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We study the motion of a particle governed by a generalized Langevin equation. We show that, when no
fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to super-
diffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact
equations for the joint and marginal probability density functions for the position and velocity of the particle
and find their solutions.@S1063-651X~96!10706-6#

PACS number~s!: 02.50.2r, 05.40.1j, 05.60.1w, 05.20.Dd

I. INTRODUCTION

This paper deals with systems that present anomalous dif-
fusion. It has been shown that in many systems the mean
square displacement does not grow linearly as in normal dif-
fusion but in the anomalous form given by

^X2~ t !&;tn ~ t→`!,

wherenÞ1 @1,2#. There is current interest in understanding
the physical mechanism leading to anomalous diffusion and
it is thus found that chaotic systems can present superdiffu-
sion with n.1 @3# while subdiffusion withn,1 is encoun-
tered in constrained systems such as fractals@1,2#. We have
recently shown that the consideration of inertial effects also
results in superdiffusion@4–6#. Moreover, we have also ob-
served that Gaussian 1/f driving noise leads to a subdiffusive
behavior for the undamped free Brownian particle@7,8#.

On the other hand, generalized Langevin equations have
been used recently to describe the dynamics of particles in
percolation clusters that present anomalous diffusion@9#.
This equation is a nonlocal equation that, in the absence of a
deterministic field, can be written in the form

Ẍ~ t !1E
0

t

b~ t2t8!Ẋ~ t8!dt85F~ t !, ~1.1!

whereb(t2t8) is the dissipative memory kernel andF(t) is
a random force that we assume to be zero centered and sta-
tionary, i.e.,

^F~ t !F~ t8!&5C~ ut2t8u!5C~t!, ~1.2!

whereC(t) is the correlation function@10,11#. When the
system described by Eq.~1.1! is in the equilibrium state, then
the functionsb(t) and C(t) are related to each other by
means of the fluctuation-dissipation theorem@11#:

C~ t !5kBTb~ t !, ~1.3!

wherekB is the Boltzmann constant andT is the absolute
temperature of the environment~heat bath!. In this case the
random force is sometimes referred to as ‘‘internal noise.’’
Note that, from a physical point of view, one of the effects of
the noise being internal is that the relaxation time of the
system is essentially the same as the correlation time of the

noise. However, in nonequilibrium systems the driving noise
and the dissipation may have different origin and no
fluctuation-dissipation relation holds. In such a caseF(t)
will be referred to as ‘‘external noise.’’

In this paper, we will show how the long-time behavior of
the mean square displacement for systems described by gen-
eralized Langevin equations~GLE’s! depends on the proper-
ties of the correlation function and of the memory kernel. We
consider nonequilibrium systems although the equilibrium
situation is easily recovered by imposing fluctuation-
dissipation relation. When both the correlation function and
the dissipative kernel are long-time tail functions, a variety
of limiting behaviors is obtained. The exponents of the long-
time tails determine whether the system becomes stationary,
subdiffusive, diffusive, superdiffusive, or even logarithmic,
i.e., ^X2(t)&; lnt.

When the noise is Gaussian, and due to the linearity of
Eq. ~1.1!, it is also possible to derive exact expressions and
Fokker-Planck equations for the joint probability density,
p(x,v,t), of the displacement and the velocity and for the
marginal densitiesp(x,t) andp(v,t).

The paper is organized as follows. In Sec. II, we set the
general analysis of the process governed by Eq.~1.2!. In Sec.
III we study the long-time behavior of the variances and
discuss the anomalous diffusion. In Sec. IV we analyze two
relevant examples. In Sec. V we obtain the probability den-
sity functions of the process when the driving noise is Gauss-
ian. Conclusions are drawn in Sec. VI and technical aspects
are in the Appendices.

II. GENERAL ANALYSIS

In what follows we will assume that the driving noise
F(t) is stationary, zero centered, and has a correlation func-
tion given byC(t). We write the formal solution to Eq.~1.1!
in the form

X~ t !5^X~ t !&1E
0

t

H~ t2t!F~t!dt, ~2.1!

where

^X~ t !&5x01v0H~ t !, ~2.2!
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wherex05X(0) andv05Ẋ(0) are the initial position and
the initial velocity of the particle. The relaxation function
H(t) is the inverse form of the Laplace transform

Ĥ~s!5
1

s21sb̂~s!
, ~2.3!

where

b̂~s!5E
0

`

b~ t !e2stdt ~2.4!

is the Laplace transform of the dissipative memory kernel.
The time derivative of Eq.~2.1! yields

Ẋ~ t !5^Ẋ~ t !&1E
0

t

h~ t2t!F~t!dt, ~2.5!

where^Ẋ(t)&5v0h(t) and the relaxation functionh(t) is the
derivative ofH(t), i.e.,h(t)5Ḣ(t). Hence,

ĥ~s!5
1

s1b̂~s!
. ~2.6!

