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We obtain the exact critical relaxation time(¢£), where¢ is the bulk correlation length, for the Glauber
kinetic Ising model of spins on a one-dimensional lattice of finite lehgtar both periodic and free boundary
conditions(BC'’s). We show that, independent of the BC'’s, the dynamic critical exponent has the well-known
valuez=2, and we comment on a recent claim thatl for this model. The ratio (&)/7..(£), in the double
limit L,&é— o for fixedx=L/¢&, approaches a limiting functional forrfi,(L/£), the finite-size scaling function.

For free BC’s we derive the exact scaling functioix) =[ 1+ (w(x)/x)%] "1, wherew(x) is the smallest root

of the transcendental equatiartan(w/2)=x. We provide expansions @§(x) in powers ofx andx ™! for the
regimes of small and large respectively, and establish their radii of convergence. The scaling function shows
anomalous behavior at smal] f_(x)~Xx, instead of the usudl,(x)~x? asx—0. This is because, even for
finite L, the lifetime of the slowest dynamical mode diverges Tor» 0 K. For periodic BC’s, with the
exception of one systenr; is independent ok, and hencd ,=1. The exceptional system, that with an odd
number of spins and antiferromagnetic couplings, exhibits frustratidn=a2 K, and the scaling function is
given by f (x)=[1+ (w/x)?]" . [S1063-651X%96)07306-(

PACS numbeps): 64.60.Ht, 02.70.Lq, 05.70.Jk

[. INTRODUCTION In numerical simulations it is often difficult to achieve the
large-size regime necessary to extract reliable information
The finite-size scalingFSS method[1] is a powerful about critical phenomena. Predictions could be made using
technique for studying critical phenomena that is uggd]  (1.1) if one knew the form of the FSS function; however, it is
to extrapolate to the thermodynamic limit information ob- rare that one has the exact form of the FSS function. The two
tained from systems of finite linear site Provided that the casesx<1 andx>1 clearly correspond to vastly different
“bulk,” thermodynamic limit L—c has been takef4], as  physical regimes. The analytic form of will thus be quite
the temperatur@ approaches the critical temperatdigthe  different in these two regimes. Frequently, one’s limited
correlation lengthé(T) diverges and thermodynamic quanti- knowledge off _ is represented by the first few terms of
ties become singular. The bulk-system relaxation timeseparate expansions in an appropriate small quantity for ei-
7..(£€) diverges in the critical region a&’, wherez is the ther large or smal. The radius of convergence of each such
dynamic critical exponer]. AdoptingL andé¢ as the basic  expansion is determined by the singularities pin the com-
thermodynamic variables, the FSS theory predicts that, foplex x plane, which reflect global analytic propertiesfof
L and ¢ sufficiently large compared to the lattice spacing Typically, some or even all of these singularities have little
d, the relaxation timer (&) obtained for a finite system is direct connection to the physics of the model, yet vitally

related tor..(&) by determine the domain of validity of the series expansion rep-
resentation off . for regions of either small or large, real,
T (&) 1.(&)=F(L/E), (1.2 positivex. This will be amply demonstrated in Sec. Il C for

the present model. Extrapolations to one regimef gi)
wheref . is the FSS function. According t@l.1), for a se- based on a limited number of expansion terms appropriate to
guence of systems which differ in their individual values of a second regime may thus prove problematic. It is of interest
L and ¢, but which have a common value of thatio L/¢, to note, therefore, that recently it has been demonstf&ted
the corresponding ratios (&)/7..(£) are also equal. One can for several model systems that FSS may be used to extrapo-
thus identify the scaling function with the limiting value of late Monte Carlo simulation data from the regime of rela-
7. (&) 7,.(&) for L,é—o0, subject to the constraint that the tively small systemsx<(1, to the desired large-size regime,
ratio x=L/¢ remains fixed. The scaling functioh. is uni-  x>1, a point that we will discuss further in Sec. Ill.
versal in the sense that it does not depend upon irrelevant In this paper we derive the exact FSS functigrassoci-
operatorgiin the language of renormalization-group thepry ated with the critical relaxation time_(¢) for the Glauber
but may depend on boundary conditig8$ (BC's). We note, [7] kinetic Ising model of spins on a one-dimensiohD)
however, that while the scaling function provides tbading  lattice for both periodic and free BC’s. This is an analytically
behavior ofr (£)/7..(£) when bothL and ¢ are sufficiently — tractable model of critical dynamics, and it is of considerable
large compared tal, there are numerous correction termsinterest to have an exact expression ffior since it can pro-
involving d/L andd/¢ that are not included inf1.1). [See, vide a testing ground or reference system for theories of the
for example,(2.25 and the discussion in Sec. IIE. FSS function. We note thdt is conventionally take6] to
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have the following twoa priori asymptotic limits: (i)  where w(x) denotes the smallest real positive root of the
f(xX)—1 for x—o, which follows simply from the defini- transcendental equation

