
PHYSICAL REVIEW E VOLUME 53, NUMBER 1 JANUARY 1996

Molecular-dynamics study of detonation. I. A comparison with hydrodynamic predictions
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We have compar'ed the predictions of hydrodynamic theory for the properties of an unsupported de-

tonation with the results of a molecular dynamics simulation of such a phenomenon. The model of an

energetic crystal consists of heteronuclear diatomic molecules that require energy to break the molecular
bonds (at ambient pressure); substantial energy is then released upon association of the products to form
homonuclear diatomic molecules. The equation of state used in the hydrodynamic theory is determined
from two-dimensional molecular dynamics simulations of this model at various equilibrium conditions
corresponding to volumes and temperatures appropriate to the detonation. The Chapman-Jouguet con-
ditions of detonation were thus determined. The properties of the detonation were subsequently mea-

sured directly from two-dimensional molecular dynamics simulations of the crystal model subjected to
shock initiation. The agreement between the hydrodynamic predictions and the measured properties is

good. Deviations from exact agreement are attributed to slight differences in material composition in

the detonation simulation compared to that of the equation of state calculations. The critical property
for sustained detonation using this model appears to be the attainment of the Chapman-Jouguet density.

PACS number(s): 47.40.—x, 47.70.Fw, 82.60.Hc, 03.40.Kf

I. INTRODUCTION

The field of detonation physics has enjoyed consider-
able attention since the phenomenon was recognized over
a century ago [1]. Benefits that would result from the
ability to exploit and control such energetic events have
led to numerous explorations designed to determine the
character of a system and conditions that will result in a
detonation. The extreme pressures and high energies
released in a detonation have posed considerable experi-
mental challenges toward these characterizations. Even
greater obstacles in monitoring detailed microscopic
chemical and physical changes in the detonation are the
time and length scales over which the event occurs.
These experimental challenges have necessitated develop-
ment of theories that attempt to describe the
phenomenon and complement the experimental analyses.
The majority of theoretical treatments are based on hy-
drodynamic theories that predict the macroscopic
behavior of a system that detonates, such as changes in
pressure, temperature, and density [2]. These models,
however, do not give information about the microscopic
chemical and physical processes occurring during this
violent event and in many instances rely on substantial
approximation. Very little is known about the chemical
reactions that initiate and sustain a detonation, although
theoretical [3—8] and experimental methods [9] are being
directed toward unraveling details of these ultrafast,
violent events.

The method of molecular dynamics is a powerful and
well-established simulation technique to provide details
of the atomistic processes occurring in a chemical reac-

tion [10]. Though the majority of molecular dynamics
simulations have focused on gas-phase problems, comput-
er power has increased to the point that molecular dy-
namics simulations of condensed phases can be realized.
As early as the 1970s, molecular dynamics simulations of
simple solid models predicted reasonable features expect-
ed from a shocked solid [11]. More sophisticated models
incorporated energy release reactions that could predict
detonation [3,5,8]; however, the models either described
the chemistry that drive the detonation qualitatively in-
correctly [3,5], or had undesirable features [8].

It is our intention to use the method of molecular dy-
namics to investigate the microscopic processes that
occur during a detonation and to determine the proper-
ties of the system that affect this phenomenon. It is also
hoped that relevant mechanisms will be revealed in the
process. Before we can do this, we must first develop a
model that more correctly describes exothermic chemical
reactions, and determine whether it can adequately simu-
late the phenomenon known as a detonation. We have
developed such a model, the features of which are de-
scribed in the accompanying paper [12]. The focus of the
study presented here is to compare our molecular dynam-
ics simulations of a shock-initiated reacting crystal with
predictions of the classical hydrodynamic theory of de-
tonation. Details and results of the two types of calcula-
tions will be presented and a comparison given.

The results of the first calculation, the determination of
the equation of state of the system, will be used to evalu-
ate the classical conservation equations that relate the
mass, momentum, and energy of the quiescent crystal
with the state behind the detonation wave [2]. The three
conservation equations are as follows.
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p pp =ppQD (2)

where p and pp are the pressures of the products behind
the shock front and quiescent crystal, respectively. The
variable u can be eliminated from Eqs. (1) and (2) result-
ing in the Rayleigh line

Conseruation of mass

poD =p(D —u ),
where pp is the density of the undisturbed crystal, p is the
density of the system behind the shock front, D is the ve-
locity of the wave propagating through the undisturbed
crystal (constant for an unsupported detonation), and u is
the velocity of the products behind the detonation wave.

Conseruation of momentum

e+pv+ —,'(D —u) =e o+p ouo+ ,'D— (4)

where e, ep and v, vp are the speci6c internal energies and

specific volumes of the final and initial states, respective-
ly. The term "specific" as used here with respect to some
quantity refers to that quantity normalized to unit mass.
The variables D and u can be eliminated from Eq. (4) us-
ing Eqs. (1) and (2) to a form that is referred to as the
Hugoniot function:

h ( T, v ) = e —eo —
—,'(p —

po )(uo —u ) .

