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Quantum tunneling and stochastic resonance
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Stochastic resonand&R) occurs in nonlinear dynamical systems when the response to a weak coherent
input is enhanced by the presence of noise. While classical SR presently is an intensely studied phenomenon,
the role of quantum fluctuations has only started to be explored. We study SR in the temperature range where
guantum tunneling corrections to the classical rate of activation are relevant. For a particle subject to moderate-
to-large friction, we show that the semiclassical SR can be enhanced considerably by quantum fluctuations, as
compared to the predictions of a classical analyj$4063-651X96)10406-2

PACS numbsgs): 05.40+j, 05.30—d, 03.65.Sq, 33.80.Be

[. INTRODUCTION account the influence of dissipation and thermal fluctuation
on the tunneling rates, a functional integral approach has
Stochastic resonand&R) is the process whereby noise been employed i13—15, while an alternative derivation

operates on a bistable system enhancing the response tdased on the periodic orbit approach is discussdd énl 7.
weak coherent input. Since its discovery in 1981, this It is found that
intriguing phenomenon has been the object of many investi-
gations[2,3], stimulated by its experimental demonstration To=fowgl27Kg, 1.2
in biological [4] and physical[5] systems. The archetypal
model for SR is that of a particle of mas4 moving in a  wherewg is a dissipation-renormalized frequency, which is
double-well potential while coupled to a heat bath at tem-given by the largest positive solution of the equation
peratureT and subject to a time-dependent periodic force.
Classically, the resonance condition is assumed when the w§+wR3/(wR)=wﬁ, (1.3
thermal hopping frequency is near the frequency of the

modulation[6-9]. In the presence of memory effects, the i 5(4) being the Laplace transform of the friction kernel
classical escape rate out of a metastable well reads, for(t) appearing in the classical equation of motisae below
moderate-to-strong frictiofL 0] 4 PP g ; - ;
9 ' Eqg. (2.4)]. This relation holds independent of the detailed
o o _v shape of the potential provided that it is parabolic in the
.=—2"Rax b 1.1 vicinity of the barrier top. In the case of frequency-
cl ( ) X R . A
2m wy kT independent damping, i.ey(w) =y, one has

Here, w,=[V"(q,)/M]*? is the angular frequency of small
oscillations about the metastable minimum af,,
w,=[—V"(q,)/M]*? andV, are the angular barrier fre-
quency and barrier height located @y (see also Fig. 11 It ;hould be noted that the crossover temperature may be
Finally, the friction-renormalized angular barrier frequencydUite large and can reach for some physical and chemical
wg is defined below in Eq(1.3). It is readily seen that the SyStems values larger than 100k7,18. On the other hand,
classical transmission factasgz/w,<1 determines the dif-
ference between the transition-state-theory result and the cor-
rect classical rate due to diffusive recrossing of the barrier.
Equation(1.1) generalizes the pioneering work by Kramers
[11] on the effects of frequency-independent friction on the
escape rat¢see Eq.(1.4)], to include frequency-dependent

wRZ(wg-i- Y214 Y2— y)2. (1.4

thermal activation

damping. The Arrhenius laWl.1) predicts a vanishing rate = Y
I' as the temperatur€ approaches absolute zero. However, § i)
guantum mechanics allows for the possibility of crossing the TVb
barrier through quantum tunneling, thus leading to a finite tunneling
(quantum rate at zero temperature. 0 "
Tunneling transitions dominate over thermally activated ‘Tqa 0 +«;a
transitions below a crossover temperatiige(see Fig. 2 A
simple criterion for the crossover temperatiigwas given q
by Gol'danskii in 1959[12]. For a parabolic barrier with
barrier frequency w,, he found To=%w,/2mks. The FIG. 1. Thermal and quantum fluctuations influence the escape

