] indicate that this function
always seems to increase monotonically with Based on
these results, we introduce a Paajgproximant41] to de-
scribe[ a(A)] for general shaped bodies and values\of

IIl. INTRINSIC CONDUCTIVITY FOR GENERAL A

whereA is the area of the inclusion. Moreover, the Keller-
Mendelson inversion theorerf86] for d=2 implies that

[ o] for an insulating inclusior, o], is related td o]., by a
change of sign,

[odo=~lo]. d=2. @7 [0].(A—1)%+a(A—1)
The transfinite diameteZ, is a basic measure of the average Lo(A)]= (A—1)%+([o].—a[d"])(A—1)+a"
size of a bounded plane set, and can be defined in a variety of (3.13
equivalent way$35,37. C, , for example, is defined as the
conformally invariant magnitude of Dirichlet’s integral asso- _lole—lolotlol.lolo
ciated with the exterior of the region defining the particle a= 1+(1+[o"D[o]o 3.1b

[35]. The equivalent transfinite diameter can be expressed in
terms of the Euclidean metric defining the distance betweegquation(3.19 was constructed by starting with a ratio of
points in the sef37]. Perhaps the most useful definition of two quadratic polynomials ish. This ratio has five indepen-
C. involves the purely geometrical construction of mappingdent coefficients. These five coefficients are then determined
the exterior of a regior having an arbitrary but simply from the five pieces of information mentioned above: the
connected shape and finite area onto a circular region in suGfalue of[ o(A)] and its first two derivatives at=1, and the
a fashion that the points at a large distance filbnare as- values of[o]p and[ o]... An approximation with a similar
ymptotically unaffected by the transformati¢88]. The ra-  mathematical form was introduced previously by Eyges and
dius of this uniquely defined transformed circular regionGianino [42] to summarize their numerical results for the
equalsC, . This transformation is basically the content of the polarizability of a cube §=3) as a function of the relative
Riemann mapping theorefB9]. SinceC, is a central object dielectric constant of the cube to the surrounding medium
of harmonic analysis in two dimensions, there exist extensivésee below. We also observe that E¢3.1) in d=2 reduces
tabulations ofC [34,35. We may combine this information to the exact result for an ellipse, E®.8). The A—o limit
with (2.6) and (2.7) to obtain exact results for[ o], and for an ellipse is given by
[o]. in d=2. An extensive tabulation of exact analytic re-
sults for symmetrically shaped regions and numerical esti- [0].=(1+X)%/(2X). (3.2
mates of these virials for irregularly shaped regions have
been given in our previous paper for=2 and also for Eq.(3.1) also recover§o(A)] for hyperspheres id dimen-
d=3[1]. sions given in(2.1b. It is a good test of our approximate
Unfortunately, real inclusions often do not correspond toformula that it reduces to the exact equations in known lim-
the ideal limits of perfectly insulating(=0) and perfectly its.
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As a further test of Eq(3.1), we considefo(A)] for  ratio of the particles increases for these particle shapes to
ellipsoids of revolution where exact analytical results arecorrespond to the limiting superconducting or insulating par-
known. In Figs. 1a) and Xb), we compare the exact results ticle limits.
for [o(A)] to the approximant E(3.1) for oblate and pro- We next consider some finite element calculations of
late ellipsoids of revolution where the ratio of the larger to[ o(A)] that generalize our previous calculations for insulat-
the smaller axis lengths in each case equals 100. Each eig and highly conducting particlg4]. In these calculations
ample reveals a nontrivial variation pé] with A, which is  particles are represented as digital images built up from cu-
accurately described by the approximdBtl). Deviations bical elements. A standard lattice of size 120as used,
were less than 0.2% for the prolate case, and were exagfhich is the largest that was practical considering both com-
within computer roundoff erroften significant digitsfor the  puter memory and running time. Because of the overall com-
oblate case. putational cell size limit, a compromise had to be taken be-