tion of f; and (i) f(x)~x* for x—0. The latter result is

based[6] on the assumption that, for finite, the lifetime  tanw/2) =x. 1.3

7. remains finite as £—, and in particular that The FSS function1.2) applies for both ferromagnetic and
7L(®)~L*% As we will show, however, this assumption does antiferromagnetic couplings, and whether the number of
not usually hold for the 1D Glauber model for which gpins is even or odd. We provide convergent power series
Tc=0 K, since in most cases the dynamics stopsexpansions ofo(x) in powers ofx andx~* for the regimes
(“freezes”) in this limit independent of the size of the sys- of small and largex, respectively, and establish the radii of
tem and hencer, (=) is infinitely largeeven if L is finite  convergence of these expansions. We note that the one non-
The single exceptional case, whefig«) remains finite for  trivial FSS function for periodic BC's is of the form ¢1.2),

finite L, features frustration at zero temperature. but with w(x) = 7 for all x.

In Sec. Il we present the basic equation of motion satis- At first sight, the anomalous behavior of the relaxation
fied by nonequilibrium single-spin averages in the 1Dtime for free BC's appears to bear on the question of the
Glauber model. We then derive the exact spectrum of relaxdgynamic critical exponent for this system. In Rgf0], it was
ation rates for the finite-size Glauber model. We first obtain(ecenﬂy claimed that=1 for this system, based on just this
the spectrum in the case where one assumes periodic BC'ct, that for finiteL, 7~ £ asé—o. We believe this claim
i.e., where the system is given as a ring of spins. After thals not warranted, for the following reason. The regitne
we obtain the spectrum for the more difficult case of free<¢ js not characterized by critical fluctuations; rather, this
BC's, defined by(2.3), chosen in accord with the require- |imit corresponds to the low-temperature, “frozen” regime
ment of detailed balance. We remark that the finite ring ofsf the finite system, and thus we believe it inappropriate to
spins was explicitly 'treated_ in Glauber’s.original arti€®;  infer thatz=1. In fact, we show in Sec. Il D that in the
the spectrum associated with free BC's is presented here fojnositeregime, L > ¢> 1, whichis characterized by critical
the first time to the best of our knowledge. Of key interest Offluctuations, one actually obtaing ~ ¢2 for free BC's. Ad-
course is\;, defined as themallestrelaxation rate allowed ditionally, an erroneous claim made in REEQ] is that one
by the BC’s, since this quantity controls the long-time criti- ;o coverg =2 only for theinfinite systemL — o, whereas in
cal response. We present detailed expressions féor both  5ctyalityz=2 for the finite system wheb> &. In short, the
periodic and free BC's. These results then enable us to egynamic critical exponent is independent of the BC’s when
tablish the_exactform of f.(x) . and to consider the issue of the system is large enough for critical phenomena to mani-
extrapolation of results derived fox<1 to the regime fest. A detailed discussion of this and other claims made in
x>1. o _ Ref.[10] is provided in Sec Il E.

For periodic BC's, many properties of the Glauber model oy discussion in Sec. Il D on the dynamic critical expo-
are well known[8,9], in particular that the bulk-system dy- nent is based on our explicit, exact results for the relaxation
namic critical exponent has the value=2. As we will  {jme, 7.=\;'. The broadergualitative conclusion, how-

show,zfo_r periodic BC's one ob.talns, W_'th one exception, thatever, that the dynamic critical exponent is independent of the
7, ~£°, independent of Land is thusdwergentfpr 5._”0'. . BC’s, can also be established on general grounds from the
For the_se sys_te_ms, then, the scaling func_tlon IS t”\_/'al'form of the equation of motion using well-known theorems
f.=1, sincer_ is independent oL. The exceptional case is ot matrix analysis, without having to solve for the actual
the system with antiferromagnetic couplings and @ gpecirym of relaxation rates. These general arguments con-
number of spins. This system does not “freeze” at low tem-cohing the influence of the BC's on the spectrum of relax-

perature but instead exhibits frustration, with the conseyiqn rates are presented in Sec. Il F.

quence that the lifetime of the slowest dynamical mode re- - rina)y in Sec. Il we summarize our major conclusions
mains finite, where we find that ~L" as {—«. This is 504 giscuss the problematics of extrapolating the firte

what may be termed “normal” scaling behaviar; finite a5 mper of terms of the expansion appropriate to the regime
§—c0, which, we recall, is the behavior in systems with y 1 {5 the opposite regime> 1.