Gol'danskii criterion, however, disregards the environmentakates out of the metastable wells of an asymmetric bistable poten-
influence upon the tunneling rate. In order to fully take intotial.
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QUANTUM SR SEMICLASSICAL SR CLASSICAL SR
FIG. 2. Dominant escape mechanism out of a
metastable potential, and corresponding regimes
thermal hopping for SR, depicted as a function of temperature.
tunneling and thermal hopping T, denotes the crossover temperature below

which quantum tunneling dominates over ther-
mally activated hopping events. Becaukgis a

function of the dissipation mechanism, the rela-
tive size of the corresponding regions varies with

quantum corrections

deep erossover the dissipation strength. In the region marked by
tunneling | ? “— ] a question mark, quantum SR has, up to now, not
) : region been investigated theoretically.
regime
: 1
0 Tt
0 T

in Josephson systems where both classical®Rand quan- | T/Ty— 1|<(Awr/V,)*? (and denoted “crossover region”
tum correctiong17,20,27 have been observed, it can be in in Fig. 2), where the evaluation of the escape rates requires
the mK region. going beyond the semiclassical treatment discussed in Sec.
The role of quantum fluctuations on SR has only started tqj.
be explored. As a matter of fact, the quantum tunneling |n the investigated temperature regime-T,, the pres-
mechanism for the escape rate, and hence for SR itself, isnce of the additional quantum “channel” for barrier cross-
strongly dependent on temperatusee Fig. 2 Prior studies jnq results in a quantum correction factor that merely multi-
[22.,23] on the effects of quantum noise on SR addressed thﬁlies the classical rate of activatifsee Eq(3.1) below]. We
regime of very low temperaturds<T,, where thermal hop-  inq then thatfor moderate-to-strong dampinthe semiclas-
ping events can be neglected. sical SR can become enhanced up to two orders of magni-

tua-lt-irc])isf?r?utie()fothlzsvi\;g”r(elsirg'g;q'e e\t\tﬁgrgf 3%?&%"&?_0' tude, as compared to the predictions for SR based on a pure
PP 9 0 q classical SR analysis.

neling is not the dominant escape mechanism, but leads t0
significant quantum corrections of the classical rate of acti-

vation (temperature regime of semiclassical SR, as denoted

in Fig. 2). BecauseT, is a function of the dissipation mecha- Il. THE BISTABLE MODEL FOR SR

nism, the relative size of the corresponding regions varies

with the dissipation strength. In particular, the semiclassical To investigate semiclassical SR, we consider a particle of
region may extend far abov&, (cf. Figs. 3—6. In the ~massM moving in an asymmetric bistable potentM(q)
present work, we leave out only the very narrow temperaturésee Fig. 1, while coupled to a heat bath and subject to a
region around T,, determined by the condition time-dependent periodic forcHt)=—AcodM. The poten-
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FIG. 3. Amplification vs temperature of the
semiclassical scaled signal-to-noise-raRd° as
influenced by quantum fluctuatior(solid line).

5 B o 45 For comparison, the classical signal-to-noise-
ratio is also depicteddashed ling The inset

a =50 shows that the enhancement of the semiclassical
Vi/hiwp = 0.2 RS, as compared to the classical oRE', can

reach two orders of magnitude.
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150 | -
FIG. 4. Amplification vs temperature of the
semiclassical scaled fundamental amplitGg§’
100 | . which accounts for quantum tunneling fluctua-
tions (solid line). For comparison, the classical
- power amplitudé; ' is also drawr(dashed ling
=~ . .
The inset shows that quantum tunneling can en-
ok i hance the semiclassicagl;®, with respect to the
classical oné;$', up to two orders of magnitude.
0 / i 1 1 1
20 40 60 80 100
T/Ty
tial is characterized by an asymmetry eneegy0 and be- p2 N pi2 m, wi2 ¢ 2
comes symmetri¥/(q) =V(—q) whene=0. The two meta- H=_-——+V(q)+ E —+—| Xi———=¢
.. . . 2M i=1 2mi 2 mi(l)i
stable minima are located atq, and the maximum is at
~qf(), 2.