R =poD —(p —po)/(uo —v)=0 .

The final equation requiring conservation of energy is as
follows.

Conservation of energy

TABLE I. Parameters and functional forms used for the potential energy expression in Eq. (6).

Parameter

D AA (eV)

D, ~ (eV)
DAB ( V)

rAA (A

r~~ (A)
r» (A)
S
cz (A )

6
m(A )

c (eV)

o. (A)

Value

5.0

2.0
1.0

1.2

1.5
1.35
1.8
2.7
7.5
3.5
0.5
0.005

2.988

Functional forms

D,
Vz(r)= exp[ —va'2S(r r, )]-S —1

SD, 2
Vz (r) = exp —aS —1 S

Bij =
2 (Bij +Bj ' )

1, r &2.0

f, (r;, )= 2 [1+cos[vr(r —2)]), 2.0~r &3.0

0, 3.0+ r

mass& (amu)
mass& (amu)

o (ev)
P) (eVA )

P2 (eVA )

P, (eVA ')

c3 (eVA )

c4 (eVA )

c, (eVA

15.0
46.0
0.485 4

—0.718 4
0.345 5

—0.053 44

925.463 1

138 743.787 2
5 548 241.632 6

B,= ~1+G g f, (r;k)exp[m(r; r;&)] . —
kWi,j

—n

0, r &1.75

Po+r [P, +r(P2+rP3)], 1.75 + r (2.91

+vdw 4~

12

2.91~ r &7.31

5

g c, (r —7.32)', 7.31~ r (7.32
i =3

0, 7.32~ r
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The set of (T, U) for which Eq. (5) is zero make up the
Ii (T~, uH ) curve known as the Hugoniot curve. The in-
tersection of Eqs. (3) and (5) determines the state of a sys-
tem (p, u) for a given detonation velocity D. There are a
series of Rayleigh lines, defined by the parameter D, that
intersect the Hugoniot curve; all but one give two solu-
tions to Eqs. (3) and (5) and represent unsteady shocks.
The velocity that uniquely satisfies Eqs. (3) and (5), called
the Chapman-Jouguet (CJ) velocity, corresponds to the
p-U point where the Rayleigh line is tangent to the
Hugoniot curve. The CJ point is the state of the system
corresponding to an unsupported detonation, the event
we will attempt to simulate. We will determine the CJ
point and detonation velocity for comparison with the
molecular dynamics simulation.

The second calculation is the molecular dynamics
simulation of a plate impacting the quiescent diatomic
molecular crystal, and initiating reaction. This will be
denoted throughout as the computer experiment. We
will compare the predicted Chapman-Jouguet point and
velocity with the shock wave velocity and state of the sys-
tern from our computer experiment.

This paper will first briefly describe the model and the
details of the calculations and conclude with results, dis-
cussion, and comparison of the two predictions. All cal-
culations described hereafter are two dimensional.

II. MODEL
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The interaction potential used to describe the two-
dimensional crystal of diatomic molecules arranged in a
herringbone lattice is similar to that used by Brenner and
co-workers [8]

N N
V=+ g [f,(r~)[(2—B; )Vii(r; ) BJV„(rJ)]—

The functions and parameters used in Eq. (6) are given in
Table I. The features of this potential energy function
are detailed in the accompanying paper [12]. The low-
temperature, ambient pressure lattice parameters for a
unit cell of this crystal in the x and y directions (denoted
a and b, respectively) are 4.34 and 6.27 A. A unit cell is
illustrated in the inset of Fig. 1. The unit cell contains
two molecules; center of bond (COB) fractionals are at
(0.25,0.25) and (0.75,0.75), respectively. The equilibrium
A —B bond distance is 1.35 A and the angles 0 of the
bonds of the two A-B molecules relative to the crystal x
axis are +29.1'.

III. DETAILS OF THE CALCULATIONS

A. Cell-linked lists

The two types of simulations that we report here re-
quire calculating the energy and energy first derivatives
of Eq. (6). In principal, Eq. (6) requires that (N —1) in-
teractions must be calculated for each atom in the X-
atom system. However, for a specific atom i, there are
only a small number of neighbors j within the interaction
range of the potential which therefore are the only ones
out of the X-atom system that need to be considered. It
is a CPU-consuming task to determine by brute force
which of the (N —1) atoms are within the interaction
range of atom i. This problem was circumvented by our
use of the method of linked lists, described in detail by
Allen and Tildesley [13]. This method efficiently sorts
the atoms into indexed bins according to geometric posi-
tion. Each bin must be no smaller than the cutofF radius
of the interaction potential. The scheme ensures that for
a specific atom in a bin only those atoms in the same or
nearest-neighbor bins are included in the summation of
Eq. (6). The distance between atom i and any other atom
not in the same or a nearest-neighbor bin (and therefore
outside the interaction range) is not calculated, thus pro-
viding considerable CPU savings. For the Monte Carlo
simulations (Sec. IIIB), each bin consists of nine unit
cells (three in each of the x and y directions). For the
molecular dynamics simulations that are used in calculat-
ing the equation of state (Sec. IIIC), for U/Uo greater
than 0.70, each bin consists of four unit cells (two in each
of the x and y directions). For U/uo less than 0.70, each
bin consists of six unit cells (three in the x direction and
two in the y direction). For the molecular dynamics com-
puter experiments in which Bier plate impact initiates the
shock wave (Sec. III D) each bin consists of four unit cells
(two in each of the x and y directions).

