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Correlation functions on the border lines of transient chaos
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Chaotic properties of a repeller strongly influence the transient properties of a system close to it, in particular
the correlations in the transient regime. In this paper results are presented for repellers of one-dimensional
maps having a fixed point whose Lyapunov exponent agrees with the escape rate from the repeller: It is proven
that the corresponding natural measure of the repeller dsfanction at the origin. Eigenfunctions of the
Frobenius-Perron operator are computed. The correlation function is calculated near the situation of permanent
chaos and anomalous decay of the correlations is found. Scaling properties are given on the route from a weak
repeller to a nonrepeller. The analytic results are supported by numerical calculgBibd83-651X96)07806-

3]

PACS numbgs): 05.45:+b, 05.70.Fh

. INTRODUCTION discrete map and given b§. Repeated application af will
lead to a decrease of the density and to a change of its struc-

It is well known thatin the long time limitan attractor ture at the same time. Finally the densitgrmalizedin I/ is
reflects the properties of all systems in its basin of attl’aCtionexpected to converge t8, the density of theconditionally
This holds true for the “thermodynamic” properties and for invariant measurd4], whereas the density itself is decreas-
the correlations observed in these systems. On the other hapgh after each iteration by a certain rate, thecayrate:
a repellef1,2] cannot influence the asymptotic properties of
trajectories. Even when starting close to the repeller the tra- LP=\:P(In\.is the decay raje (D)
jectories will move away from it. Nevertheless the properties . . .
of repellers are important duringteansient time A system | herefore, we use the conditionally invariant meastre
coming close to a repeller will remain there for some timeWhen calculating averages:
(the transient timeand during this time the repeller will m
imprint its properties on the behavior of the system. The (cy(fMc,)= f”mcl(f (9)ez(x)PO)dx
transient time depends on how closely the system approaches
the repeller(if it is accidentallyon the repeller the transient
time is of course infinite but this case is not ugwaid on the  with
escape ratd 3] of the repeller. So for a weak repellére.,
one with a small escape ratthe transient time is long and
the correlations found dur_lng thls.tlme are determined Intrln'Exploiting the properties of the conditionally invariant mea-
sically by the repeller. It_ is the aim o_f the present paper to?ure and off. this can be transformed into
compute these correlations for a simple one-dimensiona
(1D) discrete map and to demonstrate their universal proper-
ties. (e x| cnemePiyay. @

To define a suitable correlation function we argue as fol- u
lows: Imagine a weak repeller with an invariant meassre e correlation function is obtained by the replacement
just before the transition to a nonrepeller state with a com-
pletely different invariant measugg,, — an example for this C15—C1o—(C12).
transition will be given in the present paper. In this situation
the measure,, will already be felt by the transients but will {(c;) is given by settingc,=1 in Eq. ( 2). Thus we ge{we
not influence the trajectoriem the repeller. This emphasizes can avoid here specifying the averagecgf
the importance of taking into account a neighborhébdf
the repeller and thus we need a measure of the neighborhood N _ m
U. To become more specific we will restrict ourselves to CaAM)=Ac Ldy(cl(y) (e L7 ePIy),
discrete mapg$ for which a Frobenius-Perron operatfris 3)
defined. Then we can find this measure by the following
procedure: We start with an arbitrary density;; in ¢/{. The _
change ofp;,; after each step of iteration is induced by the {c)= LCl(X)P(X)dX'

Ju, P(x)dx ’