g,=0. Due to the asymmetry of the potential, the barrier

height to be surmounted by a classical particle located at
*a is E. =V, + /2, depending on whether the particle is | oo the quantum thermal noigét) is fully characterized

in the Ieftlpr right well, respectively. Finally, the c'onc'ept of by a zero averagé(t))o=0 and by the correlation function
metastability makes sense only when the barrier is large

enough so that the forwarll, and backwardl_ escape )

rates out of the metastable states are \@nall compared (E(DE(0)) Zﬁ—Mfmdww“{/(w cosh w(f Bl2—it)]

with all the other characteristic rate scales of the system dy- o 7 Jo sinwh /2)
(2.2

namics. In particular, because the angular frequangyle-

scribes the time scale for decay within a metastable well, the
activation energie€ .. are to be large enough compared towith 3=1/kgT. Here( ), denotes the statistical average over

the thermal energykgT to ensure that the condition the bath degrees of freedom with all the coupling constants
c; set to zero and in the absence of the external fd(¢e

w>T . is fulfilled [17].

The heat bath is assumed to be representable as a setfhally, the friction coefficienty(w)= [5dtcost)¢(t) ap-
harmonic oscillators interacting bilinearly with the particle pearing in Eq.(2.2) is the real part of the Fourier transform
[24,25, so that the Hamiltonian takes the form of the time-dependent memory friction

150 |-

a =100 Q/w, =107

Vi/hwy = 0.2 FIG. 5. Amplification vs temperature of the

semiclassical power amplitudg3® for different
coupling strengthse= y/2w, (solid lineg. For
strong damping, the effects of quantum fluctua-
tions extend well above the crossover tempera-
ture Ty. For comparison, the classical power am-
plitudes are also draw(dashed lines

50
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Q/wb =10
150 - .
=] & 4 &
o 1 & e
E ¢ FIG. 6. Amplification vs temperature of the
semiclassical amplitudg $° for different driving
100 - 4 frequencies) (solid lineg. For comparison, the
o : L ' L classical power amplitudes are also plotted

Qfwy = 10~% logo(9/en) (dashed lines The inset shows that the tempera-
ture maximumT’;l(Q) of 7, is approximately
determined by the conditioﬁ(Tj‘zl)%Q, over a

a =50 1 range of four orders of magnitude spanned by
Vi/hwy = 0.2 Q.

50 100 150
T/Ty
1 c? defined as the Fourier transform of the averaged correlation
y(t)= MZ —2c0%wit). (2.3 function C(7),
(Rad|

. . . J— QO (2@ 1
The density and coupling constants of the environment are  c(7)= _J dt=(q(t+r)q(t) +q(t)q(t+ 7)),
chosen in such a way that the particle obeys the classical, 2m Jo 2

generalized Langevin equation of motion with memory fric- 2.9

tion [26], . . . . . .
is the quantity of interest to investigate $&7]. For a time-

oV t _ periodic perturbation, the power spectrum results in the sum
Mg+ (9_+ Mj dsy(t—s)q(s)=¢&(t) + (1), of two contributions, wher&, represents, in the absence of
q ‘°° (2.4 a signal, the broadband “noise” background, possessing a
' Lorentzian hump atv=0. We shall denote this contribution
by S®. In the presence of the signa, is obtained as a
product of the Lorentzian hump with a correction factof
order unity for weak signalgdescribing the influence of the
signal [6,8]. The “asymptotic” contribution S®)w) is
w given by the sum ob spikes at integer multiples =n() of
f dt €Y &.(1)€(0))o, (2.5 the signal frequency, reflecting the fact that, for timéarge
0 compared to the time scale of the transient dynamics, the
motion acquires the periodicity of the external perturbation.

and &(t) dgno_tes the thermal classical noise. Hence, th%’o be definite,P(t) and C(7) reach the asymptotic values
thermal noise is characterized by the temperafuref the [6,23]

thermal bathand by the couplingy of the bistable system to

the environment. It should be noted that, while in the classi- 3

cal regime the Arrhenius factors for the escape rétesare  |im p(t)=P@(t)= > P, (Q,A)e” ™ (2.9
independent of damping, and only the attempt frequencies-« m=—

are modified cf. Eq. (1.1)], in the quantum regime the pref-

actor of the rate and the exponent as well crucially dependon 0

the strengthy of the dissipative mechanism. Finally, the ex- lim C(7)=C(®(r)= >, |Pn(Q,A)|%e” ™27 (2.10
pectation value with respect to tifigll Hamiltonian(2.1) of =~ 7= T

the particle’s position

where the frequency-dependent damping coefficigfth)
and the force-force correlation functid@.2) satisfy in the
classical limith Bw—0 the Green-Kubo formula

