
Shear flows and segregation in the reactionA1B˜B

M. J. Howard1 and G. T. Barkema2
1Department of Physics, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom

2Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
~Received 22 December 1995!

We study theoretically and numerically the effects of the linear velocity fieldv5v0yx̂ on the irreversible
reactionA1B→B. Assuming homogeneous initial conditions for the two species, with equal initial densities,
we demonstrate the presence of a crossover timetc;v0

21 . For t!v0
21 , the kinetics are unaffected by the shear

and we retain both the effect of species segregation~for d,4) and the density decay rateAt2a, where
a5min(d/4,1). We calculate the amplitudeA to leading order in a small density expansion for 2<d,4, and
give bounds ind54. However, for t@v0

21 , the critical dimension for anomalous kinetics is reduced to
dc52, with the density decay rateBt21 holding for d>2. Bounds are calculated for the amplitudeB in
d52, which depend on the velocity gradientv0 and the~equal! diffusion constantsD. We also briefly consider
the case of a nonlinear shear flow, where we give a more general form for the crossover timetc . Finally, we
perform numerical simulations for a linear shear flow ind52 with results in agreement with theoretical
predictions.@S1063-651X~96!03306-5#

PACS number~s!: 47.70.2n, 02.50.2r, 05.40.1j, 82.20.2w

I. INTRODUCTION

Recently there has been considerable activity in the field
of diffusion limited chemical reactions~see@1–9# and refer-
ences therein!. Many studies have concentrated on the effects
of density fluctuations, especially in the one and two species
reactionsA1A→B andA1B→B. In the time dependent
case it is well known that for sufficiently low spatial dimen-
sions these fluctuations alter the kinetics. For example, in the
two species reaction with equal initial concentrations, the
densities decay asymptotically ast2d/4 for d,4 @1,2,7#—a
slower rate than the mean fieldt21 result. This is closely
related to the phenomenon of segregation, where the species
separate intoA andB rich zones at large times~for d,4).
These effects are essentially due to inadequate diffusive mix-
ing of the reactants in low dimensions. This allows the initial
density fluctuations to persist, leading to the formation of
segregated zones.

However, exposure of the system to a shear flow will lead
to a modification of these kinetics, as the velocity gradient
will allow the chemicals to mix more efficiently. Hence, we
might expect that the critical dimension for the onset of
anomalous kinetics~and the appearance of segregated zones!
might be lowered. In this paper we attempt to confirm these
intuitive expectations by focusing on a two species reaction
in a linear~Couette! shear flow, in the case where both spe-
cies have the same diffusion constantD, and the same initial
densityn0 . Previous work on similar problems includes the
study of shear forces on a binary fluid mixture at criticality
~see@10# and references therein!. More recently studies have
been made of reaction-diffusion systems where particles with
a same species exclusion rule were subject to a drift@11–13#.
This exclusion rule meant that particles of the same species
were forbidden from occupying the same lattice site. New
exponents for the asymptotic density decays were reported,
with a theoretical justification based on the Burgers equation.
Note that our model differs from these cases, both by the

nature of the velocity flow~shear not drift!, and by the ab-
sence of any exclusion rules.

Although very little work has been done on fluctuations in
reaction-diffusion-shear systems, a considerable amount is
known about diffusion in shear flows@14–17#. Exact solu-
tions have been given for the positional probability distribu-
tion of a Brownian particle released in a linear velocity field.
These results will be employed in the analysis of the follow-
ing sections. We also mention a paper by Yee@18#, where a
method was given to obtain an approximate analytic solution
to a general reaction-convection-diffusion equation. How-
ever, this technique is simply a perturbative method for solv-
ing the mean field equations, and as such it takes no account
of the microscopic density fluctuations. So instead we em-
ploy a different method based on a mapping of the micro-
scopic dynamics onto a quantum field theory@6–8,19,20#.
This allows for a systematic treatment of the density fluctua-
tions using diagrammatic perturbation theory. In this way we
are able to go beyond the traditional rate equations approach,
by using the calculational framework of either an effective or
a full quantum field theory.