U,=F"™U)NU

The correlation function defined in this way depends obvi-
“Permanent address. ously on the neighborhodd. But in spite of the nonunique-
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ness ofU this dependency is not particularly relevant sinceany of these maps always has a natural invariant measure
all trajectories move away from the repeller exponentiallythat is aé function at the origin(This has been pointed out
fast. Therefore the asympotics of all thg,(m) is the same already in[7].) At Ry=1 the system becomes intermittent
and different neighborhoods will affect only the correctionsand nonrepelling characterized by two coexisting invariant
to these asymptotics, not the asymptotics itself. This is not irmeasuregone being a5 function, the other being a smooth
contrast to the statement that the correlation functiothe = measure, namely, the former conditionally invariant mea-
repeller will be different front,,(m) defined here(The cor-  sure. Thus there exists a first order phase transition at
relation functionon the repeller was discussed by Csada Ry=1 for these mapg6]. The appropriate control parameter
[5].) The former corresponds to taking the linbt—0 first is
and then computing the correlations for lamge In contrast
the correlation functiorc,, is computed for arbitrary large e=Ry—1. (12)
m first and afterward4) may be restricted to an arbitrary
small neighborhood of the repeller. This is an interchange ofrpe first eigenfunction of with eigenvaluexy<\. turns
:‘r’]"o ”mitlst _ang'f\;ve gi:/eT:;l]n ?xplit(;it eéa?jplz be:%‘)’ for V‘i)hiCh out to be the most important one. Its eigenvalyds only by
e result is different. The function defined in can be 2 ;
called naturallythe correlation function of transient chaos 3202318]9 Sgr)rgjazioirgi:qedr ;hcir;?&;ggl[;gngt?h :)ge(rii/] tshliosw
Conditionally invariant measures have been introduceqonnectionlength means always the number of iteratins
some time ago when discussing 1D maps having a repellefhis eigenfunction and its eigenvalue are computed in Sec.
[1]. In this paper we will look into the properties of a class of | " |n Sec. IV we approximate the other eigenvalues and
1D maps defined implicitly on the intervg0,1]: eigenfunctions by analytic expressions, compute the correla-
F(x) = Fo(x) — v (F(X)) tion function C15(m) analytically, an_d investiggte scqling
properties. We compare the analytic expressions with nu-
(4) merical results and show that the agreement is very good
v(x)=v(l-x), ©v(0)=0, —1<v'(x)<1 indeed. From the analytic formula we recognize in particular
the crossover length\ s at which the exponent of the
and power law decay changes from 1 to 0. We find the anoma-

lous ratioA Axe. The conclusion ends the paper.
2Ryx  for O=x=<1/2R crosd A > & pap
fo(x)= (5)

2Ry(1=x) for 1-1/2Ry=x<1. Il. THE NATURAL MEASURE OF THE REPELLER

These maps represent a very general class of repéllérs  The structure of the repeller will be determined by intro-
and at the same time have simple inverse mappings and @cing the function

simple conditionally invariant measure: The inverse of the

lower and upper branch, respectively, are given by " )\c_N for 0=fN(x)=<1 (12)
6"V (x)=
F3(x) = X+v(X) (x) 0 otherwise (13)
! 2R,
(6) and its limit
-1 _ _
fa =100 0= lim o™, (14)

N—o

and the conditionally invariant measure is obtained by in-

spection, ) ) ) ]
We obtain for the natural invariant measure of the repeller in

P(x)=1+v'(x) (7)  theNth step[7-9]

with the eigenvalue pMN(x)= 0N (x)P(x) (15

Ae=1/Ry tS) o
and for the invariant measure
and an escape rate

= | (N)
eIk, . p(0= lim . (16

The general case will be discussed in a forthcoming pape

Here we discuss only maps fulfilling the condition tl“he computation ofp(x) can be done numerically for

Ry>1 by directly applying this iteration scherfg|. But we
v (0)=—v'(1)=1. (100  are interested in the phase transitRp— 1 and in that limit
this scheme is prohibitive.
This means that at the two end points of the window the We can use an analytic method beginning with the obser-
slope becomes infinite, cf. Eq4.6). The properties of such vation that the natural measure of the repeller is related to the
maps are very rich. In Sec. Il we will prove analytically as first eigenfunction of the adjoint Frobenius-Perron operator
well as numerically that foR;,>1 a repeller generated by defined as
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Lg=g(f(x))F(x), p(X) =(7|p)P(X)

1 for 0=sx<1/2Ry or 1-1/2Rysx=<1 Ip={elp)Pl
0 otherwise. (iv) iterate this procedure. As a result, the first nontrivial
eigenfunctiorny, and its first eigenvalugy are obtained ful-
The basic eigenfunction of the adjoint operator can bédilling
obtained via the constructioiwe are allowed to start with

(17) w(l)(x):

F(x)=

the function 1 sincf011x P(x)dx+0)] Lipo=Notho (22)
N =)\ “Np+Ng (18  Inour case we have
c .
The first eigenfunction is the limit (7lp)=p(0) (23
= lim AN (19) and inserting this we find mumericalsolution i, that fulfills
New the eigenvalue equation with a numerical erot0™ % This

holds true at least in the range 1.000<0R,<10.[The small
(For Ry=1 L£"1=1, so in that case 1 is an eigenfunction error also provides numerical evidence that E2p) is cor-
with eigenvalue\.=1. We will see that this eigenvalue is rect and that the measure of the repeller is indeéxfanc-
degeneratg We realize at once thatandd areidentical On  tion.] Numerical results for the eigenfunctions are given in
the other hand, the first eigenfunction can be obtained byrig. 1. Here and throughout the paper the numerics were