_ _ 1
Y(w)—WBT

Thus, the amplitude$P,,| of the harmonics of(t) deter-
P(t)={(q(t)) (2.6) mine the weights of theS spikes of the averaged spectral
power density in the asymptotic sta¥(w) via the rela-
is considered to be the output of the system when the extetion
nal time-dependent periodic fordét) = A cod)t modulating
the particle’s position is applied. In particular, the averaged ”
powzr Spectrupng(w) P P ’ §®(w)=2m 3 [Pn(Q,A)P8(0-mA). (2.11

§(w): fMdre“‘"C_(r)=SN(w)+S(aS)(w), 2.7) Thg two _quantities that have been examined .in the Ii;erature
— to investigate SR are the power amplituge in the first
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frequency component 8@ w) [3,6] and the ratioR of 1 13(Q)|?

0 ; 2 X
71 to the power spectrurB{¥)(w) of q(t) in the absence of R=mAS oM BRO2) o) (2.19
signal evaluated at the external frequency, the so called mx (&)

signal-to-noise ratidSNR) [2,3,8, i.e., Thus, for weak external signals, computation of the power
) amplitude», or of the signal-to-noise rati® reduces to the
71(Q,A) =47 P1(Q,A)[%, evaluation of correlation functions in thermal equilibrium. It
(2.12 should be noted that the above relationships are valid inde-
pendently whether the relaxation occurs via quantum or via
R:=47|P1(Q,A)|XSV(Q). classical decay.
In order to evaluate the linear susceptibility, a knowledge
By definition, »; has the dimension of a length squared,of the equlibrium dynamics is required. In doing so, we shall
while R has the dimension of a frequency. Thus, to investi-derive our results within a two-state description of the sys-
gate the interplay between noise and the coherent drivingem dynamics, introducing the probabilitias g for the sys-
input giving rise to the phenomenon of stochastic resonancéem to be in the leftif ) or right (ng) well of the bistable
we shall consider the two dimensionless quantities, thepotential. For a continuous system,r are defined in terms
scaled power amplificationy;, and the scaled signal-to- of the probability density(q,t) for the particle’s position as

noise ratioR. They read

db
=1- = d 1). 2.1
m(QA) = (Rlep nu(t)=1-ng(t) Lj ap(a.t) (217

7 O,A)= , R= .
LA = R V)2 (Ada/Vy)?

(2.13
One then finds that the average value in E46) is simply

i L i P(t) =g, ng(t) —n.(t)] and obeys, for a classical or a semi-
Which one of the two quantities is the most appropriate t0,assical dynamics, the Markovian rate equation
investigate SR depends on experimental realizdi®®,19.

P(t)=—T[P(t)— Peg, (2.18
A. Linear-response theory for SR R )
) ) . with I'=T", +I'_ being the sum of the forward and back-
Because the main theme of SR is the stochastic enhancg,—ards rates T, and I_ respectively and

ment of the response to weak coherent input, we shall _ _ : :
develop in this section a theory for SR based on Kubo’sPeq (I, ~I")/T. Information about the detailed form of

linear-response theory and on fluctuation-dissipation theorerﬁle potential isstill contained in the averaged rffe In the

(FDT) [28]. The results for the spectral amplificatian and eep quantum regimé<To .(Cf' Fig. 2 the same set .Of
for the SNR are expressed in such a way as to be indepe quations holds whenever incoherent tunneling dominates

dent of the precise dynamics of the systéming dominated the dynamlcs, as I alwa_ys holds true for strong enough
by quantum tunneling transitions or/and by thermally acti—damp'.ng or .suff|C|e'ntI.y high temperaturé29,3(]. Corre-
vated hopping eventsassuming that the resulting escapeSpond'.ngly’ in the “m't_ﬁ'BQ/2<l' the_ (_classmal or guan-
rates athermal equilibrium(i.e., for the undriven dissipative twm) Ilqear SUSCEpthI|It¥ x(Q) exh|b|t§ a quaS|eIa_szt|c
bistable systemare known. This will enable us to compare Lorentzian peak of amplitud®(T)=4(qy/kgT)I' . I'_ /T