Flyer Test
Plate Slab

Rigid
Slab B. NPT Monte Carlo simulations

FIG. 1. A schematic of the model used in the molecular dy-
namics simulation of shock-induced reaction. Atom type
(mass equals 15 amu) is denoted by filled circles; atom type B
(mass equals 46 amu) is denoted by open circles. The inset
serves to define the geometry of the unit cell. The characteris-
tics of the various shaded zones are discussed in the text. The
angle 0 denotes the orientation angle of the molecular bond rel-
ative to the crystal x axis.

A series of APT Monte Carlo simulations were per-
formed to determine the low-temperature (20 K), ambient
pressure crystal structure and sound speed. We also per-
formed Monte Carlo calculations for pressures up to 0.55
eV/A . The results of these calculations were used as
starting geometries for our equation of state calculations
detailed below, and are given in Table II.
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TABLE II. Lattice parameters, density, and molecular geometry versus pressure.

Pressure
(eV/A )

0.0
0.00005
0.000 1

0.000 5
0.001
0.002 5

0.012 5
0.015
O.OS

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

&a)
(A)

4.34
4.33
4.33
4.32
4.31
4.24
4.13
4.11
3.98
3.85
3.76
3.71
3.67
3.63
3.59
3.56
3.53
3.50
3.46

&b)
(A)

6.27
6.28
6.27
6.25
6.22
6.19
5.94
5.90
5.67
5.46
5.33
S.23
5.14
5.08
5.02
4.96
4.91
4.85
4.77

&p)
(amu/A )

4.4836
4.4869
4.4936
4.5185
4.5505
4.6476
4.9735
5.0309
5.4054
5.8040
6.0878
6.2887
6.4687
6.6161
6.7703
6.9083
7.0398
7.1849
7.3939

1.349
1.349
1.349
1.349
1.349
1.349
).347
1.346
1.340
i.332
1.326
1.321
1.317
1.314
1.311
1.310
1.310
1.312
1.317

(deg)

29.1

29.3
29.1

29.1

29.0
29.8
29.0
29.0
29.3
28.6
29.1

28.8
28.6
28.6
28.5
28.3
28. 1

27.9
27.5

The sound speed of a crystal is proportional to the
slope of the p-p curve [2]; to obtain the sound speed of
our low-temperature, ambient pressure crystal, we calcu-
lated the density at each pressure in Table II, and fitted
the pressure from 0.015 to 0.0 eV/A to a cubic polyno-
mial in density. The sound speed obtained from the fit is
1.2 km/s for this crystal. We also fitted &a ) and (b ),
the average lattice constants of the unit cell in the x and y
directions, respectively, to quadratics in pressure, to pro-
vide initial lattice parameters for the trajectories calculat-
ed to determine the equation of state.

The simulation box, with periodic boundary conditions
imposed for both dimensions, consisted of nine unit cells
in each of the x and y directions. NPT Monte Carlo
simulations were symmetry restricted: In other words, at
each attempted step, the atomic positions of all atoms in
the system were determined from the positions of the
atoms of a single molecule, which we will denote as the
target. The geometric parameters sampled in these simu-
lations were the lattice parameters, which determine the
volume of the unit cell, and the molecular parameters of
the target in the unit cell. The position of the center of
bond of the target molecule was fixed at the lattice frac-
tional (0.25,0.25), and the bond length and orientation an-
gle of the A-B molecule relative to the crystal x axis was
allowed to be varied through the Monte Carlo sampling.
Images of the target had the same molecular geometries
as the target, but were translated by the lattice spacings.
The COB of the second molecule in the unit cell as the
target was fixed at the lattice fractional (0.75,0.75), and
the molecule was assigned the same bond length as the
target, but had the negative value of the orientation angle
of the target sampled through Monte Carlo. This en-
sured the herringbone lattice structure.

Several Monte Carlo calculations were performed us-

ing di6'erent initial configurations to see if the results con-
verged to the same value, regardless of initial state. The
molecular geometry and lattice spacings for the crystal
were initially set to values that were far (up to +33%%uo)

from equilibrium values. For example, the initial bond
length of the target ranged from 1.0 to 1.8 A, and the lat-
tice spacings were either larger or smaller by 0.8 A than
equilibrium values. 1000 Markov steps were attempted,
during which time the system relaxed to near its thermal
equilibrium configuration. At this point 4000 points were
used in the averaging of the results. Once the lattice pa-
rameters were obtained, we determined the equilibrium
orientation of the molecules in the crystal corresponding
to those lattice parameters using the Newton-Raphson
energy minimization method [14].

