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We study theoretically and numerically the effects of the linear velocity fietd yX on the irreversible
reactionA+B—J. Assuming homogeneous initial conditions for the two species, with equal initial densities,
we demonstrate the presence of a crossovertt@megl. Fort<v51, the kinetics are unaffected by the shear
and we retain both the effect of species segregatfon d<4) and the density decay rait™ ¢, where
a=min(d/4,1). We calculate the amplitude to leading order in a small density expansion fer@<4, and
give bounds ind=4. However, fort>v,*, the critical dimension for anomalous kinetics is reduced to
d.=2, with the density decay ratBt* holding for d=2. Bounds are calculated for the amplituBein
d=2, which depend on the velocity gradienfand the(equa) diffusion constant®. We also briefly consider
the case of a nonlinear shear flow, where we give a more general form for the crossover. thirally, we
perform numerical simulations for a linear shear flowdr 2 with results in agreement with theoretical
predictions[S1063-651X96)03306-3

PACS numbegps): 47.70—n, 02.50-r, 05.40+j, 82.20—w

I. INTRODUCTION nature of the velocity flow(shear not drift, and by the ab-
sence of any exclusion rules.

Recently there has been considerable activity in the field Although very little work has been done on fluctuations in
of diffusion limited chemical reactionsee[1-9] and refer- reaction-diffusion-shear systems, a considerable amount is
ences therein Many studies have concentrated on the effectknown about diffusion in shear flowid4-17. Exact solu-
of density fluctuations, especially in the one and two speciesons have been given for the positional probability distribu-
reactionsA+A—C andA+B—J. In the time dependent tion of a Brownian particle released in a linear velocity field.
case it is well known that for sufficiently low spatial dimen- These results will be employed in the analysis of the follow-
sions these fluctuations alter the kinetics. For example, in thing sections. We also mention a paper by Y&8|, where a
two species reaction with equal initial concentrations, themethod was given to obtain an approximate analytic solution
densities decay asymptotically 8594 for d<4 [1,2,7—a to a general reaction-convection-diffusion equation. How-
slower rate than the mean fietd ! result. This is closely ever, this technique is simply a perturbative method for solv-
related to the phenomenon of segregation, where the speciagrgy the mean field equations, and as such it takes no account
separate intdA andB rich zones at large time@or d<4). of the microscopic density fluctuations. So instead we em-
These effects are essentially due to inadequate diffusive mixploy a different method based on a mapping of the micro-
ing of the reactants in low dimensions. This allows the initial scopic dynamics onto a quantum field the¢f~8,19,20.
density fluctuations to persist, leading to the formation ofThis allows for a systematic treatment of the density fluctua-
segregated zones. tions using diagrammatic perturbation theory. In this way we

However, exposure of the system to a shear flow will leadare able to go beyond the traditional rate equations approach,
to a modification of these kinetics, as the velocity gradienty using the calculational framework of either an effective or
will allow the chemicals to mix more efficiently. Hence, we a full quantum field theory.
might expect that the critical dimension for the onset of In brief we find, for a linear shear flow with velocity
anomalous kineticéand the appearance of segregated zpnesgradient vy, a crossover time of ordepy'—at times
might be lowered. In this paper we attempt to confirm thesdé<<v, ' the behavior of the system is essentially unaffected
intuitive expectations by focusing on a two species reactiomy the shear. However, fae> v, * the critical dimension for
in a linear(Couette shear flow, in the case where both spe-the system is reduced fromh.=4 to d.=2, and hence the
cies have the same diffusion consta@ntand the same initial mean field decay exponent holds in all physically realizable
densityn,. Previous work on similar problems includes the dimensions. In addition, we note in passing that the problem
study of shear forces on a binary fluid mixture at criticality of the single species reactidh+A— in a shear flow is
(se€[10] and references thergirMore recently studies have unlikely to be interesting, as its critical dimension even with-
been made of reaction-diffusion systems where particles witlout shear is alreadgl.=2 [1,2,6].

