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A new linear mechanism of reciprocal transformation of waves and a corresponding energy transfer in shear
flows is discovered. The effect is demonstrated on the simplest example — the two-dimensional waves in
unbounded, parallel hydromagnetic flow with uniform velocity shear. The phenomenon discovered is of im-
portance for magnetohydrodynamics and fusion plasma devices and for various terrestrial and astrophysical
shear flows. Grasping the result became possible thanks to the nonmodal analyses of the perturbation evolution
in the flow. @S1063-651X~96!11605-6#

PACS number~s!: 52.35.Bj, 03.40.Kf, 47.20.Ft

Oscillatory systems are prevalent in the nature and play
an important role in the wide variety of physical processes. It
should be emphasized that:~i! these kinds of dynamical sys-
tems usually consist of coupled oscillators and have several
degrees of freedom;~ii ! parameters of the oscillators in most
cases are not constant but vary slowly in time@1#. The pro-
cesses taking place in such systems are immensely complex
and their study is applicable not only to the various branches
of physics, but also to chemistry, biology, sociology, and
other sciences. Investigation of these two key aspects of dy-
namics, closely related to each other in some physical situa-
tions, has become one of the most important interdisciplinary
problems in applied mathematics@1–3#. Hydrodynamical
and plasma flows constitute such oscillatory systems, where
coupling, as a rule, is associated with nonlinear processes —
wave decay processes@4#, which ensures the mutual trans-
formation of different wave modes. In plasma physics, a lin-
ear coupling phenomenon is also known: mutual transforma-
tion of different kinds of plasma waves arising due to a
spatial inhomogeneityof a medium. For example, existence
of the density inhomogeneity induces coupling between
magnetohydrodynamic~MHD! oscillations@5# or the trans-
formation of compressional-type waves into electro-
magnetic-type waves propagating across a density disconti-
nuity @6#, etc.

In the present paper, we describe a mechanism of the
linear reciprocal transformation of wave modes arising in
flows due to avelocity inhomogeneity. The effect is demon-
strated for the simplest example: MHD waves in two-
dimensional ~2D!, compressible, magnetized, unbounded
parallel flow with uniform velocity shear~plane, magnetized
Couette flow!. The result is obtained by means of the non-
modal approach applied to the study of the evolution of
small-scale perturbations in the flow. This effect makes more
diverse the variety of processes taking place in shear flows.
Under a traditional modal analysis, this phenomenon was not
noticed for the following reason: the linear operators arising
in shear flows~as becomes apparent in a number of recent
contributions@7–13#! are non-normal. It results in a set of
nonorthogonal eigenfunctions strongly interfering with each

other. That is why analysis of distinct eigenfunction evolu-
tion, performed in the framework of the modal approach
~without adequate consideration of the interference!, is mis-
leading in many respects.

In the recent past, the nonmodal approach~‘‘Kelvin for-
malism’’ @14#! came to be extensively used@7–13, 15–18# in
the study of evolution of the perturbations in the shear flows.
In this formalism, one considers the temporal evolution of
spatial Fourier harmonics~‘‘Kelvin modes’’ @15#! of the
perturbations without any spectral expansion in time. The
wave number of each spatial Fourier harmonic~SFH! varies
in time along the flow shear: in the linear approximation
there exists a ‘‘linear drift’’ of SFH in the plane of wave
numbers (k space! @11–13#. Owing to the advantages of the
method, there were found transient growth of vortical pertur-
bations in smooth hydrodynamic shear flows@7–10, 13–15#;
anomalous growth of the slow magnetosonic waves in the
2D incompressible magnetized plane Couette flows@11#; a
mechanism of the shear energy transfer to the acoustic per-
turbations in 2D, compressible plane Couette flows@12#. Be-
sides, based on the nonmodal approach, results of recent in-
vestigations~see Refs.@7–10, 13#! reveal the potential for an
adequate description of the transition to turbulence in smooth
shear flows.

It is worthwhile to note that the importance of the non-
modal solutions of the MHD equations governing the Toka-
mak devices was also revealed in previous contributions
@19#; in particular, the author considered the ballooning in-
stabilities in Tokamak devices with sheared toroidal flow.
Based on the covering space concept@20#, which, in fact
does not constrain any unstable solution to evolve as
exp(ivt), it was shown that an adequate description of the
ballooning mode can be performed considering the non-
modal solutions of the equations. Basically, the ballooning-
mode eikonal representation used by the author is similar to
the Kelvin formalism, but its mathematical formulation is
different, since it is applied to the physical system with axial
symmetry.