C. Molecular dynamics simulations: Equation of state
calculations

In order to calculate the Hugoniot function in Eq. (5),
we are required to calculate the equation of state of the
system behind the shock front. Additionally, we need to
know the state of the quiescent system. We have used
molecular dynamics to determine these states, in the
manner outlined by Erpenbeck [15]. In that study, Er-
penbeck determined the equation of state and Hugoniot
curve for a simple diatomic fIuid using thermodynamic
averages calculated from molecular dynamics trajectory
ensembles. The initial conditions for each trajectory in
the ensembles were selected using standard Metropolis
Monte Carlo sampling. We have followed the procedure
outlined by Erpenbeck [15], except rather than use en-
sembles of short-lived trajectories for our averaging, we
extracted time-averaged thermodynamic properties from
a single long-lived trajectory for a given set of initial con-
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ditions. Each trajectory was integrated until the averages
of the thermodynamic properties converged. Most aver-
ages converged within 5 ps; some trajectories were in-
tegrated up to 10 ps before convergence was met. Ther-
modynamic properties were calculated for U ranging from
0.123 to 0.188 A /amu. We also differed in the way we
calculated the pressure of the system; Erpenbeck used the
virial function to calculate his pressures [15];we followed
the method outlined by Tsai [18]. Periodic boundary
conditions were imposed in both x and y directions. The
initial conditions of the crystal for a simulation corre-
sponding to each v were determined from the quadratic
fits of the lattice parameters given in Table II. The
molecular bond length and orientation of the molecular
bond relative to the crystal x axis were set to 1.35 A and
29, respectively. Kinetic energy ranging from 2000 to
15000 K was equipartitioned among the atomic momen-
ta components. The equations of motion of the system
were then integrated for approximately 6.5 ps. The final
conditions of the warm-up trajectory were then used as
the initial condition for the trajectory from which the
thermodynamic averages would be extracted. This final
trajectory was integrated until the thermodynamic aver-
ages converged.

Hamilton's equations of motion for this system were
integrated using an Adams-Moulton fourth-order
predictor-corrector [16] integrator with error tolerance
set to 10 . We found that the results using this toler-
ance did not deviate from those in which the tolerance
was set much smaller. Energy conservation was moni-
tored and accuracy to 0.0003 eV was obtained.

D. Molecular dynamics simulations: Computer experiment
of a detonation

We utilized a method developed by Tsai and Trevino
[17] in which the simulation box expands into the undis-
turbed region as the shock wave passes throughout the
crystal. We are interested only in the region immediately
preceding and following the shock front. To simulate an
infinitely large crystal several micrometers from the
shock front would merely increase the simulation time,
without increasing our knowledge of the phenomenon of
interest, namely, the detonation and the region affected
by it. Therefore we implemented the following scheme.
The simulation box initially consists of A -B molecules at
the equilibrium position. It is a 16X8 area of unit cells,
with periodic boundary conditions imposed in the y
direction only. Figure 1 illustrates the initial state of the
simulation system. For purposes of discussion
throughout this paper, we will denote a fragment of the
molecular crystal consisting of 2 X 8 unit cells as a "slab."
To minimize surface effects at the far right edge of the
cell (which is furthest from the shock impact of the
plate}, we held a slab of A-8 molecules rigid throughout
the simulation, with the molecules fixed in their equilibri-
um orientation. All other A-B molecules and flier plate
atoms are allowed to move according to the equations of
motion. The Aier plate is a slab of A-A molecules (locat-
ed at the far left of Fig. 1), chosen because of their stabili-
ty in order that chemical reactivity would not contribute

to the mechanical energy that is transferred to the sta-
tionary A -B molecular crystal upon impact. Note that a
slab in this figure is highlighted and designated as the
"test slab. " The average kinetic energy for the atoms in
the test slab is calculated at each integration step. If this
value exceeds 15 K, then a new slab of A -B molecules is
inserted between the rigid slab and the far right edge of
the slab of atoms that are allowed to move throughout
the simulation. The molecules in the new slab are initial-
ly at their equilibrium position, and kinetic energy corre-
sponding to 20 K is partitioned between the x and y
momentum components for each atom. When a new slab
of molecules is added, the test slab is shifted by one slab
length to the right. In this scheme, the length of the un-
disturbed crystal is constant, and consists of seven slabs
of quiescent A-8 molecules (not including the rigid slab).
We found that the energy rapidly equilibrated in this re-
gion and was partitioned equally into potential and kinet-
ic energy (average kinetic energy in this region is 10 K).
This latter observation serves as ad hoc justification for
the treatment of the undisturbed region.