a same species exclusion rule were subject to a[drift-13. Finally, we give an outline of the layout of this paper. In
This exclusion rule meant that particles of the same specieSec. Il we give simple arguments for the critical dimension
were forbidden from occupying the same lattice site. Newand crossover times for these systems. The mapping to a
exponents for the asymptotic density decays were reporteduantum field theory is carried out in Sec. lll, and in Sec. IV
with a theoretical justification based on the Burgers equationwe perform density calculations in the different regimes, us-
Note that our model differs from these cases, both by théng the field theory formalism. Numerical simulation results
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are given in Sec. V, and we present our conclusions in Sec. . N _
VI — = XK A —
Il. DECAY RATES AND CROSSOVER TIMES —2A 24 -\ A A -\ 2n,8(t)

We shall first consider some simple arguments which de- FIG. 1. Vertices given by the field theoretic action.
termine the density decay rates and crossover times induced
by the presence of a shear flow. If we neglect the role playetbp and bottom of the segregated zone are sheared apart. The
by fluctuations, then the mean field result for the densitiesime t. at which this happens is given by
gives an asymptotit™! decay. However, by using a variant

of an argument first put forward by Toussaint and Wilczek votd (Dte) Y2+ yo]"—voteyp~ (Dte) Y2 (5)
[1], we can understand how the density fluctuations alter this
result. Att=0, these fluctuations ensure that We can rewrite this relation far, as
[Na—Npi=o~ (nLh)Y?, 1) (Dtg) V3"
: voteyg| 1+ ~voteyg~ (Dt (6)

whereN,,N, are thenumberof A,B particles within a vol-
umeL9. Consequently the initial density difference satisfiesgqr the case of a linear shear flomw=1), we have recov-
2 ered our earlier result of a crossover tilraevgl. However

la— blto~<n—?; 20 forn#1 and Pt.)"?<y,, we can expand the bracket in the
L above equation. This leads to a crossover time
In the absence of a shear flow, after a titpeypically only 1 -1
the initial density excess will remain in a volume of size tc~ﬁ=[d—(y3vo) , (7
(Dt)¥2, as all the other particles in that region will have vonYo Yo
mutually annihilated. Hence the number of particles remain- _..
ing in volume Ot)%? at timet is (ny(Dt)¥?)2 [using Eq. valid when
(1)] and we thus obtain & %* density decay1,2,7. How- D2 1|12 D |12
ever, in our case, the presence of the shear flow means that _( nl) =( n+l) <1. (8
length scales parallel to the velocity fldim the x direction Yo \vonYo VoNYo
increase at a different rate to length scales in perpendicular
directions. If we now specialise to the case of linear shear, Il. THE FIELD THEORY APPROACH
then it is known(from exact solutions for random walkers in
linear velocity flows[14—16) that this characteristic length ~ In order to perform more quantitative calculations for the

scale grows agDt[1+ i(vot)?])¥2 Consequently, after a densities, we need a systematic way of including the effect of

timet, only the initial density excess will remain in a volume Microscopic density fluctuations. One way in which this can
of size D)@ VADt) Y 1+ H(vot)] Y2 As a result we ex- D€ achieved is by mapping the microscopic dynamics onto a

pect the densities to decay asymptotically as quantum field theory. The first step in this process is to write
down a master equation for the microscopic dynamics. This
- (vot)?] 4 can then be recast in a second quantised formalism, which

a~b~t~% I+ —— (3 may in turn be mapped onto a path integral. All of these

steps have been described in detail elsew®r8,19,20, so
we simply give the resulting field theoretic action. Defining
the fields¢ andy in terms of the continuous-number fields

a andb, where¢=3(a+b) and¢=3(a—b), we have

Thus fort<uv, *, we retain the =% decay(for d<4), with
the mean field " exponent applying fod>4. However for
times very much larger than the crossover tirpevgl, we
have a different regime: L
s=f dxdyd' ™ 2zd{{ 249, +v(y)dy—DV?]y

t—(d+2)/4val/2 fOf d<2
a~b~ 1 4 o 2 2 2
t for d>2. +2¢[dtv(y)dx—DV]p+2N (P — )
Note thatd=2 is the lowest possible dimension for the ge- +N (= §7) (> — 7)) —2nep8(1)}, 9
ometry of our system, so in practice the mean field decay -
exponent is always retained. wherey and ¢ are the response fields. The vertices for this

