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We obtain the exact critical relaxation timetL(j), wherej is the bulk correlation length, for the Glauber
kinetic Ising model of spins on a one-dimensional lattice of finite lengthL for both periodic and free boundary
conditions~BC’s!. We show that, independent of the BC’s, the dynamic critical exponent has the well-known
valuez52, and we comment on a recent claim thatz51 for this model. The ratiotL(j)/t`(j), in the double
limit L,j→` for fixedx5L/j, approaches a limiting functional form,f t(L/j), the finite-size scaling function.
For free BC’s we derive the exact scaling functionf t(x)5@11(v(x)/x)2#21, wherev(x) is the smallest root
of the transcendental equationv tan(v/2)5x. We provide expansions ofv(x) in powers ofx andx21 for the
regimes of small and largex, respectively, and establish their radii of convergence. The scaling function shows
anomalous behavior at smallx, f t(x)'x, instead of the usualf t(x)'xz, asx→0. This is because, even for
finite L, the lifetime of the slowest dynamical mode diverges forT→ 0 K. For periodic BC’s, with the
exception of one system,tL is independent ofL, and hencef t51. The exceptional system, that with an odd
number of spins and antiferromagnetic couplings, exhibits frustration atT50 K, and the scaling function is
given by f t(x)5@11(p/x)2#21. @S1063-651X~96!07306-0#

PACS number~s!: 64.60.Ht, 02.70.Lq, 05.70.Jk

I. INTRODUCTION

The finite-size scaling~FSS! method @1# is a powerful
technique for studying critical phenomena that is used@2,3#
to extrapolate to the thermodynamic limit information ob-
tained from systems of finite linear sizeL. Provided that the
‘‘bulk,’’ thermodynamic limit L→` has been taken@4#, as
the temperatureT approaches the critical temperatureTC the
correlation lengthj(T) diverges and thermodynamic quanti-
ties become singular. The bulk-system relaxation time
t`(j) diverges in the critical region asjz, wherez is the
dynamic critical exponent@5#. AdoptingL andj as the basic
thermodynamic variables, the FSS theory predicts that, for
L and j sufficiently large compared to the lattice spacing
d, the relaxation timetL(j) obtained for a finite system is
related tot`(j) by

tL~j!/t`~j!5 f t~L/j!, ~1.1!

where f t is the FSS function. According to~1.1!, for a se-
quence of systems which differ in their individual values of
L andj, but which have a common value of theratio L/j,
the corresponding ratiostL(j)/t`(j) are also equal. One can
thus identify the scaling function with the limiting value of
tL(j)/t`(j) for L,j→`, subject to the constraint that the
ratio x[L/j remains fixed. The scaling functionf t is uni-
versal in the sense that it does not depend upon irrelevant
operators~in the language of renormalization-group theory!,
but may depend on boundary conditions@6# ~BC’s!. We note,
however, that while the scaling function provides theleading
behavior oftL(j)/t`(j) when bothL andj are sufficiently
large compared tod, there are numerous correction terms
involving d/L andd/j that are not included in~1.1!. @See,
for example,~2.25! and the discussion in Sec. II E.#

In numerical simulations it is often difficult to achieve the
large-size regime necessary to extract reliable information
about critical phenomena. Predictions could be made using
~1.1! if one knew the form of the FSS function; however, it is
rare that one has the exact form of the FSS function. The two
casesx!1 andx@1 clearly correspond to vastly different
physical regimes. The analytic form off t will thus be quite
different in these two regimes. Frequently, one’s limited
knowledge of f t is represented by the first few terms of
separate expansions in an appropriate small quantity for ei-
ther large or smallx. The radius of convergence of each such
expansion is determined by the singularities off t in the com-
plex x plane, which reflect global analytic properties off t .
Typically, some or even all of these singularities have little
direct connection to the physics of the model, yet vitally
determine the domain of validity of the series expansion rep-
resentation off t for regions of either small or large, real,
positivex. This will be amply demonstrated in Sec. II C for
the present model. Extrapolations to one regime off t(x)
based on a limited number of expansion terms appropriate to
a second regime may thus prove problematic. It is of interest
to note, therefore, that recently it has been demonstrated@3#
for several model systems that FSS may be used to extrapo-
late Monte Carlo simulation data from the regime of rela-
tively small systems,x,1, to the desired large-size regime,
x.1, a point that we will discuss further in Sec. III.

In this paper we derive the exact FSS functionf t associ-
ated with the critical relaxation timetL(j) for the Glauber
@7# kinetic Ising model of spins on a one-dimensional~1D!
lattice for both periodic and free BC’s. This is an analytically
tractable model of critical dynamics, and it is of considerable
interest to have an exact expression forf t , since it can pro-
vide a testing ground or reference system for theories of the
FSS function. We note thatf t is conventionally taken@6# to
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have the following two a priori asymptotic limits: ~i!
f t(x)→1 for x→`, which follows simply from the defini-
tion of f t ; and ~ii ! f t(x)'xz for x→0. The latter result is
based@6# on the assumption that, for finiteL, the lifetime
tL remains finite as j→`, and in particular that
tL(`)'Lz. As we will show, however, this assumption does
not usually hold for the 1D Glauber model for which
TC50 K, since in most cases the dynamics stops
~‘‘freezes’’! in this limit independent of the size of the sys-
tem, and hencetL(`) is infinitely largeeven if L is finite.
The single exceptional case, wheretL(`) remains finite for
finite L, features frustration at zero temperature.