Tc#0. The anomalous behavior ef for the other instances
of the 1D Glauber model with periodic BC’s arises because Il. FINITE-SIZE GLAUBER MODEL
these systems do not exhibit frustration and simply freeze at ) _ ) _
low temperatures. In Sec. Il C, we present the only nontrivial  In this section we obtain the exact spectrum of relaxation
FSS function for periodic BC's, that for the frustrated sys-rates associated with free and periodic BC's for the finite-
tem. size 1D Glauber kinetic Ising model. Of particular interest is
For free BC’s, we find in all cases anomalous behavior othe smallest relaxation rate,, since that controls the long-
T, again due to the lack of an Opportunity to deve]op frus_tlme critical response. With these results, we then derive the
tration at low temperature. For these BC's, however, we findéxact FSS functions associated with each of the two BC's.
for fixed L, 7 ~ & for ¢, as opposed te, ~ &2 for peri- Finally, we discuss the dynamic critical properties of this
odic BC's. In Sec. IIC we obtain, in the double limit modelin detail.
L, é—o for fixed x=L/¢, the exact form of the FSS func- i ¢ i
tion for the system with free BC’s, with the result A. Equation of motion
We consider a 1D lattice of N Ising spins,
on==*1,1<n=<N. The Ising model for free BC’s is defined
f.(x)=A+[w(x)/x]>) "L, (1.2 by the Hamiltonian,
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N-1 whereA andB are constants and the eigenvalues real and
Hlo]=-J E OnOnils (2.2 positive from general theorems pertaining to Markovian
n=1 master equations satisfying detailed balai®&. Using(2.4)

) . ) . in conjunction with(2.2), one obtains the dispersion relation
whereJ is exchange interaction energy. If instead we adopt

periodic BC's, the upper limit of summation i2.1) should
beN with oy ;=0 . Taking the lattice constant to be unity, A(0)=1-ycod. (2.9
the lengthL of the N-spin system is given biz=N-—1 for

the case of free BC's, whereas=N for periodic BC's. Al e can then restric to be real, so that remains real, and
equilibrium thermodynamic properties of this model can bey ji in the interval — 7, 7]. The specific allowed values of
obtained exactly, for both free and periodic BEKL]. For ¢ within this interval are yet to be determined by the BC's.
our purposes we note the following. The infinite systemFrom(z_S), however, we can see that, even before we impose
(L.—w?) has a critical point aTCfO. The correlation Iength the BC’s, the eigenvalue spectrun(d) will be bounded

¢ is given by¢~*=In[coth(|K])], independent oL and in-  petween 1-|y| and 1+|y|. We will find in all cases that the
dependent of the BC’s, whei€=J/kgT, andkg is Boltz-  gmalest eigenvaluk, is either given by *| | for all finite

mann’s constant. Note that the spin couplings (@mtifer- L, or converges to it in the thermodynamic limit.
romagnetic forK>(<)0. In the critical region, |K|— ),

¢ diverges as~ 1exp(2K]).
In the 1D Glauber modEg7] the basic equation of motion _ . _ o
satisfied by single-spin, time-dependent nonequilibrium av- It is easily shown that the assumption of periodic BC’s

1. Periodic boundary conditions

eragess,(t) is given by leads to the requirement that the allowed valueg of (2.5
are determined as the solutions of the equation
ds, % cos(L #)=1. This simple equation hds roots, §=2mp/L,
gt S 5 (Sn-1FSn+a), (22 forintegerp=0,1,...,L—1. In particular, for this choice of

BC's, the allowed values of are independent of the tem-
perature. Further, if¢ satisfies cod(#)=1, then so does
g0 hence the spectrum is symmetric ab@®ut 7. For

ferromagnetic couplings >>0), the smallest eigenvalue

where y=tanh2K) and s,(t)=(oy);, with the angular
brackets denoting an average with respect to a nonequili
rium ensemble. Equatiof2.2) defines, for k=n<N, the dy- > ;
namical evolution of the system when periodic BC's are em* 1 =1~ occurs for the roop=0, which is attainednde-
ployed, i.e.,5,=sy andsy.;=s;. The equation of motion pendentlyof the value ofL_. For antiferromagnetic couplings
(2.2) is derived from the assumption that the nonequilibrium(?<0), the smallest eigenvalua,=1—|y| occurs for
probability distribution satisfies a Markovian master equa-?= 7> I-€., p=L/2, which is attained for angvenvalue of
tion satisfying detailed balance. L. For these two cases, then, the value= 1_—|3_/| is inde-
For free BC’s,(2.2) applies for the interior spinss,, pendentof L, and hence the FSS fupc’glon is _tnwal,,z 1.
2<n<N-1, whereas additional dynamical equations must FOr ¥<O and L odd however, it is easily seen that
be posited for the “end” spins; andsy. In Ref.[10] these M1=1— |ylcos@@/L), ~which is achieved for both
auxiliary dynamical equations were derived from the require?= (L= 1)/2. We will examine the form of ; for this ex-