Initial conditions were selected as follows. All atoms
in the simulation box are at the equilibrium position; the
A-A molecules in the lier plate have the same lattice pa-
rameters and orientational angles as the A-B molecules;
the only difference in crystal structure between the flier
plate and quiescent A-B crystal is the molecular size of
the molecules. Each atom is given kinetic energy totaling
20 K, partitioned between the x and y momentum com-
ponents. A short warm-up trajectory is integrated for 0.7
ps, to allow randomization of the energy in the crystal.
Because the flier plate slab of A - A molecules is not in the
equilibrium position (it has smaller molecular bond dis-
tances than molecules in the A Bcrystal), so-me heat will
be released into the system during this warm-up trajecto-
ry as the A - A molecules relax toward the equilibrium po-
sition for those lattice parameters. We found through
monitoring the average kinetic energy of the A -A mole-
cules in the flier plate and of the A-B molecules in the
adjacent slab during the warm-up trajectory that the
amount of heat released is insignificant. The average
kinetic energy of the molecules in both slabs fluctuated
about 10 K throughout the warm-up trajectory. After
the warm-up trajectory, the flier plate atoms are given
impact velocities in the positive x direction. As the equa-
tions of motion of the system are integrated, the flier
plate atoms strike the quiescent A-B molecular crystal.
We found that for this size of flier plate (one slab) the
minimum velocity of the flier plate to initiate an unsup-
ported detonation is 4.7 km/s. Anything below this ve-
locity caused a few reactions at the initial impact, but ap-
parently not enough to sustain the detonation.

Energy conservation was monitored and accuracy to
0.0003 eV was obtained until a new slab of atoms was
added. At this point, there is a discontinuity in the ener-

gy of the system (more equations of motion are being in-
tegrated due to the addition of atoms}, but energy is con-
served until another slab is added during the simulation.

The mass density, kinetic temperature, and two-
dimensional pressures in the steady region of the reactive
flow in our simulations were calculated in a manner out-
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lined by Tsai and Trevino [17]. Our simulations dier
from the piston-driven shock wave results calculated by
Tsai and Trevino [17] in that our simulations result in un-
supported detonations. An unsupported detonation has a
following fIow behind the steady reaction zone that
changes with time, and the conservation equations [Eqs.
(1)—(5)] cannot be applied to this region [2]. Therefore,
we had to make some approximations in calculating
kinetic temperature and two-dimensional pressures in the
rarefaction zone. To calculate the kinetic temperature
associated with thermal motion for regions throughout
the crystal, we had to remove the kinetic energy associat-
ed with mass fIow velocity for the region. For areas
within the steady reaction zone, the local mass Bow can
be determined from Eq. (1). For areas in the rarefaction
zone, we approximated the local How velocity to be the
center of mass velocity of all the particles within this

area.
Equation (2) can be employed to calculate the pressure

through the shock front for the steady portion of the
shock wave. In the rarefaction region, Eq. (2) no longer
applies. Instead, the instantaneous stress is obtained by
the method outlined by Tsai [18], which uses the forces
and momentum Aux that intercept lines moving at the lo-
cal Aow velocity.

IV. RESULTS
A. Equation of state calculations

We have calculated, using molecular dynamics, the
thermodynamic properties of the quiescent 3-8 molecu-
lar crystal and the sample at speci6c volumes from 0.123
to 0.188 A /amu and for temperatures ranging from ap-
proximately 2000 up to 10000 K. The results are shown
in Table III. Figures 2 and 3 show the temperature

TABLE III. Thermodynamic properties versus specific volume.

v (A /amu)

0.223 048

0.187 541

10

7 702
8 541
9 116

10076

e (eV/amu)

—0.016945

—0.005 269
0,000 381
0.006 033
0.011 683

P (ev/A )

0.000 790

0.468 962
0.483 094
0.478 626
0.484 239

0.167 262

0.155 948

0.147 425

0.138 170

0.127 342

0.123 003

6 761
7 302
8 303
8 845
4 247
5 763
5 836
6 491
6 607
7 197
7 TW T

8 113
8 253
4215
5 026
5 791
6 923
7 689
3 699
4 645
5 311
6531
7 386
2 608
3 108
3 962
4 806
5 816
6 999
2 876
3 704
4 661
5 672
6 927

—0.003 577
0.002 074
0.007 724
0.013 375

—0.007 119
—0.001 468
—0.001 468

0.004 183
0.004 183
0.009 833
0.009 832
0.015 484
0.015 484

—0.004 544
0.001 107
0.006 758
0.012 409
0.018059

—0.001 146
0.005 070
0.010720
0.016 370
0.022 021
0.002 651
0.005 477
0.011 127
0.016778
0.022 429
0.028 079
0.008 239
0.013 890
0.019540
0.025 191
0.030 842

0.623 313
0.625 804
0.618 631
0.617 379
0.648 500
0.707 511
0.721 500
0.705 964
0.725 363
0.703 152
0.697 245
0.681 139
0.716467
0.756 504
0.778 300
0.753 580
0.797 745
0.786 444
0.871 516
0.862 671
0.846 950
0.889 304
0.879 788
0.919353
0.922 500
0.900 155
0.906 584
0.931 453
0.983 333
0.918458
0.941 040
0.942 793
0.971 843
1.021 582
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FIG. 2. Hugoniot function [Eq. (5)] versus temperature for
various specific volumes, values of which are denoted in the
legend. These are obtained from the results of molecular dy-
namics equation of state calculations.