We now briefly consider the case of non-linear shear - dield theory are shown in Fig. 1, where the propagators for
considerably more complicated situation. However, we carthe ¢ field are solid lines, and th¢: propagators are dotted
give some simple arguments which reveal the crossovdines. Notice that if we neglect the quartic terms in the ac-
time where we expect the shear to begin to alter the dytion, and integrate out the response fields, then we recover
namics. Consider, for example, the non-linear flow the classicalmean field equations
=v,|y|"sgny) X studied in[17]. The shear flow will disrupt
a segregated zone aroupe yo when the typical zone length I Iy

s Y w2
scale Dty)? is comparable to the distance over which the ot TeW) 5 =DV (10
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® N = + %:i FIG. 4. The initial termA is generated by the sum of diagrams
shown here. Only the leading order diagram is evaluated.
FIG. 2. The classical densiti)c,, given by(a) the sum over  hropagator, whereas thi response function is given by the
tree diagrams, ofb) an integral equation. diagrammatic sum shown in Fig. @vhere it is represented
by a thick solid line.
e e
—+v(y) == =DV2p—N(¢>— y*)+ned(t). (1)
at o) o 4 05 IV. FIELD THEORY DENSITY CALCULATIONS

To derive the form of the Green functions we again spe- Using the formalism presented in Sec. Ill, we are now in
cialize to a linear velocity field, i.ey(y)=v,y. The equa- @ position to calculate the densities in the two distinct time
tion for the Green function&=G,,=G 4 is regimes. We consider first the case cf@<4 andvgt<1,

where an effective field theory can be developed. However

d d ) , ) , such a theory turns out to be almost identical to that previ-
2 ot Uy T DV?|G=48(x=x")é(y—y")é(z—2") ously used by Lee and Cardy to study the same two species
reaction, but without sheasee[7] for detaily. The only
X 8(t—t"). (120  fundamental difference lies in the slightly modified form of

the Green function§l3). However, they are still sufficiently
This equation has been solved elsewhgté-17, in the  similar to those of Lee and Cardy that our results, to leading
context of the position probability distribution for a random order in a small density expansion, reproduce thosg7pf
walker released from the origin in a linear shear flow: and are independent af,. Hence, quoting fron{7], we
1o have, for 2<d<4 and figh) “*<t<uv,?,
e

G:(47TD(t_t’))d/2<(UO(T,))2+12

1/2
<a>,<b>~W(Dt>‘d"‘, (15)

3

1 2
X=X = 5v0<y+y'><t—t'>} , , , -
whereA is found by summing the diagrams shown in Fig. 4,
D(t—t")[(vo(t—t"))*+12] giving A =2n, to leading order in a small density expansion.
Note that we requiré>(no\) ~* so that the coarse-graining
required for the calculation of the initial tery is valid.
Cy-y)? (z=7)? 13 Strictly for this and subsequent results, we must also have
4D(t—t') 4D(t—t") Dt>n, 24, i.e., the particles must have had time to “find”
each other by diffusion. Fai=4 we have the upper bound
Note that forvy(t—t')<<1 the Green function is essentially

xXexp| —

the same as for a shearless systarith v,=0). Physically 1 1 A 1
this result corresponds to the dominance of diffusion overl @ uppers{P)upper= N ff+ (2N ff)2+ 4(87D)2 t,
shear on short enough time scales. ¢ ¢ (16)

Finally, we can use the field theory to define two classical

(tree leve) quantities. The first of these is the classical denwhere) ¢ is an effective coupling constant found by sum-

sity ()i, which is the sum of tree diagrams contributing to ming the diagrams in Fig. 5, giving fargt<1
(@) [see Fig. 2, wherée), is represented by a wavy solid
line]. This sum can easily be evaluatgg7], giving

2Ad—2)\ -1
0
<¢>C|: ’ (14) . . . .
1+noht HereA is a cutoff which is needed to keep the loop integrals

finite. The lower bound for the densitiesdi=4 is given by
the same result as would be found by solving the mean field

rate equations. The second classical quantity is the response 12
function, which is defined to be the sum of all possible tree (a}mwer,(b),ower:—a/z(Dt)*l. (18
diagrams connected to a single propagator. The nature of the 8\2m

vertices ensures that thg response function is just thg
> D DO X
(J" r\S\) (\SJ At A oy n a A

FIG. 5. Diagrammatic expansion for the effective coupling con-
FIG. 3. The diagrammatic sum for thk response function. stant.