In Sec. II we present the basic equation of motion satis-
fied by nonequilibrium single-spin averages in the 1D
Glauber model. We then derive the exact spectrum of relax-
ation rates for the finite-size Glauber model. We first obtain
the spectrum in the case where one assumes periodic BC’s,
i.e., where the system is given as a ring of spins. After that
we obtain the spectrum for the more difficult case of free
BC’s, defined by~2.3!, chosen in accord with the require-
ment of detailed balance. We remark that the finite ring of
spins was explicitly treated in Glauber’s original article@7#;
the spectrum associated with free BC’s is presented here for
the first time to the best of our knowledge. Of key interest of
course isl1 , defined as thesmallestrelaxation rate allowed
by the BC’s, since this quantity controls the long-time criti-
cal response. We present detailed expressions forl1 for both
periodic and free BC’s. These results then enable us to es-
tablish theexactform of f t(x), and to consider the issue of
extrapolation of results derived forx,1 to the regime
x.1.

For periodic BC’s, many properties of the Glauber model
are well known@8,9#, in particular that the bulk-system dy-
namic critical exponentz has the valuez52. As we will
show, for periodic BC’s one obtains, with one exception, that
tL;j2, independent of L, and is thusdivergentfor j→`.
For these systems, then, the scaling function is trivial,
f t[1, sincetL is independent ofL. The exceptional case is
the system with antiferromagnetic couplings and anodd
number of spins. This system does not ‘‘freeze’’ at low tem-
perature but instead exhibits frustration, with the conse-
quence that the lifetime of the slowest dynamical mode re-
mains finite, where we find thattL;L2 as j→`. This is
what may be termed ‘‘normal’’ scaling behavior:tL finite as
j→`, which, we recall, is the behavior in systems with
TCÞ0. The anomalous behavior oftL for the other instances
of the 1D Glauber model with periodic BC’s arises because
these systems do not exhibit frustration and simply freeze at
low temperatures. In Sec. II C, we present the only nontrivial
FSS function for periodic BC’s, that for the frustrated sys-
tem.

For free BC’s, we find in all cases anomalous behavior of
tL , again due to the lack of an opportunity to develop frus-
tration at low temperature. For these BC’s, however, we find,
for fixed L,tL;j for j→`, as opposed totL;j2 for peri-
odic BC’s. In Sec. II C we obtain, in the double limit
L, j→` for fixed x5L/j, the exact form of the FSS func-
tion for the system with free BC’s, with the result

f t~x!5„11@v~x!/x#2…21, ~1.2!

wherev(x) denotes the smallest real positive root of the
transcendental equation

v tan~v/2!5x. ~1.3!

The FSS function~1.2! applies for both ferromagnetic and
antiferromagnetic couplings, and whether the number of
spins is even or odd. We provide convergent power series
expansions ofv(x) in powers ofx andx21 for the regimes
of small and largex, respectively, and establish the radii of
convergence of these expansions. We note that the one non-
trivial FSS function for periodic BC’s is of the form of~1.2!,
but with v(x)5p for all x.

At first sight, the anomalous behavior of the relaxation
time for free BC’s appears to bear on the question of the
dynamic critical exponent for this system. In Ref.@10#, it was
recently claimed thatz51 for this system, based on just this
fact, that for finiteL,tL;j asj→`. We believe this claim
is not warranted, for the following reason. The regimeL
!j is not characterized by critical fluctuations; rather, this
limit corresponds to the low-temperature, ‘‘frozen’’ regime
of the finite system, and thus we believe it inappropriate to
infer that z51. In fact, we show in Sec. II D that in the
oppositeregime,L@j@1, which is characterized by critical
fluctuations, one actually obtainstL;j2 for free BC’s. Ad-
ditionally, an erroneous claim made in Ref.@10# is that one
recoversz52 only for theinfinite system,L→`, whereas in
actualityz52 for the finite system whenL@j. In short, the
dynamic critical exponent is independent of the BC’s when
the system is large enough for critical phenomena to mani-
fest. A detailed discussion of this and other claims made in
Ref. @10# is provided in Sec II E.

Our discussion in Sec. II D on the dynamic critical expo-
nent is based on our explicit, exact results for the relaxation
time, tL5l1

21 . The broader,qualitative conclusion, how-
ever, that the dynamic critical exponent is independent of the
BC’s, can also be established on general grounds from the
form of the equation of motion using well-known theorems
of matrix analysis, without having to solve for the actual
spectrum of relaxation rates. These general arguments con-
cerning the influence of the BC’s on the spectrum of relax-
ation rates are presented in Sec. II F.

Finally, in Sec. III we summarize our major conclusions
and discuss the problematics of extrapolating the firstfinite
number of terms of the expansion appropriate to the regime
x,1 to the opposite regimex.1.

II. FINITE-SIZE GLAUBER MODEL

In this section we obtain the exact spectrum of relaxation
rates associated with free and periodic BC’s for the finite-
size 1D Glauber kinetic Ising model. Of particular interest is
the smallest relaxation ratel1 , since that controls the long-
time critical response. With these results, we then derive the
exact FSS functions associated with each of the two BC’s.
Finally, we discuss the dynamic critical properties of this
model in detail.