inspection. It is done inserting
7(X)=8(X) + 8(1—Xx), v(X)=X(1=X).
(X)=8(x)+ 8(1—x) (20) (X)=x(1-x) (24)
since we can write In Fig. 2 No(Ry) is shown. We observe tha®(x) and
Yo(x) are nearly degenerate fer—0, which lets us expect
1 1 that the first nontrivial eigenfunction is particularly important
S(f(x)= [F7(0)] 8(x)+ [F7(0)] 8(1-x) and that, e.g., the correlation lengthis determined by the
properties of the first nontrivial eigenvalue. Therefore ana-
and because of Eq&10) and (6) lytic approximations are desirable and will be given next.

Because of thé function character of the natural measure
_1 we expect the eigenfunctionsg,(x) to be most important for
=Tea )| o(f~(1)—x)=0. small arguments. But for small arguments the second branch
of the Frobenius-Perron operator bemg,,[1—f'(0)x] can
Therefore, using Eqs7), (10), (15), and(16), the density of ~be neglected10]:
the natural measure turns out to bé &unction at the origin Je(l—y)=\-1
n

1t
PG Ty
+n(f (1= )]

o(1—1(x))

(f 1 (1-y))
p(x)=4a(x) for Ry>1. (21

It was proven previously7] that the natural measure pos-
sesses @ function contribution at the origin and it was sug- but
gested — based on numerical results — that the prefactor
would be 1. 1 B 1 _
ApproachingR,=1 on a different route, namely, that of @) P ED)
fully developed chao$10,11], the density of the natural
measure iP. Besides the smooth densiB there exists at and therefore
the phase transition point th& function, which is being an
eigenfunction of the Frobenius-Perron operator with the lim ¢,(1~y)=0. (25)
same eigenvalug.=1. The coexistence of these two mea- y=0
sures shows that the phase transition is of first order.

0

Then the eigenvalue equation can be approximated by a dif-

ferential equatiorf10] and with the definition
Ill. THE EIGENFUNCTION WITH SECOND LARGEST

EIGENVALUE 2¢
B= (26)

Having the first eigenfunction of* we can compute the f7(0)
first eigenfunction ofL with eigenvalue\ <A, in the fol-
lowing manner:(i) start with an arbitrary functio?); (ii)

one obtains the approximate solution

compute D= \o+0(&2), 27)
pOx) =Ly, e
(0)(y)= —
(iii ) project the contribution oP(x) out and normalize 0 (X) (x+ B)z 2 P(X). (28)
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FIG. 1. Eigenfunctionyy(x) with second largest eigenvalug of the Frobenius-Perron operator. The eigenfunction is normalized, i.e.,
Joo=1. Solid line:e =0.01, dashed lines=0.1.

[The second term

has been added to fulfi’(0)=0.] 32

Whereas this is quite a good approximation for the eigen- o=1+ —(1+B)2'

function as long as

for the eigenvalue is too crude. To get a better approximatio

is small(cf. Fig. 3 the approximation

Q/\/e expectwgl) to be a very good approximation since it

iterat .
we lterate fulfills Eq. ( 25) as well and thus
P5 = 2R, LY — constx P. (29)
1
const is determined from the conditiop{’(0)=0. This o= lim WﬁN'/fgl)- (32)
leads to N=e 0
B B A comparison betweey, and y{" is shown in Fig. 4 and

PP (x)=P(x)

1.0

0.9

0.8

0.7

[f X0+ B2 [fa 100 +B12

7 the agreement is very good indeed. We compute the eigen-

(30)  valuex§? from

0 0.1 0.2 03 ¢

FIG. 2. Eigenvalue of the conditionally invariant measurg(solid line), and the second largest eigenvalyg(dashed ling as function
of . They merge fore—0.
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FIG. 3. Comparison between the exact eigenfunctiffx)