= +
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x(kt) B. Uot>l
s = OO s Tt At truly asymptotic timeg>v,*, we can use the Green
T 1 ) s functionsG=G,,=G,, (13) to motivate a new assignment

S + @::“ + _O """" of dimensions for the parameters appearing in the a¢fin
N S First we can see frorfiL.3) that[x]~[Dv2at3]*2. If we ignore
s O o TN the &)2( terms in the actior(corresponding to the neglect of
e T e diffusive motion in thex direction and assignvy]~k°,

FIG. 6. The sum of diagrams contributing to the primitively then we can give the following naive dimensions:

divergent vertex function(k,t). [x]~k=3, [yl.[z]~k™ %, [ﬁwk*Z, [)\_]Nk*d,

Finally, it is important to note that these calculations are [1.[¥]~K°, [o].[]~KkI+2. (21)
valid only in the regime ifgh) “*<t<vy* andDt>ng, 20,
Hence, for small enough, and large enough,, these con-  This suggests that a full field theory analysis using the action
ditions will not be satisfied and the above results will not be(9), with subsequent renormalization, becomes necessary
applicable. only at dimensiord=0.
Consequently, followind7], we must now construct a
new effective field theory, valid fod>0. The first step
in this process is to determine which initial parameters are
Power counting on the full field theoretic actié®) gives  relevant. For an initial term of the type A{™"/
d=2 as a critical dimension for the systehenvot<1).  min!) ¢™y"|,_o, we must therefore consider the dimensions
In this cas€of the lowest physically possible dimensjowe  of the coupling[ A" PA(MM ]~ g-dmEM+d+2  The power

must consider the full theory, as given by the acti®n The ¢ follows from considering the number of vertices needed

renormalization is similar to that previously developed inyg attach the initial term to a given diagram. These terms will
[6—8], where more details may be found. In particular theys rojevant whend<2/(m+n—1). Hence, if we have

field theory remains simple in that diagrams cannot be drawiy, , 1, — 1, then such an initial term is relevant for all The
which dress the propagators. Consequently the bare propagasse ofm=1 corresponds to the initial density, whereas the
tors are the full propagators and bathiandD are notrenor-  yaneration of am=1 term is forbidden by the invariance of
malized. Furthermore the simpler form @ for vot<1 the system under a transformation exchangig B, i.e.,
again ensures that the results for {ig) and(?) loops are (6.0 wi)%(q’) g_w _I) The only other important ini-
unchanged from the shearless ci&e Thus the primitively tiaI, te,I’IT'lS are tﬁo’se V\;itmn+.n:2 which are marginal in
?givferge.nt vertex functiolm(k,dt) &Fig' 6%' and tEe resulting  4— 5 " fact we need only consider an extra initial term of
unction, remain unaltered. Note that we have now res; 0,219\ 12 (1.1) ; .
caled the couplings to absorb the diffusion constént g]ned 218%’(?3 su:)?rl/és’s:;tAcan c;ﬁljoggdgseg sbc))/ufgg]gﬁltgée
A =MD. . . o through a ¢ response function, which we assume to be
Tr_u_a Callan-Symanzik equation for the densities is sllghtlyheéwin damped, as ifi7]). So, ford=2, we are led to the
modified to read construction of an effective field theory with an extra initial
I R P P P term, whereas fod>2 all initial terms (except the initial
ZtTZUQ?_dnom_dAE‘FB(gR)&_‘Fd density are irrelevant and hence the rate equation approach
0 0 9r can be employed. In what follows we shall develop the ef-
Xn(t,gr,No.v0,A)=0, (190 fective field theory only ind=2, as the system cannot be
realized in a lower dimension.