Some further insight into these crossover curves fotween using enough pixels to give a good representation of
[o(A)] at high aspect ratios can be obtained from the exacthe particle, and keeping the particle small compared to the
d=2 ellipse result. Figure 2 shows this function covering sixoverall unit cell, so as to keep the volume fraction small
orders of magnitude in the aspect ratio The inflection enough to be in the linear regime in concentration. The size
points in Fig. 2 scale linearly witlkx on the logy A scale and complexity of the objects that could be treated in this
(there are no inflection points on a regularscalg. Evi-  fashion is necessarily limited, but a good approximation to a
dently, A must be increasingly large or small as the aspectvide range of physically interesting objects could still be
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FIG. 2. The intrinsic conductivityo(A)] di-
vided by the superconducting limitz].. vs the
relative conductivityA for a series ofd=2 el-
lipses with varying aspect rati.

obtained. The typical computational time for about 20 valuesnent is much better. Eyges and Gianino evalugiei)]

of A and a particular shape was about 10 h on a Convekased on a numerical solution of an integral equation de-
3820 supercomputer. Details of our computational procedurecribing this problem.

were given in our previous papgt]. Comparisons of these Finite element calculations were performed for rectangu-
calculations against exactly soluble examples showed a sytar parallelipipeds having dimension ratios 2:2:1 and 1:1:2.
tematic overestimation dfo]., of about 5-6 % id=3, for ~ Equation(3.1) again gives an excellent description, and thus
higher values ofA, and a smaller underestimation, of 2—3 %, we only summarize the limiting values ¢&r] needed to

ind=2 [1]. reproduce these results:
Figure 3 shows the important case of a cube as a function
of A where the solid line denotes the approximant i) [0(2:2:1)]o=—1.68, [0(2:2:1)].=4.15, (3.49
using the numerical estimates of Eyges and Giah#g), ’ - ’
[0]o=—1.59, [o].=3.40. (3.3 [0(1:1:2)]p=—1.65, [0(1:1:2)].=4.22. (3.4b

The results in Fig. 3 agree with the numerical results ofWe emphasize that these are finite element estimates of the
Eyges and Gianinp42] to within 1%, and usually the agree- intrinsic conductivity rather than the exact values.

40 ——T T

3.0 |

20 |
5 [ FIG. 3. The intrinsic conductivityo(A)] vs
— 10} the relative conductivityA for a cube, as com-
L, | puted by Eyges and Gianif@?2], and the Pade

approximant of the text.
0.0
Egn. (3.1) 4
=== Eyges and Gianino
-1.0 -
20 _ L1 ||1|||I_ AR RET | 1 gl r o3l £ g
10° 10" 10° 10' 10° 10°
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TABLE |. Limiting intrinsic conductivities for circular cylin-  Table I. This comparison shows a 5—-6 % error in our nu-
ders. merical calculations for the superconducting limit. The error
for the insulating limit, while we have no exact values
Diameteix height Exac{o].. Numerical[o].. Numerical[ o], against which to compare them, is probably in the range of

1 2-3 %, based on experience with other shdpi¢sWe have
1X3 4.106 4.32 —1.60 found that the insulating limit is usually computed more ac-
1x1 3.401 3.56 —1.57 curately with our finite element method than is the supercon-
1x2 3.622 3.79 —le4 ducting limit. Better accuracy is possible, of course, if suffi-
1x4 4.704 4.93 —1.86

cient computer memory is available, at the expense of much
greater computational times. Accurate numerical data for
[o]. and[o]q, for a wide range of diameter-height ratios,
The important physical example of a right circular cylin- could be used to obtain approximants for these virials that
der is considered next. Precise analytical calculations of theéhen could be used in conjunction with E(.1) to make
polarizability in the superconducting particle limit have beenmore general analytical estimates[ef(A)] for comparison
made[43], and[o].. values based on these calculations arewith experiments on cylindrical conducting fibers.
given in Table I. In addition o]g has been calculated using  In our next example we treat an idealized “spongelike”
finite element methods, and these results are also given imody. Consider a cube of unit edge length, in which a square

(@)

FIG. 4. (a) Image of a “sponge.”(b) The
intrinsic conductivity{ o(A)] vs the relative con-
ductivity A for the sponge model fam=23/27.
The solid line is the Padapproximant, and the
; T T T T - T circles are the result of finite element calculations
550 L i for a selected number of values &f

(b)

45,0 | » s
O Finite element

- —— Eqn. (3.1) .