A. Equation of motion

We consider a 1D lattice of N Ising spins,
sn561,1<n<N. The Ising model for free BC’s is defined
by the Hamiltonian,
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H@s#52J(
n51

N21

snsn11 , ~2.1!

whereJ is exchange interaction energy. If instead we adopt
periodic BC’s, the upper limit of summation in~2.1! should
beN with sN11[s1 . Taking the lattice constant to be unity,
the lengthL of theN-spin system is given byL5N21 for
the case of free BC’s, whereasL5N for periodic BC’s. All
equilibrium thermodynamic properties of this model can be
obtained exactly, for both free and periodic BC’s@11#. For
our purposes we note the following. The infinite system
(L→`) has a critical point atTC50. The correlation length
j is given byj215ln@coth~uKu)], independent ofL and in-
dependent of the BC’s, whereK[J/kBT, andkB is Boltz-
mann’s constant. Note that the spin couplings are~anti!fer-
romagnetic forK.(,)0. In the critical region, (uKu→`),
j diverges asj; 1

2exp(2uKu).
In the 1D Glauber mode@7# the basic equation of motion

satisfied by single-spin, time-dependent nonequilibrium av-
eragessn(t) is given by

2
dsn
dt

5sn2
g

2
~sn211sn11!, ~2.2!

where g[tanh~2K! and sk(t)5^sk& t , with the angular
brackets denoting an average with respect to a nonequilib-
rium ensemble. Equation~2.2! defines, for 1<n<N, the dy-
namical evolution of the system when periodic BC’s are em-
ployed, i.e.,s0[sN and sN11[s1 . The equation of motion
~2.2! is derived from the assumption that the nonequilibrium
probability distribution satisfies a Markovian master equa-
tion satisfying detailed balance.

For free BC’s, ~2.2! applies for the interior spins,sn ,
2<n<N21, whereas additional dynamical equations must
be posited for the ‘‘end’’ spinss1 andsN . In Ref. @10# these
auxiliary dynamical equations were derived from the require-
ment of detailed balance, and are given by

2
ds1
dt

5s12bs2 ~2.3a!

and

2
dsN
dt

52bsN211sN , ~2.3b!

whereb[tanh(K). The form of ~2.3! differs from that of
~2.2! in that an end spin is coupled to only one nearest neigh-
bor, whereas in the interior of the lattice a spin is coupled to
its two nearest neighbors. Dynamical equations similar to
~2.3! have been derived previously for the 1D Glauber model
with anisotropic spin couplings@8#, and in the context of a
real-space renormalization-group analysis@9#.

B. Eigenvalue spectrum

The eigenvalues and eigenvectors of the equation of mo-
tion can be found by means of the substitution

sn5@A exp~ inu!1B exp~2 inu!#exp~2lt !, ~2.4!

whereA andB are constants and the eigenvaluel is real and
positive from general theorems pertaining to Markovian
master equations satisfying detailed balance@12#. Using~2.4!
in conjunction with~2.2!, one obtains the dispersion relation

l~u!512g cosu. ~2.5!

We can then restrictu to be real, so thatl remains real, and
to lie in the interval@2p,p#. The specific allowed values of
u within this interval are yet to be determined by the BC’s.
From~2.5!, however, we can see that, even before we impose
the BC’s, the eigenvalue spectruml(u) will be bounded
between 12ugu and 11ugu. We will find in all cases that the
smallest eigenvaluel1 is either given by 12ugu for all finite
L, or converges to it in the thermodynamic limit.

1. Periodic boundary conditions

It is easily shown that the assumption of periodic BC’s
leads to the requirement that the allowed values ofu in ~2.5!
are determined as the solutions of the equation
cos(Lu)51. This simple equation hasN roots,u52pp/L,
for integerp50,1, . . . ,L21. In particular, for this choice of
BC’s, the allowed values ofu are independent of the tem-
perature. Further, ifu satisfies cos(Lu)51, then so does
2p2u; hence the spectrum is symmetric aboutu5p. For
ferromagnetic couplings (g.0), the smallest eigenvalue
l1512g occurs for the rootp50, which is attainedinde-
pendentlyof the value ofL. For antiferromagnetic couplings
(g,0), the smallest eigenvaluel1512ugu occurs for
u5p, i.e., p5L/2, which is attained for anyevenvalue of
L. For these two cases, then, the valuel1512ugu is inde-
pendentof L, and hence the FSS function is trivial,f t[1.

For g,0 and L odd, however, it is easily seen that
l1512ugucos(p/L), which is achieved for both
p5(L61)/2. We will examine the form off t for this ex-
ceptional case in Sec. II C1.

2. Free boundary conditions

For free BC’s, the allowed values ofu are determined by
requiring that the equations of motion~2.3! for the end spins
be satisfied as well as that for the interior spins,~2.2!. After
some algebra, it can be shown thatu must satisfy the tran-
scendental equation

tan~Lu!5
22j̃ tanu

12 j̃ 2tan2u
, ~2.6!

where j̃[coth(j21), with j215 ln@coth(uKu)# the exact
correlation length given above. It is easy to see that
j̃5j1(3j)211O(j22). To our knowledge, this is the first
derivation of~2.6!.

It can readily be shown that there areN nontrivial roots
@13# of ~2.6! in the open interval 0,u,p. Furthermore, if
u is a root of~2.6!, then so isp2u; the spectrum of roots of
~2.6! is therefore symmetric aboutu5p/2. Using this fact, it
follows thatl1512ugucosu1 , whereu1 is the smallest root
of ~2.6!, independent of the sign ofK.
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C. Exact scaling functions

We now determine the FSS functionf t associated with
the relaxation timetL5l1

21 , wherel1 is the smallest of the
eigenvalues~2.5! consistent with the specified BC’s. For pe-
riodic BC’s the analysis is quite simple. However, as we see
below, for free BC’s the full analysis becomes somewhat
intricate.