the predictions for SR above the crossover temperafigre and widthI'. It reads

which would be obtained using a “classical approximation” 1

for the ratedcf. Eq.(1.1)], with those obtained using decay ~ 2

rates corrected for quantum tunneling as in E3}1) (see X(Q)_b(T)l_i =1 TORBY)% (219
below).

In the linear-response approximation, only the harmonics-inally, whenever the backward and forward rates are related
0,1 of P&St) in Eq. (2.9 are different from zeroP, by the detailed balance conditidh. =I", exp(—e/ksT), we
being just the thermal equilibrium valui,, in the absence obtain for the scaled power amplitudg the result
of driving, andP..,;= (A/2)x(*=Q) being related by Ku- _
bo’s formula to the linear susceptibilify(£), — ( Vp )2 1 I?
mO=7 1T cosh(el2kgT) 0212

(2.20

+

~ 1 [+= .
x( Q)= | dre'7o(7)([a(n),a(0)])s, (2.14

% Likewise, consistent with conditioh 8()/2<1, the cotan-
gent hyperbolicus in Eg2.16 can be approximated as the

where( ) ; indicates the evaluation of correlation functions in inverse of its argument, and the scaled signal-to-noise-ratio

thermal equilibrium that is, in the absence of driving. Fur- R becomes effectively independent of the external frequency

ther, i{[q(7),q(0)])z/% becomes in the classical case the(). One finds

correlation function—(q(0)q(7))z. Finally, because the _

linear susceptibility is related to the power spectrum in ther- ~ 77'( Vp )2 I wy,

mal equilibrium by the fluctuation-dissipation theor¢ag], ~ 2\ kgT) cost(e/2kgT)"

we end up with

(2.21

Several features of the results in E¢&20), (2.21) are worth
71(Q,A)=7A%|}(Q)|%, (2.15  commenting on.
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150 |- a =50

%/hwb =0.2
: Q/wb 10~ 6
100 | T/Ty =16

FIG. 7. Semiclassical amplitude $® vs the
asymmetry of the potentidkolid line) compared
to the classical power amplituddashed ling As
in the classical casé;3° is maximal for a sym-

5 metric bistable potentiale=0).

e/hwb

(i) Within a two-state description of the incoherdon-  solely by the explicit temperature dependence of the escape
driven) dynamics, the linear-response theory developed imatesI'-. . In particular, the classicdtf. Eq. (1.1)] and the
this section effectively reduces the study of SR to the comsemiclassicalcf. Egs.(3.1), (3.2), (3.3)] transition rates de-
putation of the transitions ratds, or I'_ in thermal equi- cay exponentially as the temperature decreases. This, to-
librium. gether with the (classical and semiclassig¢alcondition

(i) By construction, a linear-response approximationV,>kgT necessary for a separation of time scales, implies
holds independent of whether the coherent applied signahat the SR maxima are determined by the competition be-
Acos(t) involves adiabatic or nonadiabatic frequencies.tween this exponential decay and the algebraic divergence
Hence, Eqs(2.15 and(2.16) hold foranydriving frequency  (kgT) 2 in 7, or in R as the temperature is decreased.
Q. On the other hand, while the expressihl9 for the  Hence, the detailed balance factor co¥e/2ksT)<1 only
linear susceptibilityx(£2) becomesexactin the classical plays a minor role, and always suppresses the SR phenom-
limit, the condition# (Q/2<1 requires some care in the enon (cf. Fig. 7). With exp(elkgT)<1, i.e., =T, the
semiclassical and deep quantum regimes and may lead fwer amplificatior; is exponentially reduced proportion-
restrictions on the values of the applied driving frequencya”y to [exp(—eksT)]%; likewise the SNR is exponentially
(), as discussed in the next section. Whenever the conditiofhyt more weakly reduced proportionally to exp(e/kgT).
hBQI2<1 is not fullfilled, the linear susceptibility(Q)  This finding is in accordance with prior studies of SR in
(and hencen; and R) exhibits a more complicated depen- nonequilibrium systemg31].
dence on the frequendy, as determined by the fluctuation-  (v) On the other hand, in the deep quantum regime, the
dissipation theoreni28] and by the Kramers-Kronig rela- decay rates exhibit a smooth@ron-Arrenhiug temperature
tionships between its real and imaginary pdisse Refs. dependence and remain finite even at zero temperftifte
[22,23 for a discussion of SR in the deep quantum redime Further, within a two-state description of the incoherent tun-