35.0

[o(A)]

25.0

15.0

5.0
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TABLE Il. Numerical estimates of intrinsic conductivity for for [ o], corresponding to other representative shapes con-

various shapesd=3). sidered in our previous papEt]. A “jack” is a sphere punc-

tured by three intersecting rectangular parallelipipeds. The
Shape m [o]. [olo square ring and square hollow tube are self-explanatory. Val-
Sponge 15/27 8.74 175 ues of[ o]y were npt given in our previous_paper', w.hich
Sponge 21/97 271 172 fOCL_Jsed on comparisons betwean],, and the intrinsic vis-
Sponge 23/27 55.0 ~1.66 cosity [ 7].

Numerical calculations ofo(A)] for inclusions having

Sponge 25/27 192 —1.43 . . L L
sharp corners give rise to subtle variations of this virial co-
Sponge 33/35 311 —-1.43 . . .
Jacka 4.50 _151 eff|C|en_t with A. Such cases provide a goo_d.test for our
Ring 2 1'27 _1'42 approximant Eq(3.1. In Fig. 5 we consider finite element
g ' calculations for a 12:1 rectangular regiondr 2 (the lattice
Hollow tube? 16.7 —4.27

size ind=2 was 18008). Observe the subtle feature of a
®See Ref[1] for the dimensions of these structures. “wavy” variation of [o(A)] for this type of inclusion,

which is followed by Eq(3.1) remarkably well. In the insu-
ﬁting limit, we found

channel is cut through the center of each face, where eacI
channel passes completely through the cube. A picture of an
object of this kind is shown in Fig.(d). The parametem is [0(12:1)]o=—6.29=—[0(12:1)]... (3.5
taken to be the edge length of the cutout face in units of the

total cube edge length. We _obtain a rigi_d cubic wire frame.l.he exact value of o], for a 12:1 rectangle is-6.38[40],
when m approaches 1. Notice that cutting out the Center’indicating an error of only 1.4% for the finite element

which makes the particle more spongelike, has a very larg?nethod at this resolution id=2. The values of o] for

gffect o'n[o]w, as can be seen in Table II. !t wou'ld be finite A should have even less error. To save computer time,
interesting to push the effect to the extreme in a dlfferenﬁn all the d=2 finite element computations we took advan-

way by generating a Menger spong#4] fractal by a re- ) ; :
peated decimation of the cube at different scales, so th%ﬁ%‘f chl JSIea‘teK;girAgﬂ]epodrefgq inversion theor86] and

[q]m would diverge in a fashion related tq the fractal dimen- As a final example, we considered a completely asymmet-
sion of the sponge. The memory capacity of our COMPULeE - inclusion to make sure that particle asymmetry did not

was not large e_nough to allow us to (_:0n5|der more tha‘r) ONffvalidate our approximant. Two dimensions was chosen to
or two generations of such an iteratively constructed "dif- llow a higher resolution to be used in order to obtain more

fuse” object, so we presently confine ourselves to the f'rsgccurate computational results. Theshaped asymmetric

ger;?rﬁtrfzg\)”rer;;aer:ti zﬂfztﬁrzfeﬁzgmsﬂg 'gaeg4a function 01,oarticle, of no particular symmetry, chosen to illustrate this
9 P case is shown in the inset of Fig. 6. Equatithl) again

.A for t.h.e sponge W'thn=.23/2.7' Notg tha{o('A)] IS quite provides a very good approximation of the intrinsic conduc-
insensitive toA for relatively insulating particlesX<1), tivity data (Fig. 6, where we found
which is typical for extended or diffuse objects. As in previ- -

ous comparisons, the approximant E8.1) describes the

numerical data very well. Table Il includes numerical data [o(L)]o=—3.11=—[0o(L)].. (3.6
8.0 — T — — — T
i D
40 |
i FIG. 5. The intrinsic conductivityo(A)] vs
z'\ the relative conductivityA for 1X 12 rectangular
5 0.0 | region ind= 2. The solid line is the Padapprox-
- imant, and the circles are the result of finite ele-
L ment calculations for a selected number of values
of A.
-4.0 F O Finite element
—— Eqn. (3.1)
® |
-8.0 o090l M A Rt | [ NNl I B R T
10” 10" 10° 10' 10°