In addition, from Eqs. ~2.2! and ~2.5! it follows that
H(0)50 andh(0)51.

We will only consider random systems whose velocity
relaxes to a stationary state with zero average velocity. Thus,
h(t) goes to zero whent→`. For systems driven by internal
noise the relaxation functionh(t) is related with the long-
time behavior of the autocorrelation function of the velocity.
This relation is proved in Appendix A and reads

h~t!5 lim
t→`

^Ẋ~ t1t!Ẋ~ t !&

^Ẋ~ t !Ẋ~ t !&
. ~2.7!

From Eqs.~2.1! and ~2.5! and the symmetry property of
the correlation function, i.e.,C(t2t8)5C(t82t), we obtain
the explicit expression of the variances of process~1.1!

sxx
2 ~ t ![Š@X~ t !2^X~ t !&#2‹

52E
0

t

H~ t1!dt1E
0

t1
H~ t2!C~ t12t2!dt2 , ~2.8!

svv
2 ~ t ![Š@Ẋ~ t !2^Ẋ~ t !&#2‹

52E
0

t

h~ t1!dt1E
0

t1
h~ t2!C~ t12t2!dt2 , ~2.9!

and

sxv
2 ~ t ![Š@X~ t !2^X~ t !&#@Ẋ~ t !2^Ẋ~ t !&#‹5

1

2
ṡxx
2 ~ t !

5E
0

t

H~ t1!dt1E
0

t

h~ t2!C~ t12t2!dt2 . ~2.10!

These are general equations valid for either internal and ex-
ternal noise. However, when the driving noise is internal
Eqs. ~2.8!–~2.10! reduce to the following more convenient
form @12#:

sxx
2 ~ t !5kBTF2E

0

t

H~ t8!dt82H2~ t !G , ~2.11!

svv
2 ~ t !5kBT@12h2~ t !#, ~2.12!

and

sxv
2 ~ t !5kBTH~ t !@12h~ t !#. ~2.13!

III. ASYMPTOTIC BEHAVIOR AND ANOMALOUS
DIFFUSION

We will now discuss with some generality the asymptotic
behavior of the mean square displacement in terms of the
asymptotic expansions of the correlation functionC(t) and
of the memory kernelb(t).

We will not study all possible limiting behaviors of the
correlation function. Instead we will only consider two
simple but very general models, which are described below.
In both cases we will assume that the correlation function is
a locally integrable function in (0,M ) for any positiveM .

~a! Finite noise intensity. In this case the noise intensity
defined by@13#

K[E
0

`

C~ t !dtÞ0, ~3.1!

is finite and nonvanishing. Hence,C(t)5o(t21) when
t→`. Once we know the leading behavior ofC(t) as
t→`, the behavior of its Laplace transformĈ(s) as s→0
can be obtained using Abelian theorems, which give the
small s behavior ofĈ(s) if one knows the asymptotic be-
havior of C(t) as t→` @14#. In the case of a finite noise
intensity one can easily see that@15#

Ĉ~s!;K1o~1! ~s→0!, ~3.2!

whereK is given by Eq.~3.1!.
~b! Long-time tail noise. Now the correlation function de-

cays as a power law of the form

C~t!;
A

ta ~t→`!, ~3.3!

where 0,a,1. The Laplace transform of the correlation
function behaves as@15#

Ĉ~s!;
AG~12a!

s12a ~s→0!. ~3.4!

As we have mentioned in Sec. II we will only consider
dissipative kernelsb(t) that lead to stationary states for the
velocity process. Moreover, we restrict ourselves to those
kernelsb(t) leading to relaxation functions,h(t), that fi-
nally become monotonic, that is, there exists somet0>0
such thatdh(t)/dt has definite sign for allt>t0 . Again,
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b(t) is supposed to be locally integrable. Equation~2.6! sug-
gests considering the following cases:

~a! Finite relaxation time. That is, the inverse of the re-
laxation time

E
0

`

b~ t !dt5E,` ~3.5!

is finite and positive. In this case@see Eq.~3.2!#

b̂~s!;E1o~1! ~s→0!. ~3.6!