(iii) Because EQs(2.20, (2.21) hold independent of neling dynamics, the energy splitting of the two discrete en-
whether the escape mechanism is classical or quantum, soraegy levels is of the order of the asymmetry enetgyience,
general features of SR can be discussed. For the case of wegle detailed balance factor represents the relative occupation
external signals considered in Eq2.20 and (2.21), both  of the energy levels and plays a crucial role. Whenever
the scaled amplitudey, and the scaled signal-to-noise ratio e<kgT the energy levels are almost equally occupied, so
R are independent of the external strengthbut only7, is  that the limite=0 yields no SR phenomend@2,23.
still a function of the external frequendy. Hence, the po-
sition T}, of the temperature maximum of the scaled SNR lIl. QUANTUM ENHANCEMENT OF SR
effectively depends only ornntrinsic parameters of the
bistable system, such as the barrier height the asymme-
try e, the frequenciesv, and w,, and the friction coeffi-
cient. By contrast, the temperature maximt]l'rif)1 of the

We now apply the linear-response results discussed in the
preceding sections, valid for weak external signals, to the
study of the semiclassical SR. Hence, the study of SR in the
o ) temperature regime where quantum corrections to the classi-
scalgq power amphtudeZl is roug.hly det(—:"rrﬁ'ne‘fj by the ¢4 rate of activation are important reduces to the evaluation
conditionI'(T7 )~ (cf. inset of Fig. . This implies that  of the semiclassical escape rafes or I' _ at thermal equi-

SR for 77; can beexternally controlledby varying the ap- librium. The thermal escape rafeout of asinglemetastable
plied driving frequency). state can be evaluated using the thermodynamic methed

(iv) On the same basis &§i), the generality of Eqs. quantum transition-state thegryirst proposed by Langer
(2.20, 2.2} implies that the differences between classical,[32], or by an equivalent periodic orbit approat]. Fol-
semiclassical or quantum SRf. Fig. 2 are determined lowing Langer, abovel, the escape rate is related to the
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imaginary part Ink of the free energy of the metastable sys-tion is not needed. At temperaturés-# w,/kg, the leading

tem by the relatiol’ = — (2/#)(Ty/T) ImF, and belowT,  quantum corrections are found to be given by the high-

by I'=—(2/&) Im F. This method is, in fact, not restricted temperature approximatidri4]

to the classical regime, because one can study as well the

guantum partition function of the system. When the potential

is not metastable but consists of two wells, as in Fig. 1, the

Langer method will yield the backward and forward rates as

long as there is no phase coherence between the “reactantbeing independent of the dissipative mechanism. Thus, the

and “product” states. In particular, as shown in RE30], overall effect of the quantum fluctuations is to facilitate the

the ImF method can be justified for dissipative quantum tun-escape because they increase the average energy of the par-

neling as long as only incoherent tunneling occurs. Howevetticle in the metastable wellghe w2 contribution in(3.3)]

because Langer's method requires thermal equilibrium witrand because, for a particle that is almost thermally excited up

the environment, it does not extend to the region of energyto the barrier top, they allow for tunneling through the re-

diffusion-limited classical escape, occurring for extremelymaining barrier regiomwﬁ contribution in(3.3)]. As shown

underdamped systemg wp) < wpksT/V, With y<wy,. Such by Eq. (3.3), both effects result in an effective reduction of

an extension is possible by use of the quantum kinetic turnthe barrier and, correspondingly, in an exponential enhance-

over approach put forward ifl7]. In the following, how- ment of the relaxation rate.