Turning to the calculation oA A, we again need to
um the set of diagrams shown in Fig. 4, which for
>(no\) 1 givesA =2n, to lowest order in a small density

expansior{ 7]. Aside from this term our action is now linear
in the response fields, which we integrate out to yield the

A. vot<1 andd=2

_ — (0.2)—
wherevy=v,/D, t=Dt, andgg is the dimensionless renor-
malized coupling. The solution can be found by the metho
of characteristics,

n(t,gr.No.vo.A)=(x%t)” ¥2n(x"2,gg ,'ﬁo,vzo,z),( ) equations of motion:
20
ad a -

= vy =t - — — +voy— =DVZp— et $*— 7, 22
where nO:nO(KZt)dIZ' AZA(KZt)dIZ, and l;ozvo(KZt). ot voyo'?X ¢ eff( P — ¢ ) (22
Furthermore, at large enough timébut still such that
vot<1), the running couplin@g goes to zero as (th * for Ip (A
d=2 [6]. The leading order result is given §%5), and fol- ot +U°yax =DV, (23

lowing [7], we make the assumptions that higher order terms _
are both independent af, v, (and thus ofy, UZOL and that wherelgss is a new effective reaction rate constant, found by
they diverge no more quickly thak'’?, for largeA. Conse- summing the diagrams shown in Fig. 5, giving
quently, if these assumptions are valid, then the densities in g 1
d=2 will be given by expression(15), with corrections N 14 43AN\
P YRY: [ =g B
(87)%“dvoD

which are suppressed by at least a factor of){th Neff=N\ (24)
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2 _bv? 2 % ab 31
+ { + —<< + { . E_ a on& effal, ( )

<@P> =
db 5 b ~
e N ‘( —(§ E:DV b—voya—)\effab. (32)
R N’ We now assume that tiemooth fieldsa andb are initially
everywhere non-negative. Suppose, at a later tane) at a
. <i‘\:}’ . L point, thena>0 locally around the point, implying that it is
a local minimum. Henc&?a>0 andd,a=0, meaning that

d:a>0. For a region o&=0, then we havé,a=0 inside the
FIG. 7. Diagrammatic expansion fogp), using the initial terms region. Onits boundar_les we haVéa>0 anqaxazo, giv-
no andA. ing d,a>0 at these points. As a result the fields cannot pass
through zero and will remain non-negative.
in the limit vgt>1. Note that this result ensures that the _Since we havep=|y|, it follows that(¢)=(|#[). In ad-
density amplitudes are, dependent even above the upperdition, at long enough times, we expagtto have a normal
critical dimensiond.=2. If we now average Eq22) over distribution—a result ofy satisfying a(modified diffusion

the initial conditions, then we have equation. Consequentls in[7]), we have
d N 2.5 2 PLa(t)]ex - WO 33
a<¢>:_)\eff<¢ ) Net 7). (25 Li(t)]<ex 2(4(1)%) | (33
sinceV%($)=0 anddy(¢)=0. However, we can see from a and therefore
diagrammatic expansion fdip) (Fig. 7) that the only dia-
gram contributing to the value dfy?) in (25) is the single (Y= (|p(D)])= /E< (1)2)= /AD\/§(D,[)_1
# loop, which we now evaluate: =y Y 87%v, '
(34)

<¢2>:Af dxdyd"?zG(x,y,z,1)? (26 for d=2. However sincég?)=(g)? for any realg, then we

also have

B dxdydj‘zz( 3

_ 2 ((b— 2y ( 2V (2N =2 ,
2
G(X— ;ont /2 2 and using¢=|y| this gives ug(in d=2)
Xexp| ~=——7—5 = | - (27
Dt[(vot)?+12] 2Dt 2Dt 1 . -
° (@=0)?=(¢7) () =—=—($)~0("™. (3§
Foruvot>1 andd=2, this gives the result eff
J3A In other words, ford=2, the bound on the corrections is of
(PP)= . (28)  the same order as the density. Consequently we cannot say
167Dut that the density asymptotically approaches the lower bound

[as could be said fornp\) ~<t<v, ! and 2<d<4], only
that it lies somewhere between the limits supplied(B§)
and (34). In this respect the case af=2 andt>v51,
t>(noh) " is similar to that of d=4 and (\) !
df  ~ NeriAN3 <t<vgy'. In addition both situations retain the'! mean
az—)\eff +th2' (290  field decay rate, but with modified amplitudes, which for
0 d=2 andt>uv,*, t>(neh) ! depend orv,.