~b! Slow relaxation. We now assume that the friction ker-
nel decays as

b~t!;
B

tg ~t→`!, ~3.7!

where 0,g,1. Therefore, its Laplace transform behaves as
@see Eq.~3.4!#

b̂~s!;
BG~12g!

s12g ~s→0!. ~3.8!

The behavior ofĥ(s) is readily obtained from Eq.~2.6!
and from the expansions ofb̂(s) whens→0 @cf. Eqs.~3.6!
and~3.8!#. We now want to know the long-time behavior of
h(t) andH(t). This is accomplished by the use of Tauberian
theorems, which can be considered converse Abelian theo-
rems and they consist of a collection of results that roughly
give the asymptotic behavior of a functionf (t) as t→` if
one knows the smalls behavior of its Laplace transform
@14#. For the two kinds of memory friction introduced above
we have@16# the following:

~a! Finite relaxation time. In this case,

ĥ~s!;
1

E
, Ĥ~s!;

1

Es
~s→0! ~3.9!

and

h~ t !5o~ t21!, H~ t !;
1

E
~ t→`!. ~3.10!

~b! Slow relaxation. Now we have

ĥ~s!;
s12g

BG~12g!
, Ĥ~s!;

s2g

BG~12g!
~s→0!

~3.11!

and

h~ t !;2
~12g!sin~gp!

Bp
tg22,

H~ t !;
sin~gp!

Bp
tg21 ~ t→`!. ~3.12!

In Appendix B we verify these relations for a particular ex-
ample.

The substitution of expansions~3.10! and~3.12! into Eqs.
~2.8! and~2.9! allows us to obtain the long-time behavior of

the variances of process~1.1!. We can easily see that the
variance of the velocity becomes a constant for all cases
discussed above. Moreover, the average velocity converge to
zero becauseh(t) goes to zero ast→`. Hence, the velocity
process reaches a stationary state with zero average value.
When the driving noise is internal then the stationary state is
the equilibrium state. In this case the variance of the velocity
can be obtained in a more straightforward way. This is the
case, for instance, of a free Brownian particle of unit mass in
a medium at temperatureT where

lim
t→`

svv
2 ~ t !5kBT. ~3.13!

The behavior of the mean square displacement,sxx
2 (t),

shows a much richer diversity. The normal diffusion behav-
ior arises when both the intensity of the noiseK, Eq. ~3.1!,
and the inverse relaxation timeE, Eq. ~3.5!, are finite. In
such a case one obtains from Eq.~2.8! that

sxx
2 ~ t !;

2K

E2 t ~ t→`!. ~3.14!

Let us now derive this expression. We first note that Eq.
~2.8! can be written as

sxx
2 ~ t !52t2E

0

1

H~ tz!dzE
0

z

H~ tz8!C~ tz2tz8!dz8.

~3.15!

From Eq.~3.10!, we see that, for friction kernels of type~a!,
H(t) converges to 1/E when t→`. Therefore,

sxx
2 ~ t !;

2t2

E2 E
0

1

dzE
0

z

C~ tz2tz8!dz8. ~3.16!

Reversing the order of integration we get

sxx
2 ~ t !;

2t

E2E
0

t

C~x!S 12
x

t Ddx. ~3.17!

When t→` we finally have

sxx
2 ~ t !;

2t

E2E
0

`

C~x!dx, ~3.18!

and for driving noises with finite intensityK we obtain Eq.
~3.14!.

When the correlation function presents a long-time tail
andE is finite, theX(t) process is superdiffusive because

sxx
2 ~ t !;

2A

E2~12a!~22a!
t22a ~ t→`! ~3.19!

and 0,a,1. The derivation of this expression is outlined in
Appendix C. The existence of the tail indicates that the ran-
dom force varies slowly and persists driving the system in
the same direction. As a consequence, the system becomes
superdiffusive.

Nevertheless, when the relaxation is also slow@i.e., b of
type ~b!# then the number of possible limiting behaviors in-
creases notably. Thus when the driving noise has a finite
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intensityK then the long-time behavior ofX(t) depends solely on the exponentg of the relaxation tail. The possible limiting
behaviors of the variance, as a functiong, are~cf. Appendix C!

sxx
2 ~ t !;5

const, 0,g,1/2 ~stationary!

2Ksin2~gp!

B2p2 lnt, g51/2 ~ logarithmic!

2Ksin2~gp!

B2p2~2g21!
t2g21 1/2,g,1 ~subdiffusion!

~3.20!