ever, we shall restrict the discussion to moderate-to-large So far we have considered arbitrary frequency-dependent

friction such that the quantum transition-state theory alwayglamping. In the following we shall focus on the case of

holds. frequency-independent Ohmic damping where the product
Starting from a path-integral formulation, the free energy(3.2) can be evaluated exactly in terms of gamma functions

can be evaluated semiclassically using a steepest-descent apf33]:

proximation wheneve¥,>#% wg [13-15,30. The crossover

temperaturdl  is then just the temperature below which the T(1—N\g /)T (1—N\y/v)

lowest energy fluctuation mode around the classical path fl“(l—)ﬁ/v)l"(l—)f/v)’ 34

q(7)=q, in the inverted metastable potentiat-V(q) be- a a

comes unstable. This instability indicates the appearance @fhere, introducing the dimensionless coupling parameter

an additional solution that becomes the dominestable 5= /20, , the frequenciea;, > are

one belowT. Just belowT, this new solution is a periodic

ﬁ2
fq=exp[2—4(w§+ wp)l (KgT)?|, 3.3

(with period 7 8) oscillation of small amplitude about the Ao =—wala*(a?+1)1?],

minimum of the inverted metastable potential, called 3.5
“bounce.” As the temperature is further lowered, the bounce '
solution evolves in a way that depends on the nonlinearity of A, =—wp[a®* (a®— (walwp)?)Y?].

the potential. For the double-well potential, the bounce solu-

tion evolves far belowT into trajectories called “instan- It is now interesting to observe that for strongly damped
tons” where the particle starts from the bottom of one well,systems a>{1l,w,/wp} and intermediate temperatures
traverses the classically forbidden region between the twd,<T<4a?T,, the above Eq(3.4) simplifies to[15]

wells repeatedly, and finally returns to the starting point s

[30,17. Hence, the appearance of the bounce solution is in- fq=(4a?To/T)HF /) TTo, (3.6)
terpreted as the appearance of a new channel for barrier

crossing(quantum tunnelingwhich dominates at very low so that the rate can be enhanced substantially even well
temperatures. Abovel,, the presence of the additional above the crossover temperature. For temperatures
quantum channel for barrier crossing at thermal equilibriumT>4a?T,, the factorf; is again approximated by the high-
results in a quantum correction facthy that merely multi- ~ temperature expression E(.3). A final remark concerns

plies the classical rate of activati¢h3—15,33, the conditionsvV,>% wg andV,>kgT that ensure the valid-
ity of the semiclassical approximation and of separation of
I=f4lq, (3.)  time scales, respectively. Becauses~w, for weakly
damped systems andg~ w,/a for strongly damped sys-
where tems[cf. Eq. (1.4)], it is apparent that the potential barrier
2 o . can be very small compared to the scate, when the sys-
oy TeatnTritney(ne) tem is heavily damped. On the other hand, for strongly
fq= H 2, 2.2 2 (32 d iti .
=1 — w2+ n2p2+nvy(ny) amped systems the condition of well separated time scales

amounts tov> (T/Ty) (A wy/4mea). The fulfillment of these
and v=2mkgT/h. The factor f, approaches unity for conditions has been checked self-consistently in our numeri-
T>T, and diverges exactly at the crossover temperatur€al results. Further, because, as shown by(E®), the lead-
To. This divergence can be regularized taking into accountd quantum corrections at high temperatures are of order
the deviation of the barrier top from the parabolic form (% 8)*(w3+ w}), to be consistent with the semiclassical ap-
[14,17; however, the regularization is only necessary in aproximation to the linear susceptibility of E(2.19 we have
very small region in the vicinity offy (crossover region in to require that 2)2<w§+ wﬁ.
Fig. 2). Because, as we shall see, the maxima in the SNR and In Figs. 3—6 we discuss our results for a symmetric
in 7, appear well abov@,, for our purposes the regulariza- double-well potential §é=0), where the SR phenomenon for
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the semiclassical and classi@ (but also forR) is maxi- as discussed abovey is plotted in Fig. 7 versus the asym-
mal (cf. Fig. 7. The semiclassical scaled signal-to-noise ra_mftry € 0‘; the pOtGHtI&;l shown in Fig. 1, where we use
tio R°¢ and scaled power amplitud® are investigated in ¥ (da) =V'(~0a) =Mw3. As in the classical caselashed
Figs. 3 and 4, respectively, for strong Ohmic couplingl'ne)_[31]' the sem|cla_133|cal power amplitudeolid line) is
@=50. We assume w,=w, and barrier height Mmaximalfor symmetric systems.