FIG. 3. Pressure versus temperature for various specific
volumes, values of which are denoted in the legend. These are
the results of molecular dynamics equation of state calculations.
The solid lines denote quadratic fits in temperature.

dependence of both the Hugoniot function [Eq. (5)] and
the pressure for various specific volumes. The symbols
represent the results of the molecular dynamics averages
of these properties and the curves in Fig. 3 are fits of the
pressure to quadratic polynomials in temperature. The
quadratic fits of Eq. (5) to the temperature were not illus-
trated in Fig. 2, for clarity of the figure. The Hugoniot
temperatures (TH), the temperatures at which Eq. (5) is
zero for each specific volume, were extrapolated from the
quadratic fits of Eq. (5) to temperature, and are listed in
Table IV. The corresponding Hugoniot pressure PH was
calculated at the TH for each specific volume using the
quadratic fit of pressure to temperature, and these values
are also listed in Table IV. These values can be used in
Eq. (3) to determine detonation velocities D as functions
of specific volume. The detonation velocities correspond-
ing to each TH and PH are given in Table IV and shown
as a function of specific volume in Fig. 4. The
Chapman-Jouguet velocity is the minimum detonation
velocity corresponding to the set of Hugoniot pressures
and specific volumes. The curve shown in Fig. 4 is a fit of
the detonation velocities to a quadratic polynomial in
specific volume. The position of the minimum of D, cal-
culated using the quadratic polynomial fit shown in Fig.
4, corresponds to a specific volume of 0.141 A /amu (or

density of 7.09 amu/A ). The detonation velocity at this

density is 0.717 A/t. u. (7.0 km/s; t.u. is a time unit).
Figure 5 shows the Hugoniot curve and the Rayleigh

line that uses the Chapman-Jouguet detonation velocity
determined from the polynomial fit shown in Fig. 4.
Indeed the curves intersect at the CJ point. The CJ pres-
sure is 0.86 eV/A .

B. Molecular dynamics simulation of detonation

Molecular dynamics simulations of a Hier plate impact-
ing a quiescent crystal were performed with six impact
velocities ranging from 4.6 to 12 km/s. The simulations
will be denoted hereafter by the impact velocity of the
Hier plate. The position of the shock wave as a function
of time for each of these six simulations is illustrated in
Fig. 6. The threshold for initiation of detonation for this
plate thickness is found to be 4.7 km/s; detonation was
not sustained for plate impacts smaller than this. With
the exception of the 4.6 km/s simulation, the slopes of
the shock fronts are the same by 3.5 ps into each simula-
tion. Before this time, the slopes differ as the detonations
reach steady state. The steady-state detonation velocity
is 6.6 km/s. The faster the impact velocity, the sooner
the detonation reaches steady state. The shock wave ini-
tiated with a ilier plate impact of 12 km/s reaches the
steady-state detonation velocity within 0.1 ps. The de-

TABLE IV. Hugoniot temperatures, pressures, and detonation velocities versus specific volume.
One time unit (t.u. ) =1.018066X10 ' s.

V (A yamu)

0.187 541
0.167 262
0.155 948
0.147 425
0.138 170
0.127 342
0.123 003

TH (K)

7335
7235
7063
6834
7125
7500
8051

(eVyA')

0.464 63
0.624 13
0.713 94
0.782 71
0.882 06
1.01308
1.073 19

D (A/t. u.}

0.806 168
0.745 588
0.727 154
0.717 220
0.718 711
0.725 406
0.730 263
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FIG. 6. Position of the shock front as a function of time for
the six molecular dynamics simulations. The numbers denote
the velocities of the Hier plate in km/s.
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FIG. 5. Hugoniot pressure vs specific volume obtained from
the results of molecular dynamics equation of state calculations.
The straight line tangent to the Hugoniot curve is the Rayleigh
line corresponding to the Chapman-Jouguet condition. The
slope of this line is consistent with the Chapman-Jouguet veloci-
ty determined from the data shown in Fig. 4.

tonation velocity determined through these computer ex-
periments is 6.1% smaller than the CJ detonation veloci-
ty predicted from hydrodynamic theory (see Sec. IV A).

Thermodynamic property profiles for the computer ex-
periments have similar features. A typical snapshot of
the system for the 12 km/s simulation at 7.8 ps is shown
in Fig. 7; thermodynamic property and species profiles
corresponding to this time are shown in Fig. 8. Figure 7
shows three distinct regions: undisturbed crystal, the re-
action zone, in which the molecules are compressed and
are undergoing reaction, and the rarefaction region,