(t→`). It is remarkable that forg51/2 the mean square displacement grows as slowly as the logarithmic behavior.
When both the correlation function and the memory kernel show long-time tails the process may become asymptotically

stationary to superdiffusive, including subdiffusive, diffusive, and logarithmic. The fact that no fluctuation-dissipation relation
holds means that the exponentsa andg are independent. Thus the long-time behavior of the variancesxx

2 (t) will depend on
both exponents. Following a similar reasoning we have~see Appendix C!

sxx
2 ~ t !;5

const, 2g,a ~stationary!

2Asin~gp!G~122g!

B2pG2~12g!
lnt, 2g5a ~ logarithmic!

2Asin~gp!G~12a!

B2pG~12g!G~12a1g!~2g2a!
t2g2a 2g.a ~anomalous diffusion!

~3.21!

(t→`). In the third case where 2g.a we distinguish three
different regimes:~i! subdiffusion, if 2g2a,1; ~ii ! normal
diffusion, if 2g2a51; and ~iii ! superdiffusion, if
2g2a.1. We show in Fig. 1 the long-time behavior of the
mean square displacement as a function of the exponentsa
andg.

We note that for internal noise, the fluctuation-dissipation
relation implies that the tail exponents ofC(t) andb(t) are
equal, that is,a5g. In this case, the long-time behavior of

X(t) is always subdiffusive with

sxx
2 ~ t !;

2~kBT!2sin~gp!

Agp
tg. ~3.22!

This result can also be obtained in a different way@9#. We
first observe that the properties of the mean square displace-
ment are determined by the velocity process. In effect, the
variance of the displacement can be written in the form

sxx
2 ~ t !52E

0

t

dt8E
0

t8
Cv~ t8,t9!dt9, ~3.23!

whereCv(t8,t9)[^Ẋ(t)Ẋ(t8)& is the velocity autocorrela-
tion function. Whent→`, the velocity becomes a stationary
random process andCv(t8,t9) will be a function of t82t9.
Hence from Eq.~3.23! we get

sxx
2 ~ t !;2E

0

t

Cv~t!~ t2t!dt ~ t→`!. ~3.24!

For the case of internal noise we have shown in Appendix A
thatCv(t)5kBTh(t), @cf. Eq. ~1.5!#. Therefore,

sxx
2 ~ t !;2kBTE

0

t

h~t!~ t2t!dt ~ t→`!. ~3.25!

We define

I 1~ t ![2kBTtE
0

t

h~t!dt, ~3.26!

I 2~ t ![22kBTE
0

t

h~t!tdt. ~3.27!

FIG. 1. Asymptotic behavior ofsxx
2 (t) as a function of expo-

nentsa andg for C(t);t2a andb(t);t2g whent→`. Loga-
rithmic behavior arises forg52a and the diffusive one for
g52a21. The discontinuous line corresponds to the internal noise
case~see text!.
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Taking into account Eq.~3.12! we see that the long-time
behavior ofI 2(t) is

I 2~ t !;2kBT
~12g!sin~gp!

Bgp
tg ~ t→`!. ~3.28!

The asymptotic behavior ofI 1(t) is obtained as follows. We
first write I 1(t) in the form

I 1~ t !52kBTtF E
0

`

h~t!dt2E
t

`

h~t!dtG . ~3.29!

The asymptotic expression of the first integral on the right-
hand side of this equation is obtained by taking the limit
whens→0 of ĥ(s) @17#. From Eq.~3.11!, we see that

E
0

`

h~ t !dt5 lim
s→0

ĥ~s!50. ~3.30!

Using Eq.~3.12! we see that ast→` the second integral in
Eq. ~3.29! behaves as

E
t

`

h~t!dt;2
sin~gp!

Bp
tg21 ~ t→`!. ~3.31!

Hence,

sxx
2 ~ t !;I 1~ t !1I 2~ t !;2kBT

sin~gp!

Bgp
tg ~ t→`!.

~3.32!

Taking into account that the quantitiesA andB are related
by A5kBTB we finally obtain Eq.~3.22!.

In the next section we work out exactly two cases where
the long-time behavior becomes diffusive.

IV. EXAMPLES

We discuss in this section two examples that can be
solved analytically. The expression for the mean square dis-
placement at all times makes it possible to identify different

regimes in the behavior of these systems. Unfortunately, we
have not been able to solve exactly any case with a long-time
tail. In a previous study, Muralidharet al. reduced the veloc-
ity correlation function for a power law tail kernel up to
quadrature@18#. This particular case refers to internal noise
and the quadrature has to be approximated in order to obtain
the standard anomalous diffusive behavior.