1. Periodic boundary conditions

We have seen in Sec. II B 1 that for periodic BC’s we
havel1512ugu, with the one exception that for antiferro-
magnetic interactions and an odd number of spins,
l1512ugucos(p/L). Clearly, for all cases we have

t`5~12ugu!21, ~2.7!

and it follows that, except for the ring with an odd number of
spins and antiferromagnetic couplings,tL /t`51, indepen-
dent ofL, and thusf t[1.

For the exceptional system, which as discussed in Sec. I
exhibits frustration at low temperature, we may write

tL /t`5F11sin2~u1/2!sinh22S 12j D G21

, ~2.8!

whereu15p/L. In writing ~2.8! we have used the fact that

12ugu
2ugu

5sinh2S 12j D . ~2.9!

Note from ~2.8! that tL /t` is not in general of the form
asserted by the FSS theory,~1.1!. Strictly speaking,tL /t` is
a function of the single variablex only for the double limit,
L,j→`, subject to the constraint thatx5L/j is kept fixed,
and we have

f t~x!5@11~p/x!2#21. ~2.10!

However if bothL.5 andj.5, we may approximate~2.8!
by ~2.10!. Note that~2.10! displays the ‘‘normal’’ behavior
discussed in Sec. I, namelyf t(x)→xz asx→0, with z52.

2. Free boundary conditions

For the case of free BC’s, one finds that~2.8! continues to
apply; however,u1 now denotes the smallest root of the
transcendental equation~2.6! in the open @13# interval
(0,p). We can simplify our task of determiningu1 by not-
ing, using double-angle formulas, that the complete set of
roots of ~2.6! in the above interval coincide with the com-
bined set of roots obtained by separately solving

tanh~j21!cot~Lu/2!5tanu ~2.11!

and

tanh~j21!tan~Lu/2!52tanu, ~2.12!

again for values ofu in the interval (0,p). However, for
determiningu1 , only ~2.11! is of relevance. This is because
the smallest root of~2.11! necessarily lies in theu interval
(0,p/L), since for this interval the cotangent function spans
the range (0,̀ ) while the right-hand side of the equation

remains positive. By contrast, for this sameu interval ~2.12!
has no solution since the left-hand side is positive whereas
the right-hand side is negative. We now introduce the vari-
ablev(x,L)[Lu1 , where, from~2.11!, v is to be found as
the root of the equivalent equation

tan~v/L !tan~v/2!5tanh~j21! ~2.13!

in the interval (0,p). The corresponding formula fortL /t`
is given by

~tL /t`!21511sinh22S 12j D sin2S v

2L D , ~2.88!

which is formally similar to~2.8!.
Clearly, for arbitraryfinite values ofL andj, the rootv

of ~2.13! is a function of both independent variables, and not
solely a function of their ratio. The same remark thus applies
to tL /t` . However, when we apply the double limit
L,j→` with x remaining fixed,~2.88! becomes

f t~x!5„11@v~x!/x#2…21, ~2.14!

and ~2.13! yields v(x)[v(x,`), a function of the single
variablex, as the root of the transcendental equation

v tan~v/2!5x. ~2.15!

Equations~2.14! and ~2.15! should provide excellent ap-
proximations totL /t` and v(x,L) as long asL.5 and
j.5. Using Eq.~2.15! one may also writef t as

f t~x!5 1
2 @12cosv~x!#. ~2.148!

In Fig. 1, we show results for the rootv(x,L) of ~2.13! for
L55 and 10, respectively, as well as for the infinite system,
obtained by solving~2.15! numerically. In accord with our
previous discussion, the rootv(x,5) is barely distinguishable
from v(x) for x,1(j.5). The same holds forv(x,10) as
long asx,2.

Equations~2.14! and ~2.15! provide theexactFSS func-
tion for the 1D Glauber model with free BC’s. We remark

FIG. 1. The solid curve is the auxiliary functionv(x) for free
boundary conditions in the double limitL,j→`, for fixed
x5L/j, as obtained by solving~2.15! using numerical methods.
The finite-size scaling functionf t(x) is given in terms ofv(x)
according to~2.14!. The arrow indicates the radius of convergence,
R55.2794 . . . , of theseries expansion~2.18! in ascending powers
of x. Similarly, expansion~2.23!, in ascending powers ofx21, con-
verges foruxu.R. Also shown are the rootsv(x,L) vs x for sys-
tems of lengthL55 and 10, respectively.
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that this result applies for an even or odd number of spins
and regardless of whether the interactions are ferromagnetic
or antiferromagnetic. Note that~2.10!, the only nontrivial
scaling function for periodic BC’s, is of the form of~2.14!,
but with v(x)5p for all x. For free BC’s we must first
solve~2.15! for the rootv(x) beforef t(x) is fully specified.
Analytically, it is straightforward to develop the leading
terms

v~x!→A2x ~x!1! ~2.16!

and

v~x!→p ~x@1!. ~2.17!

For intermediate values ofx we provide power-series expan-
sions forv(x) below. Combining~2.16! with ~2.14!, it can
be seen thatf t(x)→x as x→0, and thus the FSS function
associated with free BC’s does not exhibit the conventional
limiting behaviorf t→xz. As discussed in Sec. I, this anoma-
lous behavior off t is related to the freezing of the system at
low temperature.