This can be solved by making the substitutioau/\u, giv- Note that in the limith\ZA/voD?>1, the upper bound
ing the upper bound reduces to

1 1 A3 || . [pAV3
<¢>$f:[2’xeff+\/(Z'Xeff)z—’—lGWDUOt - 80 = 167TU0(Dt) 7 7

in d=2. However, we can also find a lower bound fas)  i-€., the upper and lower limits differ simply by a numerical
by noting thate(x,t)=|y(x,t)|, or equivalently thaa(x,t)  factor of (2/r)*% On the other hand, K2AJvoD?<1, then
andb(x,t) are everywhere non-negative. We can prove thisf ~(\¢t) ~1. In the limit of strong shear, where any reaction
rigorously using the effective field theory equationsdaand  zones are broken up almost immediately, we have recovered
b: a mean field decay from this upper bound.

We can now find an upper bound solution(&5) by replac-
ing (#%) by (#)? (see[7] for a prooj. Calling this upper
bound solutionf, we have forvgt>1
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FIG. 8. Simulation results on an 88200 system, with FIG. 9. Simulation results on a 98800 system, with
A=1000,ny=0.1, ands=1 (diamond$ or s=0 (plus sign$. The A=1000,n,=0.04, ands=1 (diamonds or s=0 (plus signs. The
straight lines have gradients 6f0.5 and—1, respectively. The straight lines have gradients of0.5 and —1, respectively. The
time step is as determined by the RED simulation technigee the  time step is as determined by the RED simulation techn{gee the
text). text).

Finally, we can see that the lower bouf@#) is of limited e ime scale withAt=1/3,(r;), wherer; is the rate for
usefulness in the small or largev, limits, as the bound  genti and then allowing selectiofand executionof an
decreases with either increasing or decreasingl. HOW-  gyent The probability that everitis chosen is equal to
ever, we can use the fact thegt;[A/v,D? is dimensionless in pi=ri/3(r)).
d=2 to obtain an improved expression for the densities, by ' For an efficient implementation the events are organized
performing a perturbation expansion with this parameterin a pinary tree, where each branch contains one event and
From (25) it follows that the zeroth order term of this series has a weight equal to the rate of that event. The weight of a
is a constant, equal to the smalf;;A/v,D? limit of the  parent node is equal to the sum of the weights of its children.
upper bound: As the root node contains the sum of all rates, the time in-

crementAt is easily obtained: it is the inverse of the weight

1 \/ﬁgffA XiHA 2 of the root node. To select a particular eventith a prob-
(a)= T + 1670 D2 +0 —0? . (38 ability proportional to its rate;, we start in the root node,
eff vo vo descend to either its left or its right child with a probability

proportional to their weights, and iterate this process until we
have reached the bottom of the tree. The selected event is
. ) o then executed and the weights in the tree of all events whose

In order to confirm some of our theoretical predictions werates have changed, plus their parents, grandparents, etc., are
have performed Monte-Carlo simulationsdr-2. Initially 2 ypdated. The use of the binary tree assures that the CPU time
square lattice of size, XL, was populated with equal num- required for one step in the RED simulation scales with the
bers of randomly distributed andB particles. The evolu- |ogarithm of the size of the tree.
tion of this initial Configuration was simulated USing the rare In our simulations we have adopted periodic boundary
event dynamics(RED) technique (see also[9]). In this  conditions in the direction of the shear fldim the x direc-
Monte Carlo method, the time increment is determined bytion), but with hard wall boundary conditions perpendicular
the current configuration: if many changes in the configura-
tion are likely, then the time increment is small, whereas if
the configuration is very stable, the time increment is large. ‘ : ' '
In RED, a list is made of all possible changes to the configu- \Q%
ration (event$ together with the expected time after which 10005_ N
each event will occur. In the present model, two distinct ' ¢
types of events could occur, as follows.