(solid Iine} and z//f)o)(x), the s_implest approximation in this paper FIG. 4. Comparison between the exact eigenfunctigyix)
(dashed ling The eigenfunctions are normalize@d) = 0.01, (b) (solid line) and the approximate 0n¢81)(x) (dashed ling The

e=0.1. eigenfunctions are normalizeth) £=0.1, (b) e=0.3.
(1)_fé£l//§)1) This approximation is sufficient fan>0 since¢,(0)=0 is
0 - JEyy 32 fylfilled and Eq.(25) is nearly fulfilled for smalle. For large

e the higher eigenfunctions are not very relevant for the
The computation is done in the Appendix. The approxima-computation of the correlation function anyway.
tion used here is compared with exact numerical results; cf. We assume here that tiegare analytic if 0,1]. Expand-
Fig. 5. The agreement betweey and A{" is again very NG [C2—(c2)]P in the series of thep, we may write
good.\o(Ry) depends om; cf. Eq.( 4). However, the lead-
ing term in ane expansionis universal

oo

LMo~ (e)IP=L"2 a,¢,

No=AJ1—2eB]+0(ed). (33
There is no degeneracy fdinite ¢ but a near degeneracy ~AD a et ™ +ag(LM—AM .
with the result that initial distributions steeply peaked at zero 0= v oo 0770

will decay very slowly and the correlation length is
The conjugation

Aocg ™2, (34)

IV. THE CORRELATION FUNCTION 1.07

To compute the correlation function we need not only 0.0

o but all the other eigenfunctions of the Frobenius-Perron )

operator as well. Proceeding as in an earlier pap#}, we

get for the approximate eigenfunctions 0.8

,8(1+B)n+ an
o (0= T 07—
0 0.1 0.2 03 ¢

(35
) Cen FIG. 5. Comparison between the exact eigenvalgésolid line)
A =koe 7. and the approximate one” (dashed ling
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y=h(x) 1+8] (36) 124 @)

=375

~ R(m)

transforms thep,, just into powers. Therefore the the conju-
gation ofZ is a Taylor series and we obtain a closed expres-
sion for it. Furthermore, is given by

0.8

ap=[c2(0) = (c2)IP(0) B(1+B) (37 aaas

T T T 1
o} 100 200 300 400

and we can use the fact thaagl) is a good approximation for
the first nontrivial eigenfunction. Putting all this together we
find

1 124 b)
my )M = |
£7d, AO[(l—)\Q)(a/s)x+1]2 g

1

X dy| X

m X
O((l—)\om)(a/s)x+1

T T L B R
¢} 100 200 300 400
(39)

Ac
- gl
0

Let us assume from now on thpt,(0)—(c,)]#0 and
[c,(0)—(c,)]#0 (this is the generic cageNote that any
term «P(x) in Eg. (38 is negligible since 127 ©)
JuLc1—{cq)]P=0. Furthermore it turns out that the second E
term of Eq.(38) can be neglectefthis term gives a relative 1.0
contribution O(¢?)]. We take for{ the whole interval
[0,1] deferring the discussion of small&frto the end of the

R{m

section. The result is °87
WL 0 100 200 30 - 400
CaAm)~ %[clmwcm
0 FIG. 6. Comparison between the numerically calculated and the

(1-\mp-1 1 analytically derived correlation functiory,(m). Shown is the ratio

X[Cz(o)_<C2>]P(0)j ° A+y)? R(m) =clymengcanaiic a5 5 function ofm. Note that there is no fit
0 y parameterB=0.05; cf. Eq.(40). (a) £=0.001, (b) £=0.01, (c)

(39 e=0.1.

We have checked this formula numerically by using B).

; the correlation function since all the tails of decay expo-
and setting forc;

nentially fast under application of the Frobenius Perron op-
erator. Thus with increasing £'c, becomes strongly con-
. (400 centrated at O and its expansion into the approximate
0 otherwise. eigenfucntion becomes very accurate but some weight has

) ) . been lost. As a result one gets the forementioned effect.
(We choose forc, a step function because of its numerical  \yg get the following asymptotic behavior:

advantages. Of course the step function is not analytic. How-

ever, cutting the tail of its Fourier series we can construct an

analytic function being arbitrarily close to a step functjon. clz(m)ﬂconstxi()\o/)\c)m
In Fig. 6 the ratioc[s™®"7c253¥" js shown for variouse m
values[For the analytic computation of the correlation func-

tion we use the asymptotic formula taking into account thg gt s analyze this result a little biko/\, is O(e‘sz); cf.