We now assume that the stationary driving noiseF(t) is
exponentially correlated,

C~ t2t8!5
D

2tc
e2ut2t8u/tc, ~4.1!

whereD is the noise intensity andtc is the correlation time.
This is a relevant example of driving noise with finite inten-
sity.

A. Internal noise

Let us first assume thatF(t) is internal noise. In this case
the frictional kernel is given byb(t)5C(t)/kBT ~note that
this example represents a Brownian particle!. The function
H(t) is given by@cf. Eq. ~2.3!#

H~ t !5
2kBT

D
@12Ae2t/2tcsin~lt1a!#, ~4.2!

where

l5A D

2kBTtc
2

1

4tc
2, a5arctanS 2ltc

12Dtc /kBT
D ,

~4.3!

and

A5l1
1

4ltc
2 S 12

Dtc
kBT

D 2. ~4.4!

The substitution of Eq.~4.2! into Eqs.~2.11!–~2.13! results,
after some algebra, in the following explicit expressions for
the variances of the particle

svv
2 ~ t !5kBT2

~kBT!3

D2 A2e2t/tcF4l21S 1tc2 24l2D sin2~lt1a!2
2l

tc
sin2~lt1a!G , ~4.5!

sxx
2 ~ t !5

4~kBT!2

D
t2

4~kBT!3

D2 @11A~sina12ltccosa!#1
4~kBT!3

D2 Ae2t/2tc@3sin~lt1a!12ltccos~lt1a!

2Ae2t/2tcsin2~lt1a!#, ~4.6!

and

sxv
2 ~ t !5

2~kBT!2

D F11
kBT

Dtc
A2e2t/tcsin2~lt1a!2AS 11

kBT

Dtc
De2t/2tcsin~lt1a!1

2lkBT

D
Ae2t/2tccos~lt1a!

2
lkBT

D
A2e2t/tcsin2~lt1a!G . ~4.7!
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We see that whent→`,

svv
2 ~ t !;kBT, sxx

2 ~ t !;@4~kBT!2/D#t. ~4.8!

This result is in agreement with Eqs.~3.13! and ~3.14! be-
cause nowK5D/2 andE5D/2kBT.

Since, in this case, we know exactly the time evolution of
the variances for all times, we can identify several regimes.
We first distinguish three different time scales involved in
the motion of the Brownian particle. Namely, the observa-
tion time t, the relaxation timet r ~the inverse ofE), and the
correlation time of the input noise@which is related with the
correlation functionC(t)#. Note that for internal driving
noise the correlation time and the relaxation time are essen-
tially of the same order of magnitude@cf. Eq. ~1.3!#, that is,
t r;tc[t. Hence, the behavior of the variances will depend
on whethert andt are similar or not comparable. In this case
we have only two extreme situations~i! t!t, and~ii ! t@t.
Case~i! obviously corresponds tot→0 while case~ii ! is
equivalent tot→`. From Eqs.~4.5! and ~4.6!, we see that

sxx
2 ~ t !;~D/8tc!t

4, svv
2 ~ t !;~D/2tc!t

2 ~ t!t!.
~4.9!

and

sxx
2 ~ t !;

4~kBT!2

D
t, svv

2 ~ t !;kBT ~ t@t!. ~4.10!

Let nx and nv be exponents defined bysxx
2 (t);tnx and

svv
2 (t);tnv. We may then summarize the above results with

the following transitions between exponents~as t increases!

nx54→nx51, nv52→nv50. ~4.11!

B. Markovian relaxation

Suppose now that the driving noise is external. In this
caseC(t) andb(t) are not related. Let us further assume that
the relaxation is Markovian, that is,b(t)5bd(t). In this
case,

h~ t !5e2bt, H~ t !5~12e2bt!/b. ~4.12!

The substitution of Eq.~4.12! and Eq.~4.1! into Eqs.~2.8!-
~2.10! yields

svv
2 ~ t !5

D

2b H 1

11btc
1

2btc
12b2tc

2e
2~b11/tc!t2

1

12btc
e22btJ , ~4.13!

sxx
2 ~ t !5

D

b2 H t2 btc
2

12btc
e2t/tc1

btc
2

12b2tc
2e

2~b11/tc!t1
22btc

b~12btc!
e2bt2

1

2b~12btc!
e22bt2

2b2tc
214btc13

2b~11btc!
J ,
~4.14!

and

sxv
2 ~ t !5

D

2b H 1b 1
tc

12btc
e2t/tc2

tc
12btc

e2~b11/tc!t2
22btc

b~12btc!
e2bt1

1

b~12btc!
e22btJ . ~4.15!