In brief we find, for a linear shear flow with velocity
gradient v0 , a crossover time of orderv0

21—at times
t!v0

21 the behavior of the system is essentially unaffected
by the shear. However, fort@v0

21 the critical dimension for
the system is reduced fromdc54 to dc52, and hence the
mean field decay exponent holds in all physically realizable
dimensions. In addition, we note in passing that the problem
of the single species reactionA1A→B in a shear flow is
unlikely to be interesting, as its critical dimension even with-
out shear is alreadydc52 @1,2,6#.

Finally, we give an outline of the layout of this paper. In
Sec. II we give simple arguments for the critical dimension
and crossover times for these systems. The mapping to a
quantum field theory is carried out in Sec. III, and in Sec. IV
we perform density calculations in the different regimes, us-
ing the field theory formalism. Numerical simulation results
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are given in Sec. V, and we present our conclusions in Sec.
VI.

II. DECAY RATES AND CROSSOVER TIMES

We shall first consider some simple arguments which de-
termine the density decay rates and crossover times induced
by the presence of a shear flow. If we neglect the role played
by fluctuations, then the mean field result for the densities
gives an asymptotict21 decay. However, by using a variant
of an argument first put forward by Toussaint and Wilczek
@1#, we can understand how the density fluctuations alter this
result. At t50, these fluctuations ensure that

uNa2Nbu t50;~n0L
d!1/2, ~1!

whereNa ,Nb are thenumberof A,B particles within a vol-
umeLd. Consequently the initial density difference satisfies

ua2bu t50;S noLdD
1/2

. ~2!

In the absence of a shear flow, after a timet, typically only
the initial density excess will remain in a volume of size
(Dt)d/2, as all the other particles in that region will have
mutually annihilated. Hence the number of particles remain-
ing in volume (Dt)d/2 at time t is „n0(Dt)

d/2
…

1/2 @using Eq.
~1!# and we thus obtain at2d/4 density decay@1,2,7#. How-
ever, in our case, the presence of the shear flow means that
length scales parallel to the velocity flow~in thex direction!
increase at a different rate to length scales in perpendicular
directions. If we now specialise to the case of linear shear,
then it is known~from exact solutions for random walkers in
linear velocity flows@14–16#! that this characteristic length
scale grows as„Dt@11 1

3(v0t)
2] …1/2. Consequently, after a

time t, only the initial density excess will remain in a volume
of size (Dt)(d21)/2(Dt)1/2@11 1

3(v0t)
2] 1/2. As a result we ex-

pect the densities to decay asymptotically as

a;b;t2d/4F11
~v0t !

2

3 G21/4

. ~3!

Thus for t!v0
21 , we retain thet2d/4 decay~for d<4), with

the mean fieldt21 exponent applying ford.4. However for
times very much larger than the crossover timetc;v0

21 , we
have a different regime:

a;b;H t2~d12!/4v0
21/2 for d,2

t21 for d.2.
~4!

Note thatd52 is the lowest possible dimension for the ge-
ometry of our system, so in practice the mean field decay
exponent is always retained.

We now briefly consider the case of non-linear shear - a
considerably more complicated situation. However, we can
give some simple arguments which reveal the crossover
time where we expect the shear to begin to alter the dy-
namics. Consider, for example, the non-linear flowv
5v0uyunsgn(y) x̂ studied in@17#. The shear flow will disrupt
a segregated zone aroundy5y0 when the typical zone length
scale (Dtc)

1/2 is comparable to the distance over which the

top and bottom of the segregated zone are sheared apart. The
time tc at which this happens is given by

v0tc@~Dtc!
1/21y0#

n2v0tcy0
n;~Dtc!

1/2. ~5!

We can rewrite this relation fortc as

v0tcy0
nF11

~Dtc!
1/2

y0
Gn2v0tcy0

n;~Dtc!
1/2. ~6!