_yMg-1
finite integration limit; i.e., we computeff;(l “)A "1/ Egs.(26) and(33). Therefore we can separate thevalues

(1+y)2.] One observes from the figure th&iﬁmeri(‘/cigalytic into three regions(i) m<e~1: Here we have simple power

becomes const but the constant is less than 1. This has!@W decay-<m l_' This rgglogllncludes_jo and the result is
simple explanation: the approximate eigenfunctions havd @greement witti11]. (ii) e ~"<m<eg~: In this region the
been determined with high accuracy near 0 where they greorrelation function remalrl:c,1 app.rommately constant. The
peaked and consequently the expansion coefficierts afe ~ CrOSSOVer occurs &@(m)=e ", giving the crossover corre-
sufficiently accurate only if the functio, is strongly con- lation length

centrated around O. If this is not fulfilled one expects devia-

tions. These are not relevant concerning the independence of Agrossce L (42

1if x<B
Cl(X):Cz(X):{

&
1_e em (41)
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(i) e ?<m: In this region we find exponential decay sions. This work was supported by the Hungarian National

g me? defining the correlation length as Scientific Research Foundatid®TKA) under Grant No.
T 017493 and partially by the German-Hungarian Scientific
Aoxcg™2, (43 and Technological Cooperation under project X231.2 and

62: Investigation of Classical and Quantum Chaos

Obviously the system has two scalés,,ssand A, in con-

trast to the situation of fully developed chadsdl]. Further- APPENDIX

more the ratioA/A s e~ and diverges foe—0. There- )

fore the asymptotics of the correlation function can be VW& compute the expression

written in the formm™1X S(A _2.m, A~ m). (See Ref[12] Firgd

for an analogous situation in dynamical critical phenomena g)z%. (A1)
The scaling depends crucially on the values of the fo% )

¢i(0). This is not surprising since the natural measure of the o

repeller is as function at the origin. Trajectories staying for Because of Eq(29) this is

a transient timem in the neighborhood of the repeller must 2 1

remain close to 0 ifn is large. (1_ 1_2(Rg/‘7)f0£2¢0

. . )\O c 1 ’

Up to now we have taken the intenfd,1] as the neigh- 1-2(Ry/a) oL o

borhood of the repeller. Now we estimate the corrections

when choosing a smaller neighborhop@,u,]. From Eg. 1

(39 we recognize that the integral will change by f Lo

O(1/muy) for m<A o @and by O(eu;) for m>A oss

These are small corrections not affecting the asymptotics as

long asu, remains finite.
To obtain the correlation functioon the repeller one has

to take the limitu;— 0 first and then a completely different L=f1(1)= —

result is found[In fact we get 0 becausg (x) —(c,;)=0 on 2 2Ry’

the natural measure of the repeller.

(A2)

_S 1 1

—_ _I,_ ,
xR PYE o B PYRE o

l,=f1(0)=0,

|3: 1_ | 2
V. CONCLUSION

We have derived correlation functions,(m) for the
transients of a repeller and computed them analytically as 1 4 1 1
well as numerically for a particular class of 1D maps. This f £L’,¢0=E i + I
class is generated by a tent map having a window 0 =1 latB laiath
el(1+¢), cf. Egs.(4) and(5) and the slope of these maps is 4
c at the two end points of the window. The intrinsic prop- l,=1,7(0)=0,
erties of this class are as follow§) A first order phase
transition ate =0 from a repeller to a nonrepelling intermit- [ —f1 1) 149R 1
tent state(ii) A natural measure, which is&function at the 2=N 2R | T arz| 1T AR 2R ) |

9 g

origin for arbitrary £>0. (iii) For small ¢ the difference
between the leading eigenvalig and the next one)g, is 1 1 1 1
of ordere?. This results in a correlation lengthoce =2, (iv) |3:f|l< 1- ﬁ) “5R. ﬁ[l_ZRgv(z_) }
Correlation functions were computed analytically and nu- 9 9 9
merically. They decay with a power lawm~! below the 1
crossover length ... 1, remain approximately constant = fl_l(l) =
in the rangeA ;.<M<A. Beyond that they decay expo- 2Ry
nentially but very slowly because of the large correlation
lengthA. We remind the reader that correlation functions of ls=1—14,
transient chaos are to be defined in the neighborhood of the
repeller not on the repeller itself. These neighborhoods can- le=1—13,
not be defined uniquely. However, the asymptotics for large
m is independent of their definition. l7=1~13,
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1 1 1
fz,/fo:f g (A3)
0 0
Let us assume furthermore
P () —ho(x)=0(e?) if O(x)=1.  (A4)

[This assumption is very plausible since the eigenvalue equa-

tion is fulfilled by #{" up to O(£?).] Then we find

5889

1 1 1-1/2R,
f ﬁ'ﬁo:f ‘/’o‘f o
0 0 1R,

1 1-1U2Ry
= f v~ f U +O(e?)
0

V2R

1 1
=J cz//gl>+0(s3)=2RgJ $o—Nco+0(e%)
0 0

and thus
Ao 1-2(R%0)[}
Ne 1-2(Ry/0)[o¢do
or
Ao
)\—=1—283+0(s3). (A5)
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