Let us analyze the asymptotic properties of the variances.
We first observe that in this case there are three different
time scales: the correlation timetc , the relaxation time
t r5b21, and the observation timet. We will now show that
the behavior of the variances depends on whether these three
time scales are similar or not comparable. Fort smaller than
any other time scale, it follows from Eqs.~4.13! and ~4.14!
that

sxx
2 ~ t !;

D

8tc
t4, svv

2 ~ t !;
D

2tc
t2 ~ t→0!. ~4.16!

On the other hand, ift is larger than any time scale, then

sxx
2 ~ t !;

D

b2 t, svv
2 ~ t !;

D

2b~11btc!
~ t→`!.

~4.17!

Let us now investigate the intermediate-time behavior of the
variances between these two extreme situations. We first as-
sume thattc andt r are not comparable. In this situation we
have two different cases.

~1! tc!t r . In this case we distinguish the time regime
where the observation time is much longer than the correla-
tion time but still smaller than the relaxation time:
tc!t,t r . In this regimeF(t) acts as white noise, with
C(t)5Dd(t), and from Eqs.~2.9!–~4.12! we get~recall that
bt,1)

sxx
2 ~ t !;

1

3
Dt3, svv

2 ~ t !;Dt. ~4.18!

Therefore, whentc!b21, we have the following transition
~as t increases!

nx54→nx53→nx51, nv52→nv51→nv50.
~4.19!

~2! tc@t r . In this case we distinguish the time regime
where the observation time is much longer than the relax-
ation time but smaller than the correlation time:t r!t,tc .
In this regime the inertial term may be neglected and the
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dynamical equation can be approximated byẊ'b21F(t).
As a consequence the variances are given by~recall that
t/tc,1)

sxx
2 ~ t !;

D

2b2tc
t2, svv

2 ~ t !;
D

2b2tc
, ~4.20!

and the transitions between exponents are given by

nx54→nx52→nx51, nv52→nv50, ~4.21!

where nowtc@b21.
We also observe that when the time scales are similar,

tc;t r ~as is the case of internal driving noise!, we are only
able to distinguish two extreme asymptotic regimes:t→0
and t→`. This results in the transition given by Eq.~4.11!.

V. PROBABILITY DENSITY FUNCTIONS

We now assume that the input noise is Gaussian. Due to
linearity of Eq.~1.1!, we see that the joint probability density
function p(x,v,t) for a displacementx and a velocityv at
time t must be Gaussian. As a consequence, the joint char-
acteristic function of the process can be written as

p̃~m,r,t !5expH i ^X~ t !&m1 i ^Ẋ~ t !&r2
1

2
@sxx

2 ~ t !m2

12sxv
2 ~ t !mr1svv

2 ~ t !r2#J . ~5.1!

Using the method of the characteristic function@8# or the
method of functional derivative@6#, one can easily see that
the joint probability density functionp(x,v,t) obeys the fol-
lowing Fokker-Planck equation:

S ]

]t
1v

]

]xD p~x,v,t !5j~ t !
]

]v
vp~x,v,t !

1w~ t !
]2

]v2
p~x,v,t !

1c~ t !
]2

]x]v
p~x,v,t !, ~5.2!

where

j~ t !52ḣ~ t !/h~ t !, ~5.3!

w~ t !5j~ t !1ṡvv
2 ~ t !/2, ~5.4!

and

c~ t !52svv
2 ~ t !1j~ t !sxv

2 ~ t !1ṡvv
2 ~ t !. ~5.5!

In the case of internal driving noise, these expressions
reduce to@12#

j~ t !52ḣ~ t !/h~ t !, ~5.6!

w~ t !5kBTj~ t !, ~5.7!

and

c~ t !5kBT@h~ t !211j~ t !H~ t !#. ~5.8!

Let us now obtain the marginal probability density func-
tions of the velocityp(v,t) and the displacementp(x,t).
Settingm50 in Eq. ~5.1! and following the method of the
characteristic function, we can see thatp(v,t) obeys the fol-
lowing Fokker-Planck equation:

]p~v,t !
]t

52j~ t !
]

]v
vp~v,t !1

1

2
Dv~ t !

]2p~v,t !
]v2

,

~5.9!

where

Dv~ t !5w~ t !. ~5.10!

The marginal density of the displacementp(x,t) obeys
the Fokker-Planck equation

]p~x,t !

]t
52^v~ t !&

]p~x,t !

]x
1
1

2
Dx~ t !

]2p~x,t !