For the case of a linear shear flow (n51), we have recov-
ered our earlier result of a crossover timetc;v0

21 . However
for nÞ1 and (Dtc)

1/2!y0 , we can expand the bracket in the
above equation. This leads to a crossover time

tc;
1

v0ny0
n21 5F d

dy0
~y0

nv0!G21

, ~7!

valid when

D1/2

y0
S 1

v0ny0
n21D 1/25S D

v0ny0
n11D 1/2!1. ~8!

III. THE FIELD THEORY APPROACH

In order to perform more quantitative calculations for the
densities, we need a systematic way of including the effect of
microscopic density fluctuations. One way in which this can
be achieved is by mapping the microscopic dynamics onto a
quantum field theory. The first step in this process is to write
down a master equation for the microscopic dynamics. This
can then be recast in a second quantised formalism, which
may in turn be mapped onto a path integral. All of these
steps have been described in detail elsewhere@6–8,19,20#, so
we simply give the resulting field theoretic action. Defining
the fieldsf andc in terms of the continuousc-number fields
a andb, wheref5 1

2(a1b) andc5 1
2(a2b), we have

S5E dxdydd22zdt$2c̄@] t1v~y!]x2D¹2#c

12f̄@] t1v~y!]x2D¹2#f12lf̄~f22c2!

1l~f̄22c̄2!~f22c2!22n0f̄d~ t !%, ~9!

wherec̄ and f̄ are the response fields. The vertices for this
field theory are shown in Fig. 1, where the propagators for
thef field are solid lines, and thec propagators are dotted
lines. Notice that if we neglect the quartic terms in the ac-
tion, and integrate out the response fields, then we recover
the classical~mean field! equations

]c

]t
1v~y!

]c

]x
5D¹2c, ~10!

FIG. 1. Vertices given by the field theoretic action.
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]f

]t
1v~y!

]f

]x
5D¹2f2l~f22c2!1n0d~ t !. ~11!

To derive the form of the Green functions we again spe-
cialize to a linear velocity field, i.e.,v(y)5v0y. The equa-
tion for the Green functionsG5Gcc̄5Gff̄ is

2S ]

]t
1v0y

]

]x
2D¹2DG5d~x2x8!d~y2y8!d~z2z8!

3d~ t2t8!. ~12!

This equation has been solved elsewhere@14–17#, in the
context of the position probability distribution for a random
walker released from the origin in a linear shear flow:

G5„4pD~ t2t8!…2d/2S 3

„v0~ t2t8!…2112D
1/2

3expS 2

3Fx2x82
1

2
v0~y1y8!~ t2t8!G2

D~ t2t8!@„v0~ t2t8!…2112#

2
~y2y8!2

4D~ t2t8!
2

~z2z8!2

4D~ t2t8!
D . ~13!

Note that forv0(t2t8)!1 the Green function is essentially
the same as for a shearless system~with v050). Physically
this result corresponds to the dominance of diffusion over
shear on short enough time scales.

Finally, we can use the field theory to define two classical
~tree level! quantities. The first of these is the classical den-
sity ^f&cl , which is the sum of tree diagrams contributing to
^f& @see Fig. 2, wherêf&cl is represented by a wavy solid
line#. This sum can easily be evaluated@6,7#, giving

^f&cl5
n0

11n0lt
, ~14!

the same result as would be found by solving the mean field
rate equations. The second classical quantity is the response
function, which is defined to be the sum of all possible tree
diagrams connected to a single propagator. The nature of the
vertices ensures that thec response function is just thec

propagator, whereas thef response function is given by the
diagrammatic sum shown in Fig. 3~where it is represented
by a thick solid line!.