ment of detailed balance, and are given by ceptional case in Sec. Il C1.
ds; 2. Free boundary conditions
——— =5, 2. .
dt $17 8% (233 For free BC's, the allowed values éfare determined by
requiring that the equations of moti@®.3) for the end spins
and be satisfied as well as that for the interior spif%2). After
some algebra, it can be shown thamust satisfy the tran-
dsy scendental equation
— 7 =~ BSn-11SN, (2.3b
dt
) —ZEtane
where B=tanh(K). The form of (2.3 differs from that of tanLo)= m, (2.6)

(2.2) in that an end spin is coupled to only one nearest neigh-
bor, whereas in the interior of the lattice a spin is coupled to
its two nearest neighbors. Dynamical equations similar tQynere Ezcoth(g‘l), with & 1= In[coth(K|)] the exact

(2.3 have been derived previously for the 1D Glauber model.qrelation length given above. It is easy to see that

with anisotropic spin couplingg3], and in the context of a E=§+(3§)71+O(§72)- To our knowledge, this is the first
real-space renormalization-group analy€$ derivation of(2.6). ,

It can readily be shown that there axkenontrivial roots

B. Eigenvalue spectrum [13] of (2.6) in the open interval & #<r. Furthermore, if
The eigenvalues and eigenvectors of the equation of mof 1S @ root of(2.6), then so ism — 6; the spectrum of roots of
tion can be found by means of the substitution (2.6) is therefore symmetric about= 7/2. Using this fact, it

follows that\;=1—|y|cosd;, whered, is the smallest root
sp=[Aexpinf)+Bexp —ind)Jexp —At), (2.4  of (2.6), independent of the sign d.
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C. Exact scaling functions 1

We now determine the FSS functidn associated with
the relaxation timeLz)\Il, where\ is the smallest of the
eigenvalueg2.5) consistent with the specified BC'’s. For pe-
riodic BC’s the analysis is quite simple. However, as we see
below, for free BC’s the full analysis becomes somewhat
intricate.

o(x,L)/x

1. Periodic boundary conditions

We have seen in Sec. |l B 1 that for periodic BC's we
havex,=1—|y|, with the one exception that for antiferro-
magnetic interactions and an odd number of spins,
N1=1—]vy|cos(m/L). Clearly, for all cases we have

7= (1] 7|)_1, 2.7 FIG. 1. The solid curve is the auxiliary functian(x) for free
boundary conditions in the double limit,§é—o, for fixed

and it follows that, except for the ring with an odd number ofx=L/¢, as obtained by solving2.15 using numerical methods.
spins and antiferromagnetic couplings,/7..=1, indepen- The finite-size scaling functiori (x) is given in terms ofw(x)

dent ofL, and thusf =1. according to(2.14). The arrow indicates the radius of convergence,
For the exceptional system, which as discussed in Sec.R=5.27% ..., of theseries expansio(2.18) in ascendinglpowefs
exhibits frustration at low temperature, we may write of x. Similarly, expansiorf2.23), in ascending powers of -, con-

verges for|x|>R. Also shown are the roots(x,L) vs x for sys-

) . 1\]°1 tems of lengthL=5 and 10, respectively.
717, =| 1+Sir?(0,/2)sinh 2| — || (2.9
2§ remains positive. By contrast, for this saménterval (2.12
where 8, = xr/L. In writing (2.8) we have used the fact that has no solution since the left-hand side is positive whereas

the right-hand side is negative. We now introduce the vari-
able w(x,L)=L 64, where, from(2.11), o is to be found as
. (2.9 the root of the equivalent equation

tan w/L)tan w/2) =tanH £~ 1) (2.13

1
2¢

Note from (2.8) that = /7, is not in general of the form . )
asserted by the FSS theofg, ). Strictly speakingz /7., is I the interval (Os). The corresponding formula faf /7.,

1-|yl (
——— =sink?
2]yl

a function of the single variable only for the double limit, 'S 91Ven by

L,é—, subject to the constraint that=L/¢ is kept fixed, _ 1) ®

and we have (r l7.) " 1= 1+smh‘2<2—§) smz(z), (2.8)
f(0)=[1+(m/x)?]" %, (210 which is formally similar to(2.8).