A plot of the resulting scaling functionf t(x) from ~2.14!,
having used our numerical data forv(x), is shown in Fig. 2.
In Fig. 2 we also display the results of Ref.@10#. The latter
deviates significantly from our exact results. As we discuss
in Sec. II E, the results of Ref.@10# were obtained through an
unjustified extrapolation of a series expansion result outside
its domain of validity. This underscores the need to carefully
establish the radius of convergence of series expansions of
v(x). In the following, we derive expansions ofv(x) in
powers ofx andx21 for the regimes of small and largex,
respectively, and establish their radii of convergence. These
expansions are superfluous for the purpose of creating the
data shown in Fig. 2. However, in the course of deriving
these expansions we will obtain considerable information
concerning the analytic properties ofv(x) in the complex
x plane. As discussed in Sec. III, the analytic properties of
v(x) are of crucial importance to any effort to extrapolate
results obtained for the regime of smallx to that of largex
~or vice versa!.

a. Power series in x.We have utilized theMAPLE com-
puter algebra system to develop an expansion of the rootv

of ~2.15! about the pointx50. Our procedure consisted of
substituting in~2.15! an arbitrary number of terms of the
series expansion of tan(v/2) in powers ofv, and then re-
verting the equation so as to obtainv as a function ofx. In
this manner we arrived at

v~x!5A2x@12 1
12x1 11

1440x
22 17

40 320x
32 281

9 676 800x
4

1 44 029
3 832 012 800x

51•••#. ~2.18!

Here we list only the first six terms, although in practice we
have generated a large number of additional terms.

The most efficient method for determining the radius of
convergence,R, of the power series in~2.18! is to note that
this quantity can be identified with the smallest value of
uxu, other thanx50, that corresponds to a singularity of
v(x) in the complexx plane. To determine the singularities
of v(x) we first define the functionV(v)[v tan(v/2), so
that, using~2.15!, dv/dx51/V8(v). It follows that the sin-
gularities ofv(x), branch points, are those values ofx asso-
ciated with the zeros ofV8(v). Now V8(v)50 if
v1sinv50. With the exclusion ofv50, all roots of the
latter equation are complex. Moreover, ifv5r1 is is a zero
of V8(v), wherer ands are real and positive, then so are
r2 is,2r1 is, and2r2 is. Furthermore, these four zeros
of V8(v) correspond to complex-conjugate pair values of
x, the singularities ofv(x), namelyV(v) and @V(v)#* ,
sinceV(2v)5V(v) andV(v* )5@V(v)#* . Clearly it is
sufficient to search for the zeros ofV8 in the first quadrant of
the v plane. Note also that upon using~2.148! we have
d ft/dx5 1

2 (sinv)dv/dx. Hence the singularities off t(x) co-
incide with those ofv(x).

We may summarize as follows: Excludingv50, which
corresponds tox50, in the following the quantityvn will
denote thenth zero ofV8(v) in the first quadrant in thev
plane, and the corresponding branch point singularity of
v(x), to be denoted byxn , is given byxn5V(vn). Our task
thus consists of determining thevn and the corresponding
xn , and then noting thatR5min(uxnu).

MAPLE proved extremely useful for carrying out the actual
numerical calculations; however, it was necessary to provide
suitable input information concerning the approximate loca-
tion of the rootsvn . A straightforward analysis shows that
the equations determiningvn , for n50,1,2 . . . , aregiven
by

vn5~2n11!p1r n1 isn , ~2.19!

where bothr n andsn are real and positive and satisfy the
coupled nonlinear equations

r n5cos21~sn /sinhsn!, ~2.20!

and

sn5cosh21F ~2n11!p1r n
sinr n

G . ~2.21!

Note that 0,r n,p/2. In particular, there are aninfinite
number of rootsvn in the first quadrant, and each of these
corresponds to a singularityxn5V(vn) of v(x). It turns out
that the~symmetric! pair of singularities lying closest to the
origin of thex plane occur forn50, and these are given by
x0 and x0* , where x0523.301222 5891 i4.119 962 917.

FIG. 2. The exact finite-size scaling functionf t(x) vs x5L/j
for free boundary conditions, given by~2.14! in conjunction with
~2.15!, shown as the solid curve. The dashed curve is the corre-
sponding result given in Ref.@10#.
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Thus, R5ux0u55.279 409 5. The corresponding value of
v0 is given byv054.212 392 2381 i2.250 728 636.

The fact that the singularities in thex plane are removed
from both the real and imaginary axes is responsible for the
absence of any hint in both Figs. 1 and 2 that the series
~2.14! and ~2.18! converge onlyuxu,R. This is also the
cause of the irregular pattern in the variation in the signs of
the expansion coefficients in~2.18!, especially those not
listed but which we have generated usingMAPLE. Clearly
there is no obvious direct connection between the physics of
this system and the value of the radius of convergence. The
latter reflect global analytic properties of the functionv(x)
throughout the complexx plane, whereas the FSS function
uses the solution of~2.15! only for real positivex. We will
comment on the broader implication of these results in Sec.
III.

b. Power series in x21. Inspecting~2.15!, and as noted
in ~2.17!, for large positive values ofx, the functionv(x)
approaches the valuep from below. To develop an expan-
sion ofv(x) in powers ofx21, we first rewrite~2.15! as

tan@~p2v!/2#

p2~p2v!
5
1

x
, ~2.22!

and useMAPLE to expand the left-hand side in powers of the
small quantityp2v, and then revert so as to obtain the
latter quantity in powers of the small quantityx21. The final
result is

v

p
5122x2114x222 2

3 ~122p2!x232 16
3 ~p223!x24

2 2
15 ~3p42200p21240!x251•••. ~2.23!