IV. FIELD THEORY DENSITY CALCULATIONS

Using the formalism presented in Sec. III, we are now in
a position to calculate the densities in the two distinct time
regimes. We consider first the case of 2,d<4 andv0t!1,
where an effective field theory can be developed. However
such a theory turns out to be almost identical to that previ-
ously used by Lee and Cardy to study the same two species
reaction, but without shear~see @7# for details!. The only
fundamental difference lies in the slightly modified form of
the Green functions~13!. However, they are still sufficiently
similar to those of Lee and Cardy that our results, to leading
order in a small density expansion, reproduce those of@7#,
and are independent ofv0 . Hence, quoting from@7#, we
have, for 2,d,4 and (n0l)

21!t!v0
21 ,

^a&,^b&;
D1/2

~2p!1/2~8p!d/4
~Dt !2d/4, ~15!

whereD is found by summing the diagrams shown in Fig. 4,
giving D52n0 to leading order in a small density expansion.
Note that we requiret@(n0l)

21 so that the coarse-graining
required for the calculation of the initial termD is valid.
Strictly for this and subsequent results, we must also have
Dt@n0

22/d , i.e., the particles must have had time to ‘‘find’’
each other by diffusion. Ford54 we have the upper bound

^a&upper,^b&upper5S 1

2le f f
1A 1

~2le f f!
2 1

D

4~8pD !2
D t21,

~16!

wherele f f is an effective coupling constant found by sum-
ming the diagrams in Fig. 5, giving forv0t!1

le f f5lS 11
2Ld22l

~8p!d/2~d22!D D 21

. ~17!

HereL is a cutoff which is needed to keep the loop integrals
finite. The lower bound for the densities ind54 is given by

^a& lower ,^b& lower5
D1/2

8A2p3/2
~Dt !21. ~18!

FIG. 3. The diagrammatic sum for thef response function.

FIG. 4. The initial termD is generated by the sum of diagrams
shown here. Only the leading order diagram is evaluated.

FIG. 2. The classical densitŷf&cl , given by~a! the sum over
tree diagrams, or~b! an integral equation.

FIG. 5. Diagrammatic expansion for the effective coupling con-
stant.
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Finally, it is important to note that these calculations are
valid only in the regime (n0l)

21!t!v0
21 andDt@n0

22/d .
Hence, for small enoughn0 and large enoughv0 , these con-
ditions will not be satisfied and the above results will not be
applicable.

A. v0t!1 and d52

Power counting on the full field theoretic action~9! gives
d52 as a critical dimension for the system~whenv0t!1).
In this case~of the lowest physically possible dimension!, we
must consider the full theory, as given by the action~9!. The
renormalization is similar to that previously developed in
@6–8#, where more details may be found. In particular the
field theory remains simple in that diagrams cannot be drawn
which dress the propagators. Consequently the bare propaga-
tors are the full propagators and bothv0 andD are not renor-
malized. Furthermore the simpler form ofG for v0t!1
again ensures that the results for the^f2& and^c2& loops are
unchanged from the shearless case@7#. Thus the primitively
divergent vertex functionl̄(k,t) ~Fig. 6!, and the resulting
b function, remain unaltered. Note that we have now res-
caled the couplings to absorb the diffusion constantD:
l 5̄l/D.

The Callan-Symanzik equation for the densities is slightly
modified to read

F2t̄ ]

] t̄
22v̄0

]

] v̄0
2dn0

]

]n0
2dD

]

]D
1b~gR!

]

]gR
1dG

3n~ t̄,gR ,n0 ,v̄0 ,D!50, ~19!

wherev̄05v0 /D, t̄5Dt, andgR is the dimensionless renor-
malized coupling. The solution can be found by the method
of characteristics,

n~ t̄,gR ,n0 ,v̄0 ,D!5~k2t̄ !2 d/2n~k22,g̃R ,ñ0 ,v! 0 ,D̃!,
~20!

where ñ05n0(k
2t̄)d/2, D̃5D(k2t̄)d/2, and v! 05 v̄0(k

2t̄).
Furthermore, at large enough times~but still such that
v0t!1), the running couplingg̃R goes to zero as (lnt̄)

21 for
d52 @6#. The leading order result is given by~15!, and fol-
lowing @7#, we make the assumptions that higher order terms
are both independent ofn0 , v̄0 ~and thus ofñ0 , v! 0!, and that
they diverge no more quickly thanD̃1/2, for largeD̃. Conse-
quently, if these assumptions are valid, then the densities in
d52 will be given by expression~15!, with corrections
which are suppressed by at least a factor of (lnt̄)21.