(1) A and B particles at k,y) could hop to neighbor-
ing sites: for up, ratel; down, rate=1; left, rate=1
+s(y—0.5.y)/Ly; right, rate=1—-s(y—0.5.,)/L,, where
vo=2s/L,. Note that the possible values of the shear gradi-
entv, were restricted to ensure that the hop rates remained
everywhere positivéi.e.|s<2). 1l . . . . .

(2) EachA partiCIe could react with eadh partiCIe on the 5000 10000 15000 20000 25000 30000
same lattice site, with a reaction rate The simulations also Time
allowed multiple occupation of each lattice site, in accor- FIG. 10. Simulation results on a 2800 system with com-
dance with our theoretical description of the system. plete initial segregation ana=1000,s=0. The time step is as

One step in a RED simulation consists of incrementingdetermined by the RED simulation technigisee the text

V. NUMERICAL RESULTS

100F ° 3

No. of Particles
o
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FIG. 11. Snapshot of an 86200 system, witts=1, ng=0.1,
A=1000 att=300.

FIG. 13. Snapshot of the same 80200 system at=1500.

posite boundariesat y=0 andy=L,). This configuration
toit (aty=0 andy=Ly). mimics the effects of having a diffusion length of the same
The results of simulations on 88@®00 and 90 300 lat-  order as the system size. The results of these simulations
tices are shown in Figs. 8 and 9, respectively. Data for th€averaged over five rupsare shown in Fig. 10, where an
shearless cases£0) are averaged over 20 runs, whereasexponential decay is found, in agreement with the above
those with shearq=1) are averaged over 40 runs. At very theory.
early times the decay is fairly slowespecially in the A further feature of the simulations concerns the effects
ny=0.04 casg as it takes time for the particles to “find” of the hard wall boundary conditions. Segregated zones
each other. However, at slightly later times we see a straighteighboring the hard wall borders at the top and bottom of
line for the densities, which is quite well described by thethe system are likely to be more stable, as for these zones
theoretically predicted ™2 decay. Notice that the simula- fewer reactions are occurring on their boundaries relative to
tions both with and without shear are indistinguishable atimilar regions in the bulk. Hence, if the system is roughly
these early times, indicating that the shear really does havesgiuare, then we might expect the reaction zone at late times
negligible impact early or{as was predicted in Sec. ]V  (when only two segregated regions remaia lie roughly
However, fors#0 we see a crossover at times of orderalongy=L,/2. This effect has indeed been seen in our simu-
v, ! to a new regime, which is fairly well described by a lations in the case of zero shear.
t~* decay. Finally, in Figs. 11-13, we show the results of various
Notice that at late times the densities in the shearles$§snapshots” of an 80& 200 system as it evolves in the
simulations also tail off, and appear to fall away much morepresence of a shear flow. The effects of the shear in tearing
quickly than the predictet™ ¥2 decay. Similar effects were apart the reaction zones are clearly illustrated.
also seen in the original paper by Toussaint and Wilddgk
where thet™%* decay (for d<4) was first proposed. We
interpret this result as being an exponentially fast density . _ . :
decay caused by finite size effects, which become appre- In this paper we haye studied theoretically and numert-
ciable when the segregated domain sizes become of the sarff@!y the effects of a Imear_slhear flow on the two species
order as the system size. At large enough times these segf@actionA+B— . Fort<uv, " we found that the system
gated zones will have grown to a size where only two suchVas essgntlally unaffec?ed by the \{elocny flow, and the spe-
regions existoneA rich and the otheB rich). The depletion ~ Ci€S again segregated m{bland B rich zoneiggrd<4. In
zones of these segregated areas will typically be of the saniB€ regime @ip\) ~'<t<wv,* and with Dt>ny*", our re-
order as the system length. Hence, if we have just two zonelults for the densitiesto leading order in a small density
remaining in a system of sidex L, then the densities would €xpansiofreproduced those of the shearless dageHow-
decay according to ever, at large time$>v51, the critical dimension for the
onset of anomalous kinetics is reduced fralp=4 to
d.=2. Consequently, fod=2, a mean field ! decay is
adopted, though with a modified, dependent amplitude.
Notice, however, that our calculations are for the case of
wherelJ is the flux of particles flowing into the reaction zone. equal diffusion constants. Although it would be possible to
This implies treat the case dD,#Dg, we believe(as was found i 7])
that such a modification would be qualitatively unimportant,
provided both diffusion constants remain nonzero.
: - . I To go beyond the calculations presented in this paper, one
In order to test this prediction, we simulated an initially com- -ould attempt to generalise our analysis to the case of a non-
pletely segregated system of size 2aB00. Thet=0 den-  |ihear shear flow. Unfortunately, excepting the very simple
sity profiles for each of the two species were set up 10 ris, ;g ments of Sec. I, it is not clear how to make analytic
linearly from zero(aroundy=L,/2) to a maximum on op- ragress in this case, as the equation for the Green functions
(12) becomes very much harder to solve. However, it should
o ¥ Bpe prove possible to incorporate into our model a repulsive
force between like particles. This would make our system