]x2
,

~5.11!

whereDx(t) is the time derivative of the variance, i.e.,

Dx~ t !5ṡxx
2 ~ t !52sxv

2 ~ t !. ~5.12!

VI. CONCLUSIONS

We have analyzed the long-time behavior of processes
obeying a generalized Langevin equation. When the driving
noise is external several behaviors arise depending on the
memory kernel and the correlation function. The common
diffusive behavior appears when both the relaxation time and
the correlation are finite and nonvanishing.

In the presence of long time tails, either in the memory
kernel or in the correlation function, the system diffuses
anomalously. The exact nature of the leading behavior de-
pends on the exponents of the long-time tails of both the
friction kernel and the correlation function. Thus, the pos-
sible behaviors include stationary state, logarithmic growth,
subdiffusion, normal diffusion, and superdiffusion. Figure 1
summarizes the limiting states as a function of the exponents
of the long-time tails. However, we have shown that when
the driving noise is internal the final state is always subdif-
fusive.

At this point we mention that the problem of anomalous
diffusion has been studied mainly for particles moving on
fractals and other disordered media. In this context subdiffu-
sion appears due to trapping sites where particles disappear,
or to excursions of the particles along blobs or dead ends.
Most of the results in this area are known by a combination
of scaling arguments and simulation results@1,2#. However,
superdiffusion seems to be more difficult to explain although
models based on Levy flights have successfully explained it
for some systems@19#. A superdiffusive behavior with expo-
nentnx53 has been proved nonetheless for free inertial par-
ticles driven by Gaussian white noise@4#. In any case it is
quite difficult to obtain general anomalous diffusion behav-
iors with exponentsnx.1. On the other hand, subdiffusion
appears for particles moving on a percolation cluster for
which the dynamics can be described by a generalized
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Langevin equation with a slow relaxation kernel@9,18#. In
such a case the noise is internal and we have proved that the
behavior of the system is subdiffusive. Therefore, our main
objective in this paper has been to extend this last result to
external driving noise where the system not only shows sub-
diffusion but all kinds of diffusive behavior~e.g., logarith-
mic, subdiffusion, normal diffusion, and superdiffusion!.

Finally, when the noise is Gaussian, the expressions for
the joint and marginal probability densities can be derived.
These densities satisfy the Fokker-Planck equation with time
dependent coefficients. The time dependence is the signature
of the non-Markovian character of the process. As an ex-
ample, we have exactly solved two cases and study the be-
havior of the mean square displacement at all times. When
the time scales of the process are completely separated, there
is a new transition from the ballistic behavior to the final
diffusive behavior. This intermediate state is characterized
by an exponentnx that takes the value 2 or 3 depending on
the fundamental time scalest r andtc .
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APPENDIX A: VELOCITY CORRELATION FUNCTION
FOR INTERNAL NOISE

We assume that the velocityẊ(t) relaxes to a stationary
state. The correlation function of this process will be

Cv~t!5 lim
t→`

^Ẋ~ t1t!Ẋ~ t !&. ~A1!

From Eq. ~2.5! and by taking into account the correlation
functionC(t) of the driving noise, we write

Cv~t!5E
0

`

h~ t8!dt8E
0

`

h~ t9!C~t2t81t9!dt9. ~A2!

The Fourier transform ofCv(t) reads

Ĉv~v!5uĥ~ iv!u2Ĉ~v!, ~A3!

where ĥ( iv) is the Laplace transform ofh(t) evaluated at
s5 iv. When the driving noise is internal,C(t)5kBTb(t)
and

Ĉ~v!52kBTRe@b̂~ iv!#, ~A4!

where Re(z) is the real part ofz and b̂(s) is the Laplace
transform ofb(t). Substituting Eq.~2.6! into Eq. ~A4! and
using the symmetry property ofC(t) yield

Cv~t!5kBTh~ t !. ~A5!

On the other hand, we know that^Ẋ2(t)&→kBT as t→`.
Whence

h~t!5 lim
t→`

^Ẋ~ t1t!Ẋ~ t !&

^Ẋ~ t !Ẋ~ t !&
. ~A6!

APPENDIX B: RELAXATION FUNCTIONS
FOR A LONG-TIME TAIL KERNEL

As an example, the asymptotic expansions of functions
h(t) andH(t), Eq. ~3.12!, can be checked for the following
relaxation kernel:

b~ t !51/Apt. ~B1!

The Laplace transform of this reads

b̂51/As ~B2!

and from Eqs.~2.3! and ~2.6! we have

Ĥ~s!5
1

s21s1/2
, ĥ~s!5

s1/2

s3/211
. ~B3!