B. v0t@1

At truly asymptotic timest@v0
21 , we can use the Green

functionsG5Gcc̄5Gff̄ ~13! to motivate a new assignment
of dimensions for the parameters appearing in the action~9!.
First we can see from~13! that@x#;@Dv0

2t3#1/2. If we ignore
the ]x

2 terms in the action~corresponding to the neglect of
diffusive motion in thex direction! and assign@ v̄0#;k0,
then we can give the following naive dimensions:

@x#;k23, @y#,@z#;k21, @ t̄#;k22, @ l̄#;k2d,

@f̄#,@c̄#;k0, @f#,@c#;kd12. ~21!

This suggests that a full field theory analysis using the action
~9!, with subsequent renormalization, becomes necessary
only at dimensiond50.

Consequently, following@7#, we must now construct a
new effective field theory, valid ford.0. The first step
in this process is to determine which initial parameters are
relevant. For an initial term of the type (D (m,n)/
m!n!) f̄mc̄nu t50 , we must therefore consider the dimensions
of the coupling@ l̄m1nD (m,n)#;k2d(m1n)1d12. The power
of l̄ follows from considering the number of vertices needed
to attach the initial term to a given diagram. These terms will
be relevant whend,2/(m1n21). Hence, if we have
m1n51, then such an initial term is relevant for alld. The
case ofm51 corresponds to the initial density, whereas the
generation of ann51 term is forbidden by the invariance of
the system under a transformation exchangingA↔B, i.e.,
(f,f̄,c,c̄)→(f,f̄,2c,2c̄). The only other important ini-
tial terms are those withm1n52, which are marginal in
d52. In fact we need only consider an extra initial term of
the type (D (0,2)/2)c̄2, asD (1,1) is forbidden by symmetry,
andD (2,0) is suppressed~it can only act as a source of noise
through af response function, which we assume to be
heavily damped, as in@7#!. So, ford<2, we are led to the
construction of an effective field theory with an extra initial
term, whereas ford.2 all initial terms ~except the initial
density! are irrelevant and hence the rate equation approach
can be employed. In what follows we shall develop the ef-
fective field theory only ind52, as the system cannot be
realized in a lower dimension.

Turning to the calculation ofD (0,2)5D, we again need to
sum the set of diagrams shown in Fig. 4, which for
t@(n0l)

21 givesD52n0 to lowest order in a small density
expansion@7#. Aside from this term our action is now linear
in the response fields, which we integrate out to yield the
equations of motion:

]f

]t
1v0y

]f

]x
5D¹2f2l̃e f f~f22c2!, ~22!

]c

]t
1v0y

]c

]x
5D¹2c, ~23!

wherel̃e f f is a new effective reaction rate constant, found by
summing the diagrams shown in Fig. 5, giving

l̃e f f5lS 11
4A3Ldl

~8p!d/2dv̄0D
D 21

, ~24!

FIG. 6. The sum of diagrams contributing to the primitively
divergent vertex functionl̄(k,t).
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in the limit v0t@1. Note that this result ensures that the
density amplitudes arev0 dependent even above the upper
critical dimensiondc52. If we now average Eq.~22! over
the initial conditions, then we have

d

dt
^f&52l̃e f f^f

2&1l̃e f f^c
2&, ~25!

since¹2^f&50 and]x^f&50. However, we can see from a
diagrammatic expansion for̂f& ~Fig. 7! that the only dia-
gram contributing to the value of^c2& in ~25! is the single
c loop, which we now evaluate:

^c2&5DE dxdydd22zG~x,y,z,t !2 ~26!

5DE dxdydd22z

~4pDt !d S 3

~v0t !
2112D

3expH 2

6S x2
1

2
v0ytD 2

Dt@~v0t !
2112#

2
y2

2Dt
2

z2

2Dt
J . ~27!