Determination of the radius of convergence of this series
provided a serious challenge. General theorems@14# relating
to Lagrange’s method of series reversion proved insufficient
because of the fact thatv is a multivalued function ofx
possessing an infinite number of branches. These theorems
relate to thetotality of branches ofv(x), rather than to any
individual branch. More specifically, in principle the above
branch ofv(x), which equalsp as one approaches the ori-
gin of thex21 plane, could have singularities at any of the
points xn

21 , where thexn were introduced in Sec. II C2a.
Now the sequence of valuesuxnu grows without bound for
n→`. Hence,in principle, the radius of convergence of the
expansion~2.23! might be identically zero. In practice, how-
ever,R might be as large asux0

21 u, if the other values of
uxn

21u are not singular points of the given branch. One can
put the question as follows: What is the location of the sin-
gularity, lying closest to the origin in thex21 plane, of the
specific branch of interest? To our knowledge, general theo-
rems in the mathematical literature do not address this ques-
tion.

What ultimately proved successful for us was to explicitly
determine, using graphical techniques offered byMAPLE, the
domain of the conformal mapping of a family of concentric
circles and the corresponding family of orthogonal, diverg-
ing rays with respect to the pointv5p using~2.22!. In this
empirical manner, we found that the pair of points lying
closest to the origin in thex21 plane for which the mapping

~2.22! is not conformal are approximately given by
20.126 i0.15. These numerical values allow us to identify
this closest pair of singularities withx0

21 and (x0
21)* . We

may therefore conclude that the power series~2.23! con-
verges ifuxu.5.279 410. We have no doubt that our finding,
based on graphical methods, could be confirmed by an el-
egant and rigorous proof, even though we did not succeed in
our attempts to do so.

D. Dynamic critical exponent

The dynamic scaling hypothesis@5# states that,in the
critical region, the smallest relaxation ratel1 vanishes with
the correlation lengthj asl1;j2z. We identify the critical
region as satisfying the inequalitiesL@j@1. We will find
thatz52 for the Glauber model, independent of the BC’s. In
Sec. II E we comment on a recent claim@10# that z51 for
this model with free BC’s.

1. Periodic boundary conditions

As we have seen in Sec. II B 1, with the exception of the
ring with an odd number of spins and antiferromagnetic in-
teractions,l1512ugu independent ofL. We can rewrite this
using ~2.9!, with the resultl15 tanh@(2j)21#tanh(j21).
Hence, in the critical region,l1;

1
2j

22, independent of the
size of the ring, and we havez52.

For the one exceptional case, we found previously that
l1512ugucos(p/L). In the regime where bothL andj are
large compared to the lattice constant, we have, to leading
order, l1'

1
2(j

221p2L22). Obviously, for L@j,l1'
1
2

j22@11(pj/L)2#, and soz52. Hence we obtain the result
z52 for all cases of periodic BC’s. We note that, for the
opposite regime,j@L,l1'

1
2L

22@p21(L/j)2#. As we have
stated previously, this is the one instance of the 1D Glauber
model that exhibits ‘‘normal’’ scaling behavior, where, for
finite L, l1;L2z asj→`.

2. Free boundary conditions

We found in Sec. II B 2 that, independent of the sign of
the coupling constant,l1512ugucosu1 , where u1 is the
smallest root of~2.6!. We then showed in Sec. II C thatu1 is
equivalent to the rootv of ~2.13! in the interval (0,p),
wherev5Lu1 . An alternate, exact expression forl1 can
thus be given in terms ofv,

l1~L,j!5tanhS 12j D tanhS 1j D F11sinh22S 12j D sin2S v

2L D G .
~2.24!

In the critical regime,L@j@1, it suffices to use~2.23! and
in particular to replacev by p, even though that equation
was derived under the assumption thatL,j→` for
a fixed value of L/j. We find, to leading order,
l1'

1
2j

22@11(pj/L)2#. Once again we conclude that
z52, just as we obtained for periodic BC’s.

E. Comparison with Ref. †10‡

In this section we compare our results with those obtained
in Ref. @10# for the case of free BC’s. We will show that the
major conclusions of that work are flawed, since they are
based on an unjustified extrapolation of results valid exclu-
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sively in the regimeL!j, to all values ofL/j. This includes
the unwarranted conclusion that the dynamic critical expo-
nent is given byz51, contradicting our resultz52 given in
Sec. II D, as well as an erroneous form for the FSS function
listed below~see also Fig. 2!.

We have found that for sufficiently small values of
x5L/j, the quantityl1(L,j) may be expanded as

l1~L,j!5L22(
n50

`

Pn~L
22!xn11, ~2.25!

wherePn(u) is a polynomial of degreen in the variableu.
We list here the first five polynomialsPn , which we have
obtained usingMAPLE,

P0~u!51, P1~u!5~225u!/6, P2~u!

5~2240u153u2!/90,

P3~u!52~161924u23276u212651u3!/7560,
~2.26!

P4~u!5~821360u120 664u2237 640u3

119 273u4!/113 400.

Equations~2.25! and~2.26! were derived by first developing
v(x,L), the solution of~2.13! for finite L, as an expansion
in L/j, substituting that expansion in~2.24!, and then ex-
panding~2.24! as a power series inx. A useful check on the
polynomials Pn(u) can be had by noting that
Pn(1)5(21)n/(n11)!, which follows from the fact that
l1(1,j)512exp(j21), as can easily be shown. A further
consistency check can be had if we use~2.25! to consider
l1(L,j)/l1(`,j) in the double limitL,j→` for a fixed, but
sufficiently small value ofx5L/j. Using l1(`,j) from
~2.24!, and comparing with~2.14!, the following result must
hold, again for sufficiently smallx:

2(
n50

`

Pn~0!xn21511@v~x!/x#2. ~2.27!