To attain the aim of this paper — to demonstrate a spe-
cific mechanism of linear transformation of the waves in
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flows with inhomogeneous mean velocity, let us consider the
evolution of 2D waves in compressible, unbounded parallel
flow with uniform velocity shear contained in an external
regular magnetic fieldB0iU0. It is known that in such cases,
the mean velocity field is given by the formulaU0~Ay;0;0!
~theX axis is directed along the regular velocity vector, the
Y axis is directed along the shear!, where the constantA
~without loss of generality, we adoptA.0) parametrizes
inhomogeneity of the background flow.

The simplicity of this model flow guarantees its applica-
bility to a wide variety of terrestrial and astrophysical shear
flows. The reason is simple: if one considers small-scale per-
turbations, an arbitrary smooth ‘‘shear profile’’ is, of course,
approximately linear on the scales, much smaller than the
length scale of the flow itself. A Goldreich–Lynden-Bell
model @21#, widely used since the 1960s for astrophysical
shear flows, is a good example of such an approximation.
Hence, the results of the forthcoming consideration should
be relevant for various laboratory and space plasma shear
flows.

The basic system of linearized equations governing the
evolution of the small-scale, 2D perturbations in this flow is

~] t1Ay]x!d1]xux1]yuy50, ~1!

~] t1Ay]x!ux1Auy52cs
2]xd, ~2!

~] t1Ay]x!uy52cs
2]yd1cA

2@]xby2]ybx#, ~3!

~] t1Ay]x!by5]xuy , ~4!

]xbx1]yby50, ~5!

whered[r8/r0 , b[B8/uB0u, andcs andcA are the speed of
sound and an Alfven velocity, respectively. Note that in Eqs.
~2! and ~3! we have used the polytropic equation of state
p5Krg to express the pressure perturbation by means
of the density perturbation: grad(p8)5(]p/]r)grad(r8)
[cs

2grad(r8). The starting point for the nonmodal analysis
is to make the following substitution of variables@11–13#,
x15x2Ayt; y15y; t15t, and rewrite the Eqs.~1!–~5! in
the following form:

] t1d1]x1ux1~]y12At1]x1!uy50, ~6!

] t1ux1Auy52cs
2]x1d, ~7!

] t1uy52cs
2~]y12At1]x1!d1cA

2@]x1by2~]y12At1]x1!bx#,
~8!

] t1by5]x1uy , ~9!

]x1bx1~]y12At1]x1!by50. ~10!

Let us perform the Fourier analyses of~6!–~10!, expanding
unknown functions with respect toonly spatial variablesx1
andy1 ,

F5E dkx1dky1F̂~kx1 ,ky1 ,t1!exp@ i ~kx1x11ky1y1!#, ~11!

where under F we imply physical quantities
ux ,uy ,bx ,by ,d. As a result we get

D ~1!5vx1b~t!vy , ~12!

vx
~1!52Rvy2D, ~13!

vy
~1!52b~t!D1s2@11b~t!2#b, ~14!

b~1!52vy , ~15!

where hereafterF (n) will denote thenth order time deriva-
tive of F and D[ i d̂, b[ i b̂y , R[A/(cskx1),

s2[(cA /cs)
2, t[cskx1t1 , b(t)[ky1 /kx12Rt[b02Rt,

vx[ûx /cs , vy[ûy /cs .
Note that the wave number of a SFH along the flow shear

@ky(t)[ky12Rkx1t# varies in time. This process of the lin-
ear drift of SFH in thek space will be referred to below as
the linear drift. Note, also, that for small-scale perturbations
in a subsonicflow (V0,cs) R!1 @12#.

The dimensionless total energy density of the perturba-
tions in thek space we define as

E[~ uvxu21uvyu2!/21uDu2/21s2~ ubxu21ubyu2!/2. ~16!

If we introduce a new variable,c[D1b(t)b, we can
reduce the system~12!–~15! to the pair of ordinary differen-
tial equations of the second order:

c~2!1v1
2c1k~t!b50, ~17!

b~2!1v2
2b1k~t!c50. ~18!

Further consideration becomes superfluous, since equa-
tions of this type are well known in the general theory of
oscillations@3,22#. They describe coupled oscillations with
two degrees of freedom. In particular, uncoupled eigenfre-
quencies appearing in~17! and ~18! are v1[1 and
v2(t)[As21(11s2)b(t)2, while the coupling coefficient
is k(t)[2b(t) @3,22#. The presence of shear in the flow
(RÞ0) ensures temporal variability of one of the uncoupled
eigenfrequencies@v2(t)# and the coupling coefficient
k(t). Note that a dependence of these quantities on time may
be considered as adiabatic whenR!1 @12#.