which consists of vibrationally excited homonuclear
products. We have defined the reaction zone as the area
between the position of the shock front and the point
(along the x axis) at which the number of reacted mole-
cules (dissociated from their original molecular partner)
exceeds the number of unreacted A-8 molecules. The
point at which the number of reactions exceeds the num-
ber of unreacted atoms is illustrated in Fig. 8(d); it is ap-
proximately 14 A behind the shock front in this snapshot.
We have found that the size of the reaction zone is steady
in time, and is on average 14 A in width. This is illustrat-
ed in Fig. 9, which shows the width of the reaction zone
throughout the 12 km/s simulation. Additionally, the
composition and properties of this zone are steady in
time. The thermodynamic properties in this region are
those we wish to compare with the hydrodynamic predic-
tions. We have averaged the thermodynamic properties
of a thin area of the sample directly behind the shock
front over the life of the 12 km/s trajectory. This area
has the same dimensions of a "slab" as defined in Sec.
IIID. Figures 10(a)—10(c) show the density, pressure,
and kinetic temperature of this region over time. The
properties are well behaved and steady. The average
temperature, pressure, and densit~ of this region are 7435
K, 0.88 eV/A, and 7.13 amu/A . The average pressure
and specific volume of these regions diff'er by 2.6% and
0.6%, respectively, from the hydrodynamic predictions
of the CJ values. The agreement between the two
theories is good.

The differences in the results of the two calculations,
although small, can be attributed to differences in state
composition. In the equation of state calculations, an
equimolar mixture of A and 8 atoms was used. In the
detonation simulations, however, the number density of 8
atoms in the slab behind the shock front was consistently
higher than the number density of A atoms. The mixture
behind the shock front consists, on average, of 57% 8
atoms and 43% A atoms. Therefore, although the CJ
density agrees well with the density behind the shock
front in the computer experiment, the chemical composi-
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FIG. 7. A snapshot of the system for the 12 km/s Hier plate impact at 7.8 ps into the simulation. The dimensions of the sample
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tion differs between the two situations. The larger per-
centage of the heavier B atoms in the detonation simula-
tion is consistent with a detonation velocity lower than
the CJ detonation velocity predicted from the results of
the equation of state calculations.

The zone behind the reaction zone (the rarefaction
zone) is unsteady; its properties change with time. The
configuration of the system produced in our computer ex-
periments appears to be representative of an unsupported
detonation as described in Ref. [2], and is almost de-

scribed by the simplest theory [2]. The flow appears to be
one dimensional, the detonation front is almost a jump
discontinuity, and the material emerging from the front
(the reaction zone) is independent of time. Additionally,
the model used in these computer experiments provides
almost instantaneous reaction, with only slightly more
than 14 A between the shock front and complete reac-
tion. These properties, as well as the good agreement
with the hydrodynamic predictions, indicate that both
the method of molecular dynamics and our model of an
energetic crystal can reasonably describe the
phenomenon of detonation.

We have also calculated the time dependence of the
thermodynamic properties of a slab of material (as
defined in Sec. III D) immediately behind the shock
fronts in the computer experiments for plate impacts of
4.7 and 4.6 km/s. The thermodynamic properties behind
the shock fronts for these two simulations were evaluated
as for the 12 km/s simulation [see Figs. 10(d)—10(i)]. The
4.6 km/s system reaches a maximum kinetic temperature,
pressure, and density of 3800 K, 0.61 eV/A, and 7.6
amu/A, respectively, within 1 ps into the simulation, but
these values are not maintained and rapidly drop to
significantly lower values as the simulation progresses.

25
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g 20-

l44 15-

0~ 10-
R0

I ~ ~ ~ ~ ~0
0 1 2 3 4 5 6 7 8

FIG. 8. Thermodynamic property profiles of the system cor-
responding to the conditions described in Fig. 7. Solid and
dashed curves in (d) denote unreacted and reacted A-8 mole-
cules, respectively. The smooth curves in (a) —(c) are guides to
the eye.

TIME (ps)

FIG. 9. Reaction zone length as a function of time through
the 12 km/s simulation.
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The maximum pressure reached in this experiment is well
below the Chapman-Jouguet pressure, although the CJ
density is reached (but not maintained) during this trajec-
tory. The profiles for the 4.7 km/s simulation are very
similar to those of the 4.6 km/s simulation for the first 2
ps; however, the thermodynamic properties approach the
steady-state detonation averages after this tim. e.

It is worthwhile to examine more closely the
differences in the profiles between the simulations of the
4.6 and 4.7 km/s Aier plate simulations since the former
does not lead to sustained detonation and the latter does.
Figure 11 shows the densities, pressures, and tempera-
tures of the reaction zone as functions of time during the
first 2 ps of both the 4.6 and 4.7 km/s simulations. The
main differences in these properties for the two simula-
tions occur between 0.6 and 1.0 ps, and then after 1.5 ps.
At 0.7 ps, there is a sharp increase in the kinetic tempera-
ture for the 4.7 km/s simulation that does not occur for
the 4.6 km/s simulation. The temperature then Auctu-
ates near 3000 K for 0.3 ps in the 4.7 km/s simulation,
whereas the temperature for the 4.6 km/s simulation falls
below 2000 K during this same time. The pressure in the
4.7 km/s simulation averages approximately 0.55 eV/A'
during this time, whereas the pressure of the 4.6 km/s
simulation falls to half that value. Finally, the density of
the 4.7 km/s simulation from 0.6 to 1.0 ps fluctuates near
the CJ value, but the density for the 4.6 km/s simulation
during this time period is well below the CJ value.