For v0t@1 andd52, this gives the result

^c2&5
A3D

16pDv0t
2 . ~28!

We can now find an upper bound solution to~25! by replac-
ing ^f2& by ^f&2 ~see@7# for a proof!. Calling this upper
bound solutionf , we have forv0t@1

d f

dt
52l̃e f f f

21
l̃e f fDA3
16pDv0t

2 . ~29!

This can be solved by making the substitutionf5u̇/lu, giv-
ing the upper bound

^f&< f5F 1

2l̃e f f
1A 1

~2l̃e f f!
2 1

DA3
16pDv0

G t21, ~30!

in d52. However, we can also find a lower bound for^f&
by noting thatf(x,t)>uc(x,t)u, or equivalently thata(x,t)
andb(x,t) are everywhere non-negative. We can prove this
rigorously using the effective field theory equations fora and
b:

]a

]t
5D¹2a2v0y

]a

]x
2l̃e f fab, ~31!

]b

]t
5D¹2b2v0y

]b

]x
2l̃e f fab. ~32!

We now assume that the~smooth! fieldsa andb are initially
everywhere non-negative. Suppose, at a later time,a50 at a
point, thena.0 locally around the point, implying that it is
a local minimum. Hence¹2a.0 and]xa50, meaning that
] ta.0. For a region ofa50, then we have] ta50 inside the
region. On its boundaries we have¹2a.0 and]xa50, giv-
ing ] ta.0 at these points. As a result the fields cannot pass
through zero and will remain non-negative.

Since we havef>ucu, it follows that ^f&>^ucu&. In ad-
dition, at long enough times, we expectc to have a normal
distribution—a result ofc satisfying a~modified! diffusion
equation. Consequently~as in @7#!, we have

P@c~ t !#}expH 2
c~ t !2

2^c~ t !2& J , ~33!

and therefore

^f&>^uc~ t !u&5A2

p
^c~ t !2&5ADDA3

8p2v0
~Dt !21,

~34!

for d52. However sincêg2&>^g&2 for any realg, then we
also have

^f2ucu&2<^~f2ucu!2&5^f2&1^c2&22^fucu&,
~35!

and usingf>ucu this gives us~in d52)

^f2ucu&2<^f2&2^c2&52
1

l̃e f f
^ḟ&;O~ t22!. ~36!

In other words, ford52, the bound on the corrections is of
the same order as the density. Consequently we cannot say
that the density asymptotically approaches the lower bound
@as could be said for (n0l)

21!t!v0
21 and 2,d,4#, only

that it lies somewhere between the limits supplied by~30!
and ~34!. In this respect the case ofd52 and t@v0

21 ,
t@(n0l)

21 is similar to that of d54 and (n0l)
21

!t!v0
21 . In addition both situations retain thet21 mean

field decay rate, but with modified amplitudes, which for
d52 andt@v0

21 , t@(n0l)
21 depend onv0 .

Note that in the limitl̃e f f
2 D/ v̄0D

2@1, the upper bound
reduces to

f'ADDA3
16pv0

~Dt !21, ~37!

i.e., the upper and lower limits differ simply by a numerical
factor of (2/p)1/2. On the other hand, ifl̃e f f

2 D/ v̄0D
2!1, then

f'(l̃e f ft)
21. In the limit of strong shear, where any reaction

zones are broken up almost immediately, we have recovered
a mean field decay from this upper bound.

FIG. 7. Diagrammatic expansion for^f&, using the initial terms
n0 andD.
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Finally, we can see that the lower bound~34! is of limited
usefulness in the smallD or largev0 limits, as the bound
decreases with either increasingv0 or decreasingD. How-
ever, we can use the fact thatl̃e f f

2 D/ v̄0D
2 is dimensionless in

d52 to obtain an improved expression for the densities, by
performing a perturbation expansion with this parameter.
From ~25! it follows that the zeroth order term of this series
is a constant, equal to the smalll̃e f f

2 D/ v̄0D
2 limit of the

upper bound:

^a&5
1

l̃e f ft
F11

A3l̃e f f
2 D

16p v̄0D
2

1OS F l̃e f f
2 D

v̄0D
2G 2D G . ~38!