Fundamental frequencies of coupled~normal! oscillations
are @3,22#

V1,2
2 5

1

2
@~v1

21v2
2!7A~v1

22v2
2!214k2#. ~19!

In our case they correspond to slow and fast magnetosonic
waves~SMW and FMW!, respectively. Certainly, these fre-
quencies also vary in time.

Since the oscillatory system, described by~17! and ~18!
has two degrees of freedom, its behavior may be determined
by two functions,c(t) and b(t). Note that all physical
quantities from~12!–~15! may be expressed throughc, b
and their derivatives:D5c2b(t)b, vx5c (1)1Rb, and
vy52b(1).

The exact mechanical analogy of the oscillatory system,
governed by the same kind of equations, is as follows. Let us
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consider two coupled pendulums, the first one with constant
uncoupled eigenfrequencyv151 and the second one whose
uncoupled eigenfrequencyv2(t) is slowly ~adiabatically!
varied by some external means~e.g., a variable length!. The
interpendulum coupling coefficientk(t) is also time depen-
dent. In @22#, while considering a similar mechanical prob-
lem, the authors found two necessary conditions for the ef-
fectiveness of the energy exchange between the weakly
coupled pendulums:

~1! there should exist a so-called ‘‘degeneration region’’
~DR! whereuv1

22v2
2u<uk(t)u ~in other words, in the case of

weak coupling, this condition implies thatv1'v2 , which
means that the maximum energy exchange between the pen-
dulums occurs when they have approximately the same
length!;

~2! the DR should be passed slowly—in a time in-
terval sufficiently exceeding the beating periodk(t):
uv2

(1)(t)u!uk(t)u.
Certainly these conditions should be valid for arbitrary

oscillatory systems, governed by the same kind of differen-
tial equations. Thus, they can be straightforwardly applied in
the analysis of an interaction between the modes withV1
andV2 ~intermode or interwave coupling!. Checking the ap-
plicability of these conditions in our problem, we can easily
see that they are satisfied for a wide range of system param-
eters. The most suitable condition for the transformation of
the MHD waves and corresponding energy transfer is when
s2.1 ~i.e., cA.cs — equipartition between magnetic and
thermal energies! and the transformation occurs near
t5t*[b0 /R. In this case, condition~1! holds when
ub(t)u,1/2, while condition~2! reduces tov2@2R, which
always holds whenR!1. The actual course of the interaction
process depends on the correlation between the width of the
DR and the time interval@transformation time scale~TTS!#
in which the system passes through DR. The value of the
TTS depends on theR parameter—it increases with decreas-
ing of R. Numerical simulations show that for certain values
of R there occurs an almost complete transformation of
SMW into FMW ~if, initially, it was an excited SMW! and
vice versa.

In Figs. 1 and 2 we demonstrate the simplest case—single
transformation of SMW into FMW whens251, b055, and

R50.05. In Fig. 1 we present the numerical solution for
D(t). The graph unambiguously shows the transformation
of SMW, with fundamental frequencyV1(t), into FMW
with frequency V2(t). Figure 2 shows the graphs for
V1(t), V2(t) and the curve for the perturbation energy. It is
clearly seen that at 0,t,t* the SMW energy remains al-
most constant, as it should, since the energy varies in the
interval adiabaticallyE(t);V1 andV1 is almost constant
there. Fort.t* , where the wave has already been trans-
formed into FMW,E(t);V2 and increases quasilinearly
with the increasingt. In particular, if initially we had a wave
~SMW! that did not exchange an energy with the mean flow,
after the transformation there appears a wave~FMW! that
effectively extracts the shear energy from the regular flow. It
is clear that this kind of transformation process may change
radically the behavior of the flow.

In summary, we have shown in this simple example that
transformation of linear MHD waves is possible in a homo-
geneous medium (r05const) when the regular velocity pro-
file is inhomogeneous. It should be emphasized that this kind
of transformation mechanism has been found in the frame-
work of the nonmodal approach while it has not been per-
ceived in the more traditional modal approach.

The nature of the wave transformation effect, discussed in
this paper, qualitatively differs from the already known
linear transformation mechanisms @5,6#. Density-
inhomogeneity-induced mode transformation occurs perma-
nently in a limited spatial area~across the density inhomo-
geneity!, while in our case transformation of linear waves
occurs in the whole volume, filled by the flow, in the limited
time interval.