) ) Clearly, for arbitraryfinite values ofL and ¢, the rootw
However if bothL>5 and¢>5, we may approximat€2.8)  4f (2 13 is a function of both independent variables, and not
by (2.10. Note that(2.10 displays the “normal” behavior  gqjely a function of their ratio. The same remark thus applies
discussed in Sec. |, namefy(x) —x* asx—0, with z=2. to 7,/7.. However, when we apply the double limit
L,&—c0 with x remaining fixed,(2.8') becomes

— 2y—-1
For the case of free BC’s, one finds tlat8) continues to f-00 =+ [wO)/X]) (214
apply, however,6; now denotes the smallest root of the and (2.13 yields w(x)=w(X,*), a function of the single
transcendental equatiof2.6) in the open[13] interval variablex, as the root of the transcendental equation
(0,7). We can simplify our task of determiningy by not-
ing, using double-angle formulas, that the complete set of wtanw/2)=x. (2.19

roots of (2.6) in the above interval coincide with the com- Equations(2.14 and (2.15 should provide excellent ap-

2. Free boundary conditions

bined set of roots obtained by separately solving proximations tor, /7, and w(x,L) as long asL>5 and
>5. Using Eq.(2.195 one may also writd , as
tanh( & 1)cot(L 6/2) =tand (2.11) ¢ 9 Ea(2.19 y T
f(x)=1[1—cosu(x)]. (2.14)
and

In Fig. 1, we show results for the roai(x,L) of (2.13 for
tanh( &~ tan(L 6/2) = —tand, (2.12  L=5 and 10, respectively, as well as for the infinite system,
obtained by solving2.15 numerically. In accord with our
again for values of¢ in the interval (Orr). However, for  previous discussion, the roat(x,5) is barely distinguishable
determiningd,, only (2.1J) is of relevance. This is because from w(x) for x<1(£>5). The same holds fan(x,10) as
the smallest root 0f2.11) necessarily lies in th® interval  long asx<2.
(0,7/L), since for this interval the cotangent function spans Equations(2.14) and (2.15 provide theexactFSS func-
the range (G¢) while the right-hand side of the equation tion for the 1D Glauber model with free BC’s. We remark
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. of (2.15 about the poinx=0. Our procedure consisted of
C . substituting in(2.15 an arbitrary number of terms of the
08 b series expansion of tan(2) in powers ofw, and then re-
L EXACT . verting the equation so as to obtainas a function ok. In
1 this manner we arrived at
0.6 -
~ r .-~ REF.10
Z [ ] o(X)=V2X[ 1~ $5X+ 1355X" — 75 526X° — 5676 500X
0.4 .
s 1 + sz ozeo ol (2.18
02F ] Here we list only the first six terms, although in practice we
v ] have generated a large number of additional terms.
ol ! ! o . The most efficient method for determining the radius of

0 2 4 6 8 10 convergenceR, of the power series i2.18) is to note that
this quantity can be identified with the smallest value of
FIG. 2. The exact finite-size scaling functidn(x) vs x=L/¢  |X|, other thanx=0, that corresponds to a singularity of
for free boundary conditions, given k.14 in conjunction with ~ @(X) in the complexx plane. To determine the singularities
(2.15, shown as the solid curve. The dashed curve is the correof w(x) we first define the functiof)(w)=w tan(w/2), so
sponding result given in Ref10]. that, using(2.195, dw/dx=1/Q)' (w). It follows that the sin-
gularities ofw(x), branch points, are those valuesxofsso-
that this result applies for an even or odd number of spingiated with the zeros ofQQ’'(w). Now Q'(w)=0 if
and regardless of whether the interactions are ferromagnetig + sino=0. With the exclusion ofw=0, all roots of the
or antiferromagnetic. Note tha®.10, the only nontrivial latter equation are complex. Moreovergif=p+io is a zero
scaling function for periodic BC’s, is of the form ¢2.14,  of Q'(w), wherep ando are real and positive, then so are
but with w(x)== for all x. For free BC's we must first p—io,—p+io, and—p—io. Furthermore, these four zeros
solve(2.19 for the rootw(x) beforef (x) is fully specified.  of Q)'(w) correspond to complex-conjugate pair values of
Analytically, it is straightforward to develop the leading x, the singularities ofw(x), namelyQ(w) and[Q(w)]*,