VI. CONCLUSION

d
a(|_2a)~—JL~—(aD/L)L~—Da, (39

a~exp — constx Dt/L?). (40)
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FIG. 12. Snapshot of the same 80R00 system at=900.

L g b s P . o o more similar to those considered [ib1-13, where a same
o gn:f%‘":’n; el ) 2 p Feope species hard core exclusion rule was imposed. In this way we
A Y S Xy T could use the field theoretic formalism to investigate the ef-

fects of exclusion on reaction-diffusion systems with shear
or drift.



5956 M. J. HOWARD AND G. T. BARKEMA 53

ACKNOWLEDGMENTS EPSRC, and also from Somerville College, Oxford. G.T.B.
acknowledges financial support from the EPSRC under

The authors would like to thank John Cardy for useful Grant No. GR/J78044, from the DOE under Grant No. DE-
discussions. M.J.H. acknowledges financial support from th&G02-90ER40542, and from the Monell Foundation.

[1] D. Toussaint and F. Wilczek, J. Chem. Phy8, 2642(1983. [11] S.A. Janowsky, Phys. Rev. %, 1858(1995.

[2] K. Kang and S. Redner, Phys. Rev.3®, 435(1985. [12] S.A. Janowsky, Phys. Rev. 82, 2535(1995.

[3] L. Gdfi and Z. Ra&z, Phys. Rev. A38, 3151(1988. [13] I. Ispolatov, P.L. Krapivsky, and S. Redner, Phys. Re\aZE

[4] E. Ben-Naim and S. Redner, J. Phys2B L575(1992. 2540(1995.

[5] S. Cornell and M. Droz, Phys. Rev. Le#0, 3824 (1993. [14] G.K. Batchelor, J. Fluid Mec95, 369(1979.

[6] B. Lee, J. Phys. 27, 2633(1994. [15] R.T. Foister and T.G.M. Van De Ven, J. Fluid Med®8, 105

[7] B. Lee and J. Cardy, J. Stat. Phg€, 971 (1995. (1980.

[8] M.J. Howard and J. Cardy, J. Phys.28, 3599(1995. [16] R. Mauri and S. Haber, SIAM J. Appl. Mati6, 49 (1986.

[9] G.T. Barkema, M.J. Howard, and J.L. Cardy, Phys. Re83E [17] E. Ben-Naim, S. Redner, and D. ben-Avraham, Phys. Rev. A
R2017(1996. 45, 7207(1992.

[10] K. Kawasaki, inPhase Transitions and Critical Phenomena [18] E. Yee, Phys. Lett. AL51, 295 (1990.
edited by C. Domb and M.S. Gre¢Academic Press, London, [19] M. Doi, J. Phys. A9, 1465(1976); 9, 1479(1976.
1976, Vol. 5a. [20] L. Peliti, J. Phys46, 1469 (1985.