Using the expansion~2.18! for v(x), we have usedMAPLE to
verify this relation between the values ofPn(0) and the val-
ues of the expansion coefficients in~2.18!. Equation~2.27!
therefore holds foruxu,R55.297 . . . , theradius of conver-
gence of~2.18!.

We now discuss in detail the procedures invoked in Ref.
@10#. In that work, the first two terms of~2.25! are correctly
given; no further terms are listed, however. Even though it is
stressed in Ref.@10# that these are but the first two terms of
an expansion forl1(L,j), arrived at by consideringL!j,
these terms are nonetheless~erroneously! extrapolated to the
thermodynamic limit,L→`, for fixed finite j. Let us con-
sider the consequences of this extrapolation procedure.
Based on just the first two terms of~2.25!, one might con-
clude, along with Ref. @10#, that to leading order
l1(`,j)5

1
3j

22. We note, however, that this seemingly sen-
sible result forl1 is actually invalid, since it lies outside the
allowed spectrum of relaxation rates for the Glauber model
~2.5!, i.e., 13j

22,12ugu' 1
2j

22. Moreover, to be consistent,

if we were to extrapolate the third, fourth, and all further
terms in ~2.25!, it is readily seen that this procedure yields
the patently nonsensical resultl1(`,j)5`, in contradiction
with the correct result,l1(`,j)'

1
2j

22, appropriate to the
critical regimeL@j@1. Of course the origin of this incor-
rect, divergent result forl1(`,j) is the invalid procedure
utilized in Ref. @10# of extrapolatingL→`, since~2.25! is
only valid for the opposite limitL!j. As we have seen in
Sec. II C 2, entirely different expansions@see ~2.18! and
~2.23!# apply for the two regimesL!j andL@j.

In Ref. @10#, the first two terms of~2.25! were also used to
construct their version of the FSS function,f t(x) for arbi-
trary values ofx, with the resultf t(x)5x/(31x). Note that
even for the regimeL!j, the result of Ref.@10# ( f t→x/3)
disagrees with the correct limiting formf t→x/2 that we ob-
tain from our exact result~2.14! in the small-x regime. This
discrepancy is due to the use in Ref.@10# of the incorrect
valuel1(`,j)5

1
3j

22. Moreover, for all other, larger values
of x there is significant disagreement between our exact re-
sult for f t(x) and that given in Ref.@10#, as can be seen in
Fig. 2.

Finally, returning to~2.25!, we have to leading order,
l1'(Lj)21 whenL!j. This fact was used in Ref.@10# to
conclude, incorrectly, thatz51. That conclusion is specious
since, as we have stressed above, it is misleading to associate
critical phenomena with this regime. The dynamic critical
exponent can be inferred only by studying the behavior of
l1 in the opposite regime,L@j@1, where~2.25! no longer
applies. As we have seen in Sec. II D, the analysis for that
regime yieldsz52.

F. Role of boundary conditions

In the preceding we have shown, using our explicit results
for l1 , that the dynamic critical exponent is given byz52
for both periodic and free BC’s. It is of interest to show that
the samequalitativeconclusion, that the dynamic critical ex-
ponent is independent of the BC’s, can be obtained without
explicitly calculatingl1 , by invoking a powerful theorem of
Ledermann@15# for Hermitian matrices that is well known in
the theory of lattice dynamics.

Our starting point is to note that the equations of motion
~2.2!, together with the periodic BC’s, are equivalent to the
matrix equation

d

dt
S52M•S, ~2.28!

whereS is theN-dimensional vectorS5(s1 , . . . ,sN), and
M is the real symmetricNxN matrix, whose only nonzero
elements are given byMk,k51 along the diagonal,
1<k<N, Mk,k115Mk11,k52g/2 along the super
diagonals and subdiagonals, 1<k<N21, and
M1,N5MN,152g/2 in the ‘‘corners’’ of the matrix. The ei-
genvalue spectrum was given in Sec. II B 1 as
l512cos(2pp/N) for integerp, 0<p<N21. Note that
for very largeN, this spectrum is dense throughout the in-
terval @12ugu,11ugu#.

For free BC’s,~2.28! continues to apply, except thatM
is replaced by anN3N real tridiagonal matrixM 8, identical
to M , except thatM1,28 5MN,N218 52b and the corner ele-
mentsM1,N8 5MN,18 50. Note thatM 8 is not symmetric as it
stands; in fact it is a real ‘‘quasisymmetric’’ tridiagonal
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matrix. As such,M 8 can be cast into symmetric form
using a similarity transformation given in Ref.@16#,
M 8→M̄ 85PM8P21. The matrix M̄ 8 is identical toM 8,
except for the four elementsM̄1,28 5M̄2,18 5M̄N21,N8
5M̄N,N218 52a, wherea5b/A11b2.

Now the key point is that the pair of Hermitian matrices
M andM̄ 8, corresponding, respectively, to periodic and free
BC’s, differ by only four rows, the top two and bottom two;
otherwise they are identical. As applied to the present situa-
tion, the Ledermann theorem states that within any interval
of the real line, the number of eigenvalues ofM can differ by
at most eight~twice the number of differing rows! from
those ofM̄ 8. This has the immediate consequence that in the
limit of large N, the smallest eigenvalue ofM̄ 8,l18 , cannot
be separated by an interval offinite width from the smallest
eigenvalue ofM , namelyl1512ugu. These considerations
prove that asN→` the smallest eigenvalue for the case of
free BC’s coincides with the smallest eigenvalue for the case
of periodic BC’s, and hence that the dynamic critical expo-
nent is independent of the BC’s in the thermodynamic limit.