terms sinceQ(— w)=0(w) andQ(w*)=[Q(w)]*. Clearly it is
sufficient to search for the zeros Qf in the first quadrant of
w(X)—\2x  (x<1) (216 the » plane. Note also that upon usir@.14) we have

df /dx=3(sinw)dw/dx. Hence the singularities df.(x) co-
incide with those ofw(x).
o(X)—m  (x>1). (2.17) We may summarize as follows: Excluding=0, which
corresponds tx=0, in the following the quantityw, will
For intermediate values of we provide power-series expan- denote thenth zero of()’(w) in the first quadrant in the
sions forw(x) below. Combining(2.16 with (2.14), it can  plane, and the corresponding branch point singularity of
be seen thaf (x)—x asx—0, and thus the FSS function w(x), to be denoted by, , is given byx,=Q(w,). Our task
associated with free BC’s does not exhibit the conventionathus consists of determining the, and the corresponding
limiting behaviorf .— x?. As discussed in Sec. |, this anoma- X,, and then noting thaR=min(|x,|).
lous behavior of , is related to the freezing of the system at  MAPLE proved extremely useful for carrying out the actual
low temperature. numerical calculations; however, it was necessary to provide
A plot of the resulting scaling functiof,(x) from (2.14), suitable input information concerning the approximate loca-
having used our numerical data fex), is shown in Fig. 2.  tion of the rootsw,. A straightforward analysis shows that
In Fig. 2 we also display the results of RgL0]. The latter the equations determining,, for n=0,12 ..., aregiven
deviates significantly from our exact results. As we discusdy
in Sec. Il E, the results of Reff10] were obtained through an .
unjustified extrapolation of a series expansion result outside wp=(2n+ 1)ty tioy, (2.19
its domain of validity. This underscores the need to carefullyyhere bothr,, and o, are real and positive and satisfy the
establish the radius of convergence of series expansions gbupled nonlinear equations
o(x). In the following, we derive expansions af(x) in
powers ofx andx ™! for the regimes of small and large rh=cos *(o,/sinhoy), (2.20
respectively, and establish their radii of convergence. Thes
expansions are superfluous for the purpose of creating the
data shown in Fig. 2. However, in the course of deriving
these expansions we will obtain considerable information on,=cosh’!
concerning the analytic properties @f(x) in the complex
x plane. As discussed in Sec. lll, the analytic properties oNote that G<r,</2. In particular, there are aimfinite
w(x) are of crucial importance to any effort to extrapolate number of rootsw,, in the first quadrant, and each of these
results obtained for the regime of smalko that of largex  corresponds to a singularig;,=Q(w,) of w(x). It turns out
(or vice versa that the(symmetrig pair of singularities lying closest to the
a. Power series in x. We have utilized thenAPLE com-  origin of thex plane occur fon=0, and these are given by
puter algebra system to develop an expansion of thewoot x, and x§, where xo=—3.301222 589-i4.119 962 917.

and

2n+1)7+r,
sinr,

(2.29
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Thus, R=|x,|=5.279 409 5. The corresponding value of (2.22 is not conformal are approximately given by
wq IS given bywy=4.212 392 238i12.250 728 636. —0.12+i0.15. These numerical values allow us to identify

The fact that the singularities in theplane are removed this closest pair of singularities witklgl and (xgl)*. We
from both the real and imaginary axes is responsible for thenay therefore conclude that the power seri@23 con-
absence of any hint in both Figs. 1 and 2 that the serieserges if|x|>5.279 410. We have no doubt that our finding,
(2.14 and (2.18 converge only|x|<R. This is also the based on graphical methods, could be confirmed by an el-
cause of the irregular pattern in the variation in the signs okgant and rigorous proof, even though we did not succeed in
the expansion coefficients i2.18), especially those not our attempts to do so.
listed but which we have generated usimgpPLE. Clearly
there is no obvious direct connection between the physics of D. Dynamic critical exponent
this system and the value of the radius of convergence. The
latter reflect global analytic properties of the functiefix)
throughout the complex plane, whereas the FSS function
uses the solution of2.15 only for real positivex. We will
comment on the broader implication of these results in Se
I.

b. Power series in X*. Inspecting(2.15, and as noted
in (2.17), for large positive values of, the functionw(x)
approaches the value from below. To develop an expan-
sion of w(x) in powers ofx 1, we first rewrite(2.15 as

The dynamic scaling hypothes[§] states thatjn the
critical region, the smallest relaxation rade, vanishes with
the correlation lengtlf as\;~ &2 We identify the critical
Cregion as satisfying the inequalitiés>£&>1. We will find
thatz=2 for the Glauber model, independent of the BC’s. In
Sec. Il E we comment on a recent claji0] that z=1 for
this model with free BC'’s.