In general, realization of the transformation mechanism in
shear flows takes place when the above specified conditions
~1! and~2! are satisfied. It is also clear that for the existence
of this phenomenon, the presence of at least two different
wave modes is necessary. Evidently, this phenomenon
should be realized in MHD and fusion plasma devices,
where the existence of shear and numerous wave modes en-
sures the action of the mechanism for a wide range of system
parameters. For the same reasons, such processes may also
be important in terrestrial and astrophysical compressible hy-
drodynamic shear flows. In the latter case, the existence of

FIG. 1. Time dependence ofD(t) for s251, b055, and
R50.05. The graph@numerical solution of Eqs.~12!–~15!# repre-
sents the transformation of SMW, with fundamental frequency
V1(t), into FMW with frequencyV2(t).

FIG. 2. Time dependence of the energy@E(t)#, SMW
@V1(t)#, and FMW @V2(t)# frequencies. Energy is normalized to
reveal the connection between these quantities before, during, and
after the transformation.
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several wave modes is ensured by differential rotation and
pressure and gravity forces.

We believe that our analysis of Eqs.~17! and ~18! en-
hances the mathematical theory of coupled oscillations.
From this point of view, more detailed exploration of these
equations may be valuable for general mathematical theory
of coupled oscillations.

Finally, we would like to mention that the main goal of
this paper was to outline the discovered transformation

mechanism, while a detailed study of the phenomenon is in
progress.

Our research was supported in part by International Sci-
ence Foundation~ISF! long-term research Grant No. RVO
000. A.D.R.’s research was supported in part by an ISF
emergency grant.

@1# A. J. Lichtenberg and M. A. Lieberman,Regular and Chaotic
Dynamics~Springer-Verlag, New York, 1982!.

@2# F. C. Hoppensteadt,Analysis and Simulation of Chaotic Sys-
tems~Springer-Verlag, New York, 1993!.

@3# K. Magnus,Schwingungen~Teubner, Stuttgart, 1976!.
@4# R. C. Davidson,Methods in Nonlinear Plasma Physics~Aca-

demic Press, New York, 1972!.
@5# S. S. Moiseev and V. R. Smiliansky, Magn. Gidrodin.2, 23

~1965!.
@6# A. H. Kritz and D. Mintzer, Phys. Rev.117, 382 ~1960!.
@7# K. M. Butler and B. F. Farrell, Phys. Fluids A4, 1637~1992!.
@8# L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A.

Driscoll, Science261, 578 ~1993!.
@9# S. C. Reddy and D. S. Henningson, J. Fluid Mech.252, 209

~1993!.
@10# S. C. Reddy, P. J. Schmid, and D. S. Hennigson, SIAM J.

Appl. Math.53, 15 ~1993!.
@11# G. D. Chagelishvili, R. G. Chanishvili, T. S. Khristov, and J.

G. Lominadze, Phys. Rev. E47, 366 ~1993!.
@12# G. D. Chagelishvili, A. D. Rogava, and I. N. Segal, Phys. Rev.

E 50, 4283~1994!.

@13# G. D. Chagelishvili, R. G. Chanishvili, J. G. Lominadze, and I.
N. Segal, inProceedings of the Fourth International Confer-
ence on Plasma Physics and Controlled Nuclear Fusion, ed-
ited by T. D. Guyenne~ESA, Noordwijk, 1992!, p. 23.

@14# Lord Kelvin, Philos. Mag.24, 188 ~1887!.
@15# P. Marcus and W. H. Press, J. Fluid Mech.79, 525 ~1977!.
@16# J. S. Baggett, T. A. Driscoll, and L. N. Trefethen, Phys. Fluids

7, 833 ~1995!.
@17# W. O. Criminale, T. L. Jackson, and D. G. Lasseigne, J. Fluid

Mech.294, 283 ~1995!.
@18# W. O. Criminale and P. G. Drazin, Stud. Appl. Math.83, 123

~1990!.
@19# W. A. Cooper, Plasm. Phys. Controlled Fusion30, 1805

~1988!.
@20# R. L. Dewar and A. H. Glasser, Phys. Fluids26 3038 ~1983!.
@21# P. Goldreich and D. Lyndenn-Bell, Mon. Not. R. Astron. Soc.

130, 125 ~1965!.
@22# G. L. Kotkin and V. G. Serbo,Collection of Problems in Clas-

sical Mechanics~Pergamon Press, New York, 1971!.

53 6031EFFECT OF COUPLING AND LINEAR TRANSFORMATION OF . . .