The two simulations predict similar behavior in prop-
erties from 1.0 to 1.5 ps, but then the curves diverge. All

curves corresponding to the 4.6 km/s simulation decrease
monotonically. For the 4.7 km/s simulation, the CJ den-
sity is reached and subsequently maintained at 1.6 ps,
well before the CJ pressure is reached 0.6 ps later. The
temperature for the 4.7 km/s simulation does not reach a
steady value until 6 ps into the trajectory; it monotonical-
ly increases to 5500 K at approximately 2.2 ps, and Auc-
tuates about this value for approximately 2 ps. It then in-
creases to 6500 K for another 2 ps, at which point it ap-
pears to increase to 7200 K, about which it Auctuates for
the remainder of the trajectory. These Auctuations
throughout the simulations, particularly at the beginning,
are suggestive of a system sampling a critical region of
phase space separating two distinctly different results:
namely, sustained, unsupported detonation vs nonreac-
tive shock. From these results, it would appear that at-
tainment of the CJ density from shock impact is the
determining factor for the sustenance of a detonation.

V. CONCLUSIONS

We have presented a comparative study of molecular
dynamics computer experiments of an unsupported de-
tonation and hydrodynamic predictions based on the
classical conservation equations that relate mass, momen-
tum, and energy of the quiescent crystal with the state
behind the detonation wave [2]. We calculated the equa-
tion of state of the system, through molecular dynamics,
in order to evaluate the classical conservation equations
and generate the Hugoniot curve for this system. The
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model used in both the equation of state calculations and
in the computer experiments describes a reactive crystal
consisting of heteronuclear diatomic molecules that
releases heat upon formation of the homonuclear diatom-
ic products. All calculations presented herein are two di-
mensional.

The equation of state of an equimolar mixture of 3 and
8 atoms is determined from thermodynamic averages ob-
tained through molecular dynamics simulations for
specific volumes ranging from Uo, the low-pressure re-
duced volume, to 0.55Uo. Equilibrium temperatures and
pressures were determined for each reduced volume, and
the Hugoniot curve was produced. The Chapman-
Jouguet state was then determined; the CJ detonation ve-
locity, density, and pressure are predicted to be 7.0 km/s,
7.09 amu/A, and 0.86 eV/A, respectively.

The computer experiments simulate shock-initiated
(through flier plate impact) reactions in a model energetic
crystal. For plate impacts with velocities no less than 4.7
km/s, the shock front and reaction zone propagate
through the crystal at a steady rate of 6.6 km/s. The
thermodynamic properties and width of the reaction zone
are time independent. The average width of the reaction

0
zone is 14 A; this width is the same for all plate impact
velocities no less than 4.7 km/s. The time-averaged den-
sity, pressure, and temperature immediately behind the
shock front in the reaction zone are 7.13 amu/A, 0.88
eV/A, and 7435 K, respectively. The following flow is
time dependent; the properties and width of this region
change as the simulations progress in time.

Agreement between the computer experiment and the
hydrodynamic predictions is good. The largest
discrepancy is a 6% difference in the detonation veloci-
ties which we attribute to differences in the chemical
composition of the system used in the equation of state
calculation and that of the reaction zone behind the
shock front in the computer experiments. The equation
of state calculations had an equimolar distribution of A
and B atoms in the system but the state behind the shock
front in the computer experiment had, on average, a
larger number density of B atoms (57% of the total num-
ber) than A atoms (43% of the total number) over the
lifetime of the simulation. The larger concentration of
the heavier 8 atoms in the computer experiment could
explain the smaller detonation velocity observed in the
computer experiments. The CJ pressure and density are
in remarkably good agreement with the computer simula-
tions (within 2.5%) even though the chemical composi-
tion behind the shock front in the computer experiment
differs from that used in the equation of state calcula-
tions.

Thermodynamic properties of thin regions immediately
behind the shock fronts were monitored in time for com-
puter experiments in which Aier plates strike the quies-
cent molecular crystal with velocities of 4.6 and 4.7
km/s, respectively. Detonation is not sustained for the
4.6 km/s impact; an unsupported detonation results from
the 4.7 km/s impact. For the first 1.5 ps of both simula-
tions, the thermodynamic properties have similar values.
After this time, the behavior of the properties of the two
simulations diverges. All properties corresponding to the
simulation with 4.6 km/s Aier plate impact decrease
monotonically after 1.5 ps. At 1.6 ps, the density of the
system corresponding to the 4.7 km/s Aier plate impact
reaches and maintains the CJ value. The pressure for the
4.7 km/s simulation subsequently increases monotonical-
ly to the CJ value only after the CJ density is attained,
suggesting that if the CJ density is reached then a detona-
tion will be sustained.

These results show that the method of molecular dy-
namics and our model of reactive energetic molecular
crystal can reasonably be used to simulate the
phenomenon of detonation.
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