1. Periodic boundary conditions

As we have seen in Sec. Il B 1, with the exception of the
taf(7m—w)/2] 1 ring with an odd number of spins and antiferromagnetic in-
(e X’ (222 teractions\;=1—|y| independent of.. We can rewrite this

using (2.9, with the result\;= tant (2¢) ]tanh@E1).
and USeVAPLE to expand the left-hand side in powers of the Hence, in the critical region\;~3¢2, independent of the
small quantity— o, and then revert so as to obtain the Size of the ring, and we hawe=2.

latter quantity in powers of the small quantity *. The final For the one exceptional case, we found previously that
result is N1=1—|y|cos(m@/L). In the regime where both and ¢ are

large compared to the lattice constant, we have, to leading
order, A\;~3(¢ 2+ w’L"?). Obviously, for L>¢&N;~1

w
;=1—2X_1+4X_2—§(12— 7)x 3= R(m?=3)x* £72[1+(w£/L)?], and soz=2. Hence we obtain the result
z=2 for all cases of periodic BC's. We note that, for the
— 2 (37*—200m?+240)x 5+ - - .. (2.23  opposite regimeé> L\~ 1L w2+ (L/&)?]. As we have

stated previously, this is the one instance of the 1D Glauber
Determination of the radius of convergence of this seriesnodel that exhibits “normal” scaling behavior, where, for
provided a serious challenge. General theorgl$relating  finite L, N\;~L 2 asé— .
to Lagrange’s method of series reversion proved insufficient
because of the fact thab is a multivalued function of 2. Free boundary conditions
possessing an infinite number of branches. These theorems \ye found in Sec. II B 2 that, independent of the sign of

relate to thetotality of branches ofw(x), rather than to any e coupling constanty,=1—|y|cosd;, where ¢, is the
individual branch. More specifically, in principle the above gmajiest root 0f2.6). We then showed in Sec. Il C thég is
branch ofw(x), which equalsr as one approaches the ori- equivalent to the roow of (2.13 in the interval (Or),
gin of thex ™! plane, could have singularities at any of the where =L 6,. An alternate, exact expression fag can

points x, *, where thex,, were introduced in Sec. Il C2a. thys pe given in terms ab,
Now the sequence of valugs,| grows without bound for
t ! 1+'h’21 i?| =
an E Sin 2—§ Sl Z .

n—oo. Hence,in principle, the radius of convergence of the _

expansion2.23 might be identically zero. In practice, how- A(L,§)=tan 2¢

ever, R might be as large ajx,!|, if the other values of (2.249

|, *| are not singular points of the given branch. One can . . . .

put the question as follows: What is the location of the sin-_In the _cr|t|cal regimeL>¢>1, it suffices to us¢2.23 an(_:i

gularity, lying closest to the origin in the~* plane, of the partlcu_lar fo replaces by ar, even .though that equation

specific branch of interest? To our knowledge, general theo3S derived under the assumption thmg._m for

rems in the mathematical literature do not address this que& f|>l<e92 value of 2L/§. we fmd_, to leading order,

tion. N~ gg [1+(mé&/L) ] Once again we conclude that
What ultimately proved successful for us was to explicitly 2= 2+ Just as we obtained for periodic BC’s.

determine, using graphical techniques offeredviayLE, the , )

domain of the conformal mapping of a family of concentric E. Comparison with Ref. [10]

circles and the corresponding family of orthogonal, diverg- In this section we compare our results with those obtained

ing rays with respect to the poiat= 7 using(2.22. In this  in Ref.[10] for the case of free BC’s. We will show that the

empirical manner, we found that the pair of points lying major conclusions of that work are flawed, since they are
closest to the origin in the ! plane for which the mapping based on an unjustified extrapolation of results valid exclu-
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sively in the regimd_<¢, to all values ofL/¢&. This includes  if we were to extrapolate the third, fourth, and all further

the unwarranted conclusion that the dynamic critical expo{€MSs in(2.29, it is readily seen that this procedure yields
nent is given byz=1, contradicting our result=2 given in e patently nonsensical resulf(-,£) =<, in contradiction

. _lg-2 i
Sec. Il D, as well as an erroneous form for the FSS functioﬁN'.th the cqrrect resulth (e, £)~32¢ ~, app'roprlatg tp the
listed below(see also Fig. 2 critical regimeL> &> 1. Of course the origin of this incor-

We have found that for sufficiently small values of rect, divergent result fok,(,£) is the invalid procedure

B . utilized in Ref.[10] of extrapolatingL —«, since(2.29 is
x=L/¢, the quantity(L,£) may be expanded as only valid for the opposite limiL<<¢. As we have seen in

Sec. I C 2, entirely different expansiorisee (2.18 and
(2.23)] apply for the two regimet <¢ andL> &.