A
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50 T T T T T
40 1
30 | .
M | -
— 1or 7 FIG. 6. The intrinsic conductivity o(A)] vs
a i ] the relative conductivity A for a 1x2x4
B’ 0.0 __ ' L-shaped region ird=2. The solid line is the
- 40k | Padeapproximant, and the circles are the result
i i of finite element calculations for a selected num-
20 | OFinite element 4 ber of values ofA.
i —— Eq. (3.1) |
3.0 | .
40 -
_5.0 - I_ I_ 1 1 1
10° 10° 10" 10’ 10' 10° 10°
A

This agreement for many different kinds of particles, includ-soid along axis of symmetry relative to dimension normal to
ing a completely anisotropic one, suggests that &gl axis of symmetry. This figure shows that for needlelike par-
should be a very reasonable approximation for a wide rangécles [ o], is insensitive to particle shape. For a sphere,
of complex-shaped patrticles. [0]o=—2%, and for an infinitely thin needlgc]o=—3, so
we expect that the average of these results,
IV. DISCUSSION 19
[o]o~—1;*0.15, 4.0

The problem of calculating the effective properties of a
medium containing dispersed particles having complexshould be a useful approximation for insulating particles
shape and different properties than the suspending matrifodestly extended along one direction. Equatighl)
arises in many applications. For many propertiegractive ~ should perhaps also apply to diffuse spongelike structures, as
index, dielectric constant, magnetic permeability, thermalin Fig. 4, and to random-coil polymers, which have a low
and electrical conductivity, tracer diffusion constatiis  density. A similar approximation is often employed in aero-
general problem reduces to a common mathematical descriglynamic literature for the virtual mass of an obj¢db],
tion [1,27—29. In the present paper we have specialized thewvhich is directly related tgo ], [1]. The approximation Eq.
language to electrical conductivity to make our discussior(4.1) is poor for sheetlike insulating structures, which
more concrete. We have also confined our attention to thétrongly modify the conductivity of a conducting mat(see
dilute regime where each inclusion independently influence§ig. 7), so the approximation should not be employed un-
the properties of the medium, and where exact calculationgritically.
for special shapes become possible, at least for limiting val-
ues of the relative conductivith and specially shaped in- 120 —_— N
clusions. /

The computationally more difficult and practically impor- /
tant problem of the conductivity virial coefficieptr(A)] for N - ol /
arbitrary A has been attacked by the pragmatic procedure of \ fol, /
developing an approximant incorporating exact information 89| ! 1
for A=~1 and numericaland sometimes exact analytigal \ !
information for[ o(A)] in the insulating A —0) and super- L AN /
conducting Q@ —o) limits. Numerical calculations of \ /

[a(A)] for particles having a variety of shapes have shown . AN e

very good agreement with this approximant. However, the S~e g

utilization of Eq.(3.1) for estimating[ o(A)] for generally T
shaped particles id=3 is still limited by the difficulty in
calculating the virial coefficients in these limits.

Given these difficulties, it is useful to also develop some oo L T T eSSy
simple approximations fofo], and[o]., appropriate for Aspect ratio
commonly encountered classes of inclusions. In Fig. 7 we
give exact results fdra]y and[ o].. for an ellipsoid of revo- FIG. 7. Intrinsic conductivitie§o], and[o]., for ellipsoids of
lution as a function of the aspect ratioldimension of ellip-  revolution as a function of aspect ratio
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There are actually few previous calculations[eof], for  ties of suspended particldg6], and there are also many
any shape, so some comment on other applications of thidassic polymer science studies devoted to this general prob-
shape functional are worth mentioning. Wdd@] (with On-  lem[48].
sager’s adviceinvestigated the role of protein particle shape The [o].. virial exhibits a more complex shape depen-
on the self-diffusion coefficienD¢ of water in protein solu- dence. In our previous paper we established a general ap-

tions, and found the concentration dependence proximate relation betweeju].,, and the intrinsic viscosity
[7»] of a suspension of rigid particleqd,n]~[(d+2)/
Ds/Dy(p—0)=1+[0]gp+ O(?), (4.2 2d][o]... A slender body approximation of Deby49] for

[ »], and an approximation relating the translational friction
where ¢ is the protein volume fraction. The notation of the fr Of @ Brownian particle to the capacity of the partice
present paper is adopted in £4.2) (see also Appendix A of [50]_ (Newtqnlan capacityC rather than the logarithmic ca-
Ref. [1] for further discussion Recent NMR measurements Pacity C, discussed aboyesuggests a general approxima-
on the diffusion of water in swollen gels by Geissler andtion for [o].. corresponding to linearly extended particles
Hecht[47] have shown thato]o~ — 1.66, which is the ex- Such as polymer chains, needlelike inclusions, etc.:
pected result for slender particlesee Eq(4.1) and Fig. 7.