Vp,=0.2hw,. For comparison also the classicak. #=0)
quantitiesR®' and 7<' are plotted(dashed ling It is now

apparent that for strongly damped systesnsi not too high In conclusion, we investigated the phenomenon of SR in
_barners, qugntum fluctuations str_ongly influence the resgltrelation to the complicated interplay between quantum and
ing output signal, as compared with the results of a classicahermal fluctuations. Because the thermal escape rate can be
analysis. In particular, the amplitude of the maximum is en-sirongly enhanced in the presence of the additional guantum
hanced by quantum corrections and the position of the maxigynneling channel, we showed that both the signal-to-noise
mum itself is shifted towards lower temperatures. As shownatio R and the power amplitude, can be strongly ampli-

in the insets of Figs. 3 and 4, in the proximity of the cross-ieq by quantum fluctuation.g., up to 300 times; cf. the
over temperature, the enhancement can even exceed tWO @fsets of Figs. 3 and)4 As a difference compared to the
ders of magnitude. As the coupling constants increased, cassical case, in a semiclassical analysis the effects of tem-
for fixed barrier height the position of the maximum 9  perature and dissipation on the escape rate have to be con-
(R) is shifted toward higher temperatures. On the othekideredseparately Hence, our analysis represents the quan-
hand, because for strongly damped systems quantum effeaigm generalization of SR for the Kramers equati@4],
persist well abovd q [cf. Eq.(3.6)], the semiclassical SR can thereby covering moderate-to-large friction on a unified ba-
still differ appreciably from the classical SR. This is shown gjs.

in Fig. 5, where the power amplitudg, is depicted for dif- The value itself of the crossover temperatilig where
ferent values of the Ohmic coupling constantWe choose quantum transitions dominate over tunneling events, strongly
=50, 75, 100(left to right). The solid lines correspond to depends on the friction coefficient, especially for heavily
the semiclassical power amplitudg® and the dashed lines damped systems. In particular, for strongly damped systems,
to the classical approximatio"rj‘i'. For higher potential bar- we showed that the effects of quantum fluctuations on SR
riers and fixed damping, the position of the temperaturecan extend well abové,. At fixed friction, quantum effects
maximum in%3° or RSS moves toward higher temperatures become successively washed out for systems with increasing
and the system behaves classically. In other words, thbarrier heights.

quantum-corrected lines merge into the classical approxima- Possibilities for observing the predicted tunneling correc-
tion. As previously mentioned, the position of the temperaions to classical SR are abunda_nt. These concern all those
ture maximuniT*of 73° depends also on the applied exter- systems where quantum corrections to the thermal escape
nal frequency Tlhis result is shown in Fig. 6 whe‘r‘@ ratg could be establl_she_(dee Sec. Xl (_)f Refl17]). Appli-

' T 1 cation of a small periodic ac perturbation then allows one to
becomes shifted toward lower temperatures as the drivingtudy these SR quantum corrections. A particularly suitable
frequencyQ is decreasedthe curves are fof)/w,=107°%  experimental system is a SQUID, where quantum corrections
10°°, 10 %). In the inset, the ratid“[T’;l(Q)]/Q is de-  to the escape raf@0], and very recently the phenomenon of
picted for five chosen frequency values. It is remarkable tha€¢lassical SH19] itself, have been observed.
within four orders of magnitude fof) the ratio is approxi-
mately constant and of order unity. Hence, the semiclassical ACKNOWLEDGMENTS
SR maximum appears roughly at the temperaﬂ]tg at
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