The Laplace inversion yields

H~ t !5
4

3 FA32 sin~A3t/2!2
1

2
cos~A3t/2!Ge2t/2

1
1

pE0
`

e2rt
r21/2

11r 3
dr, ~B4!

and

h~ t !5
4

3
cos~A3t/2!e2t/22

1

pE0
`

e2rt
r 1/2

11r 3
dr, ~B5!

which agrees with previous results@18#. The long-time be-
havior can be obtained from these expressions. In effect,
when t→`, the first term of the expression forh(t) decays
exponentially while the maximum contribution of the second
term comes fromr around zero. Therefore,

h~ t !;2
1

pE0
`

e2rt r 1/2dr52
1

2Ap
t23/2, ~B6!

as t→`. Likewise, it can be demonstrated from Eq.~B4!
that

H~ t !;
1

Ap
t21/2. ~B7!

We can now test that the latter results are in agreement with
the general expansion Eq.~3.12!. The kernel of this example
is of type~b! ~see Sec. III! with g51/2 andB51/Ap. Then,
Eq. ~3.12! for these values results in expansions~B6! and
~B7!.
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APPENDIX C: ASYMPTOTIC BEHAVIOR
OF THE VARIANCE

We start from Eq.~2.8! and write

sxx
2 ~ t !52E

0

t

H~ t8!r~ t8!dt8, ~C1!

where

r~ t !5E
0

t

H~ t8!C~ t2t8!dt8. ~C2!

The Laplace transform of this equation reads

r̂~s!5Ĥ~s!Ĉ~s!. ~C3!

The long-time behavior ofr(t) can be obtained from its
Laplace transform because it is the convolution of two func-
tions,H(t) andC(t), both having an asymptotic expansion
@16#.

Let us now prove Eq.~3.19!. Assume thatb(t) is of type
~a! (E is finite! and thatC(t) shows a long tail@cf. Eq.
~3.3!#. Then,

r̂~s!5Ĥ~s!Ĉ~s!;
1

Es

AG~12a!

s12a ~s→0!. ~C4!

Using a Tauberian theorem@16# we have

r~ t !;
AG~12a!

EG~22a!
t12a ~ t→`!. ~C5!

After substituting this equation into Eq.~C1!, we get

sxx
2 ~ t !;

2A

E2~12a!~22a!
t22a ~ t→`!, ~C6!

which agrees with Eq.~3.19!.
When the friction kernel is of type~b!, there are more

possibilities. Let us discuss the case of a driving noise of
finite intensity,K, and a power law kernel of exponentg @cf.
Eq. ~3.7!#. The Laplace transform of functionr(t) behaves
for small s as

r̂~s!;K
s2g

BG~12g!
. ~C7!

Let us obtain the long-time behavior ofr(t). From our as-
sumptions we know thath(t), and consequentlyH(t), be-
comes monotonic whent>t0 ~for somet0>0). As a conse-
quenceH(t) possesses an asymptotic expansion~ast goes to
infinity! that allows us to apply a convenient Tauberian theo-
rem to the expression forr̂(s) given by Eq.~C7!. Therefore,
the long-time behavior ofr(t) reads@16#

r~ t !;K
sin~gp!

Bp
tg21, t→`. ~C8!

Once this expansion is substituted into Eq.~3.1! along with
the asymptotic expansion ofH(t) @cf. Eq. ~3.12!# the leading
behavior ofsxx

2 (t) is given by the integral

sxx
2 ~ t !;

2Ksin2~gp!

B2p2 E t

t82g22dt8, ~C9!

where the lower limit of integration is irrelevant. The reason
for different limiting behaviors of the mean square displace-
ment now becomes clear. In effect, the integral above grows
as t→` in three different ways. Thus, if 2g22,21, the
integral converges to a finite value. In this case,sxx

2 (t)
reaches a constant value and the processX(t) becomes sta-
tionary. On the other hand, when 2g22.21, the integral
diverges ast2g21, and

sxx
2 ~ t !;

2Ksin2~gp!

B2p2~2g21!
t2g21 ~ t→`!. ~C10!

An intermediate case arises when 2g22521, that is if
g51/2. Now, the integrant in Eq.~C9! decays ast21 for
large t and the integral diverges as a logarithm. Hence

sxx
2 ~ t !;

2Ksin2~gp!

B2p2 lnt ~ t→`!. ~C11!

The derivation when both the friction kernel and the corre-
lation function present a long-time tail is obtained in a simi-
lar way.
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