V. NUMERICAL RESULTS

In order to confirm some of our theoretical predictions we
have performed Monte-Carlo simulations ind52. Initially a
square lattice of sizeLx3Ly was populated with equal num-
bers of randomly distributedA andB particles. The evolu-
tion of this initial configuration was simulated using the rare
event dynamics~RED! technique ~see also@9#!. In this
Monte Carlo method, the time increment is determined by
the current configuration: if many changes in the configura-
tion are likely, then the time increment is small, whereas if
the configuration is very stable, the time increment is large.
In RED, a list is made of all possible changes to the configu-
ration ~events! together with the expected time after which
each event will occur. In the present model, two distinct
types of events could occur, as follows.

~1! A and B particles at (x,y) could hop to neighbor-
ing sites: for up, rate51; down, rate51; left, rate51
1s(y20.5Ly !/Ly; right, rate512s~y20.5Ly !/Ly, where
v052s/Ly . Note that the possible values of the shear gradi-
ent v0 were restricted to ensure that the hop rates remained
everywhere positive~i.e.,usu<2!.

~2! EachA particle could react with eachB particle on the
same lattice site, with a reaction ratel. The simulations also
allowed multiple occupation of each lattice site, in accor-
dance with our theoretical description of the system.

One step in a RED simulation consists of incrementing

the time scale withDt51/( j (r j ), where r j is the rate for
event j , and then allowing selection~and execution! of an
event. The probability that eventi is chosen is equal to
pi5r i /( j (r j ).

For an efficient implementation the events are organized
in a binary tree, where each branch contains one event and
has a weight equal to the rate of that event. The weight of a
parent node is equal to the sum of the weights of its children.
As the root node contains the sum of all rates, the time in-
crementDt is easily obtained: it is the inverse of the weight
of the root node. To select a particular eventi with a prob-
ability proportional to its rater i , we start in the root node,
descend to either its left or its right child with a probability
proportional to their weights, and iterate this process until we
have reached the bottom of the tree. The selected event is
then executed and the weights in the tree of all events whose
rates have changed, plus their parents, grandparents, etc., are
updated. The use of the binary tree assures that the CPU time
required for one step in the RED simulation scales with the
logarithm of the size of the tree.

In our simulations we have adopted periodic boundary
conditions in the direction of the shear flow~in the x direc-
tion!, but with hard wall boundary conditions perpendicular

FIG. 8. Simulation results on an 8003200 system, with
l51000,n050.1, ands51 ~diamonds! or s50 ~plus signs!. The
straight lines have gradients of20.5 and21, respectively. The
time step is as determined by the RED simulation technique~see the
text!.

FIG. 9. Simulation results on a 9003300 system, with
l51000,n050.04, ands51 ~diamonds! or s50 ~plus signs!. The
straight lines have gradients of20.5 and21, respectively. The
time step is as determined by the RED simulation technique~see the
text!.

FIG. 10. Simulation results on a 2003200 system with com-
plete initial segregation andl51000, s50. The time step is as
determined by the RED simulation technique~see the text!.
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to it ~at y50 andy5Ly).
The results of simulations on 8003200 and 9003300 lat-

tices are shown in Figs. 8 and 9, respectively. Data for the
shearless cases (s50) are averaged over 20 runs, whereas
those with shear (s51) are averaged over 40 runs. At very
early times the decay is fairly slow~especially in the
n050.04 case! as it takes time for the particles to ‘‘find’’
each other. However, at slightly later times we see a straight
line for the densities, which is quite well described by the
theoretically predictedt21/2 decay. Notice that the simula-
tions both with and without shear are indistinguishable at
these early times, indicating that the shear really does have a
negligible impact early on~as was predicted in Sec. IV!.
However, for sÞ0 we see a crossover at times of order
v0

21 to a new regime, which is fairly well described by a
t21 decay.