Wang discusses the importance of virial expansions such as )
Eq. (4.2 for inferring the particle shape and surface proper- [0].~(67/5)RGCIV,, (4.3
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whereR is the average particle radius of gyration angis implemented and accurate approximations fer], and
the particle volume. The scalirﬁgr]oc~RgC/VID is consistent [o]. should be very useful in estimatirjigr(A)] of poly-
with exact calculations for long ellipsoidal particles where meric particles. For example, the relation E4.3) implies a
[o].. scales with aspect ratio as[1,51] nontrivial molecular weight dependence [af] for suspen-
sions of highly conducting polymeifd], and a correspond-
ingly strong influence on the conductive properties of solu-
Equation (4.3) is potentially a useful approximation since tions of these polymers. . . -

R, is readily calculated from simple geometry, and accurate The _problem of caI(_:uIatlng transport virial coefficients as
and efficient numerical methods have recently been devef function of the relative propert is commonly encoun-

[0]~ (X?13)/In(X). (4.4

oped for calculatingC of general shaped objec{49,52.
Future numerical work should examine the rdfip

RIC
Ir= :
[0].Vp

(4.9

tered. The treatment of the conductivityapplies equally as
well to thermal conductivity, dielectric constant, refractive
index, magnetic permeability, and other proper{i2s—29.
There are also many applications involving the elastic con-
stants of solid composites and the viscosity of suspensions
that involve similar, but somewhat more complicated math-

to determine the degree of its universality, at least for bodiegsmatics. For example, the virial coefficidii] for the shear
extended along one direction. The development of readilynodulus of an elastic particle in an incompressible medium
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depends on the ratiag of the shear modulus of the particle

to that of the embedding medium and the intrinsic shear

viscosity [ ] of a suspension of fluid particles depends on

the relative viscosityd , [1]. These virials can also depend

on the surface boundary conditigpartial slip and on other
parametergPoisson ratio, surface shear viscosity, or modu-

lus, etc) in addition to a general dependence on particle

shape. It turns out to be possible to treat this general class @nd ind=2 by
problems by basically the same Paajfmroximant method.

To illustrate this generality, we also consider the calcula-
tion of the intrinsic shear modulyss]. For this generaliza-
tion we simply replacer by G in Eqg. (2.5 and note the
corresponding result fdrG”] in d=2 andd=3,

—2(4—5w)

L s

4.7

_(1+ Vo)

(K= 31=0y)

4.8

1
[G"]=~Z(30) 9

1
[K”]=—§(1+Vo), (4.10

[G"]=—2/(d+2), (4.6)

which can be inferred from Ref$29,53,54. In Figs. 88  where v, is the Poisson’s ratio of the matrps4]. In the
and 8b) we compare exact resulf55] to the approximant small (Ax—1) and Ag—1) limits, the expansion foK de-
Eg. (3.1 with G replacingo for randomly oriented prolate pends only on 4—1) and that forG only on Ag—1), to
and oblate ellipsoids of revolution with relative shear modu-second order in these quantitigs4]. These quantities can
lus Ag. As in the conductivity virial case, the agreement isalso be obtained from the Hashin elastic bouf2i%53 for
excellent. The calculation of the intrinsic viscosityy] is  the moduli, which are known to be exact to second order in
very similar to the calculation dfG] [1,56], so it should be (Ax—1) and Ag—1). Using the exact solution f¢iG] and
possible to extend Ed3.1) to these properties as well. [K] for ellipsoids of revolution §=3) [55], Eq.(3.1) again
For the general elastic case, when particles with bulk an@dgrees very well for randomly oriented prolate and oblate
shear modulK, andG, are embedded in a matrix vyillho ellipsoids of revolution, as can be seen in Figs) @nd 9b).
andGq (Ax=K,/Ko andAg=G,/Gy), the same Padap-  Having worked well for both electric and elastic cases,'for a
proximant again holds. The quantiti€&”] and [K”] are  wide variety of particle shapes, we then expect the Pade

given, ind=3, by

approximant may apply to other properties as well.
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