III. SUMMARY

In this paper we have investigated the finite-size scaling
behavior of the critical relaxation timetL(j) for the Glauber
kinetic Ising model of spins on a 1D lattice of finite length
L, wherej is the bulk correlation length, for both periodic
and free BC’s and for ferromagnetic and antiferromagnetic
interactions. We have seen that the ratiotL(j)/t`(j) be-
comes a functionf t of the single variableL/j in the double
limit L,j→`, with the ratiox5L/j held fixed, and we have
determined the exact form off t(x) for each choice of BC’s
in Sec. II. Having establishedf t for all x, it follows that
~1.1! provides a good approximation totL(j) when both of
the inequalitiesL/d.5 and j/d.5 apply, whered is the
lattice constant. We are not familiar with any other model of
critical dynamics for which the exact form of the FSS func-
tion has been determined.

The dynamic scaling hypothesis@5# states that thebulk
relaxation timet`(j) scales asjz for large j, wherez is
the dynamic critical exponent. In Sec. II we have emphasized
that the nominal critical region for thefinite system
should be identified with the regimeL@j@d. In this regime
one can expect thattL(j) also scales asj

z. We have explic-
itly confirmed that, for the 1D Glauber model, in the regime
L@j@d, tL(j) scales asj

2, independent of the BC’s and
independent of the sign of the coupling constant, yielding
z52, the well-known value of the dynamic critical exponent
for the bulk system. In Sec. II F we have used a well-known
theorem from the theory of lattice dynamics to provide an
explanation for the fact thattL(j) scales asj

2 irrespective of
the specific BC employed. In particular, we showed that in
the thermodynamic limit the smallest relaxation rate, and
hence the dynamic critical exponent, is unaffected by a
change in BC’s. In Sec. II E we discussed in detail the results
of Ref. @10#, and in particular the claim thatz51 for this
model. We showed that this conclusion is inappropriate since
it was arrived at for theoppositeregime,L!j, which is not
the nominal critical region for a finite system.

The FSS functionf t(x) is conventionally expected to

vanish asxz in the small-x limit @6#. That is, tL(j) is as-
sumed to scale asLz for finite L in the regimeL!j. This
expectation, however, is not generally fulfilled for the
present model. For periodic BC’s we find, with one excep-
tion, that for fixed, finiteL, tL;2j2 asj→`, whereas for
free BC’s we find, again for fixedL, that tL;Lj asj→`.
This anomalous behavior, oftL(j) becoming divergent as
j→` for finite L, is related to the fact that the critical tem-
peratureTC50 for this system. Even for finiteL, the dynam-
ics stops in the low-temperature limit, andtL(j) diverges as
j→`. Note that this low-temperature ‘‘freezing’’ of the dy-
namics for the finite system is not a critical effect. The dy-
namics stops in this limit because the finite system can attain
its lowest-energy ground state, and hence the single-spin re-
laxation time diverges. The one exceptional system~that
with periodic BC’s, antiferromagnetic interactions, and an
odd number of spins! cannot attain a ground-state configura-
tion. This system exhibits frustration asT→0 K, and the
lifetime of the slowest mode remains finite asj→`. Indeed,
for this one system we havetL;L2 asj→`, in agreement
with the conventional expectation.

The form of the FSS function is rather intricate in the case
of free BC’s. In particular, the result of~2.14! involves the
function v(x), which is a solution of the transcendental
equation~2.15!. As shown in Sec. II C 2, this function pos-
sesses an infinite number of branch points in the complexx
plane. As a result of these singularities, the series expansion
~2.18! in powers of x converges only for
uxu,R55.2794 . . . , whereas the expansion~2.23! in pow-
ers ofx21 converges only foruxu.R.

These considerations hint of a potentially serious lesson
that can be inferred for the FSS for other specific model
systems. In essence, FSS implicitly provides a hope-
ful message, that knowledge of the properties of a system
for j@L@d can be used to infer properties in the regime
L@j@d. This message is warranted as long as one can es-
tablish the major properties of the FSS function throughout
the complexx plane. In particular, the presence of math-
ematical singularities, such as those manifested for the 1D
Glauber model with free BC’s, must be expected to play an
important role in any efforts to extrapolate to the regimex
@1 results derived for the opposite regime,x!1. To use the
present model as a specific example, suppose that one is
informed about~2.14! and the six terms displayed in~2.18!
derived for the regimej@L@d, but that one is unaware of
~2.15! and the expansion~2.23!. With such limited informa-
tion, to what extent can one make useful inferences for this
model regarding the behavior oftL(j) for the opposite re-
gime L@j@d? ~As discussed in Sec. II E, it was precisely
this, unjustified, extrapolation of the first few terms of an
expansion appropriate to the regimez@L@d to the regime
L@z@d that led in Ref.@10# to incorrect results for the
dynamic explicit exponent of the FSS function.! Unfortu-
nately, without a comprehensive study the correct answer to
this question is, virtually nothing. Elsewhere@17# we present
just such a study for the present model in the context of Pade´
approximants. More generally, the global analytic properties
of the FSS function must be carefully considered and ac-
counted for before any proposal for extrapolation
to large values of x can be regarded as credible.
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