Notice that at late times the densities in the shearless
simulations also tail off, and appear to fall away much more
quickly than the predictedt21/2 decay. Similar effects were
also seen in the original paper by Toussaint and Wilczek@1#,
where thet2d/4 decay ~for d,4) was first proposed. We
interpret this result as being an exponentially fast density
decay caused by finite size effects, which become appre-
ciable when the segregated domain sizes become of the same
order as the system size. At large enough times these segre-
gated zones will have grown to a size where only two such
regions exist~oneA rich and the otherB rich!. The depletion
zones of these segregated areas will typically be of the same
order as the system length. Hence, if we have just two zones
remaining in a system of sizeL3L, then the densities would
decay according to

d

dt
~L2a!;2JL;2~aD/L !L;2Da, ~39!

whereJ is the flux of particles flowing into the reaction zone.
This implies

a;exp~2const3Dt/L2!. ~40!

In order to test this prediction, we simulated an initially com-
pletely segregated system of size 2003200. Thet50 den-
sity profiles for each of the two species were set up to rise
linearly from zero~aroundy5Ly/2) to a maximum on op-

posite boundaries~at y50 and y5Ly). This configuration
mimics the effects of having a diffusion length of the same
order as the system size. The results of these simulations
~averaged over five runs! are shown in Fig. 10, where an
exponential decay is found, in agreement with the above
theory.

A further feature of the simulations concerns the effects
of the hard wall boundary conditions. Segregated zones
neighboring the hard wall borders at the top and bottom of
the system are likely to be more stable, as for these zones
fewer reactions are occurring on their boundaries relative to
similar regions in the bulk. Hence, if the system is roughly
square, then we might expect the reaction zone at late times
~when only two segregated regions remain! to lie roughly
alongy5Ly/2. This effect has indeed been seen in our simu-
lations in the case of zero shear.

Finally, in Figs. 11–13, we show the results of various
‘‘snapshots’’ of an 8003200 system as it evolves in the
presence of a shear flow. The effects of the shear in tearing
apart the reaction zones are clearly illustrated.

VI. CONCLUSION

In this paper we have studied theoretically and numeri-
cally the effects of a linear shear flow on the two species
reactionA1B→B. For t!v0

21 we found that the system
was essentially unaffected by the velocity flow, and the spe-
cies again segregated intoA andB rich zones ford,4. In
the regime (n0l)

21!t!v0
21 and withDt@n0

22/d , our re-
sults for the densities~to leading order in a small density
expansion! reproduced those of the shearless case@7#. How-
ever, at large timest@v0

21 , the critical dimension for the
onset of anomalous kinetics is reduced fromdc54 to
dc52. Consequently, ford>2, a mean fieldt21 decay is
adopted, though with a modifiedv0 dependent amplitude.
Notice, however, that our calculations are for the case of
equal diffusion constants. Although it would be possible to
treat the case ofDAÞDB , we believe~as was found in@7#!
that such a modification would be qualitatively unimportant,
provided both diffusion constants remain nonzero.

To go beyond the calculations presented in this paper, one
could attempt to generalise our analysis to the case of a non-
linear shear flow. Unfortunately, excepting the very simple
arguments of Sec. II, it is not clear how to make analytic
progress in this case, as the equation for the Green functions
~12! becomes very much harder to solve. However, it should
prove possible to incorporate into our model a repulsive
force between like particles. This would make our system
more similar to those considered in@11–13#, where a same
species hard core exclusion rule was imposed. In this way we
could use the field theoretic formalism to investigate the ef-
fects of exclusion on reaction-diffusion systems with shear
or drift.

FIG. 11. Snapshot of an 8003200 system, withs51, n050.1,
l51000 att5300.

FIG. 12. Snapshot of the same 8003200 system att5900.

FIG. 13. Snapshot of the same 8003200 system att51500.
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