In Ref.[10], the first two terms of2.25 were also used to
construct their version of the FSS functioin(x) for arbi-
trary values ofx, with the resultf (x) =x/(3+x). Note that
even for the regimé < ¢, the result of Ref[10] (f,—x/3)
disagrees with the correct limiting forfn— x/2 that we ob-
tain from our exact resul2.14) in the smallx regime. This
discrepancy is due to the use in REE0] of the incorrect
value\ (e, &)= 31£"2. Moreover, for all other, larger values
of x there is significant disagreement between our exact re-
sult for f (x) and that given in Refl10], as can be seen in
Fig. 2.

Finally, returning to(2.25, we have to leading order,
Ni~(L&) -1 whenL<¢. This fact was used in Ref10] to
conclude, incorrectly, that= 1. That conclusion is specious
since, as we have stressed above, it is misleading to associate
critical phenomena with this regime. The dynamic critical
exponent can be inferred only by studying the behavior of
N1 in the opposite regimd, > £>1, where(2.25 no longer
applies. As we have seen in Sec. Il D, the analysis for that
regime yieldsz=2.

M(L,g)=|_—2n§0 P, (L™)x"* 1, (2.25

whereP,(u) is a polynomial of degrea in the variableu.
We list here the first five polynomialB,,, which we have
obtained usinguAPLE,

Po(u)y=1, Py(u)=(2-5u)/6, P,(u)
=(2—40u+53u?)/90,

Pa(u)=—(16+924u—3276a1%+ 2651u)/7560,
(2.26

P4(u)=(8—136Qu+ 20 6641>— 37 64Q°
+19 2731*)/113 400.

Equations2.25 and(2.26 were derived by first developing
w(x,L), the solution of(2.13 for finite L, as an expansion
in L/¢, substituting that expansion if2.24), and then ex-
panding(2.24) as a power series . A useful check on the
polynomials P,(u) can be had by noting that
P,(1)=(—1)"/(n+1)!, which follows from the fact that
M(1,6)=1—expE 1), as can easily be shown. A further
consistency check can be had if we U225 to consider
N1(L, &)\ (=, &) in the double limitL, é— oo for a fixed, but
sufficiently small value ofx=L/¢&. Using Nq(0,&) from
(2.24), and comparing witlf2.14), the following result must
hold, again for sufficiently smalt:

F. Role of boundary conditions

In the preceding we have shown, using our explicit results
for N1, that the dynamic critical exponent is given by 2
for both periodic and free BC's. It is of interest to show that
the sameayualitativeconclusion, that the dynamic critical ex-
ponent is independent of the BC'’s, can be obtained without
explicitly calculating\ 1, by invoking a powerful theorem of
Ledermanrj15] for Hermitian matrices that is well known in
the theory of lattice dynamics.

Our starting point is to note that the equations of motion
(2.2), together with the periodic BC's, are equivalent to the
matrix equation

220 P,(0)X" 1= 1+ w(X)/x]2. (2.27)

Using the expansiofR.18) for w(x), we have use®APLE to

verify this relation between the values Bf(0) and the val- d

ues of the expansion coefficients (B.18. Equation(2.27) ﬁsz —-M-S, (2.28
therefore holds fofx| <R=5.297 .. ., theradius of conver-

gence 0f(2.18. whereS is the N-dimensional vectoS=(sy, ... ,Sy), and

We now discuss in detail the procedures invoked in RefM is the real symmetritNxN matrix, whose only nonzero

[10]. In that work, the first two terms aR.25 are correctly

given; no further terms are listed, however. Even though it isSL<K<N, My . 1=M 1= —
stressed in Ref.10] that these are but the first two terms of diagonals

an expansion fon,(L,£), arrived at by considering <¢,
these terms are nonetheldssroneously extrapolated to the
thermodynamic limitL—oo, for fixed finite £. Let us con-

elements are given byM,,=1 along the diagonal,
v/2 along the super
and  subdiagonals, =k=N-1, and
M; n=My 1= — ¥/2 in the “corners” of the matrix. The ei-
genvalue spectrum was given in Sec. I[IB1 as
N=1-cos(2rp/N) for integerp, 0O<p<N-1. Note that

sider the consequences of this extrapolation procedurdor very largeN, this spectrum is dense throughout the in-

Based on just the first two terms @2.25, one might con-
clude, along with Ref.[10], that to leading order

N1(o0,€)=3&2. We note, however, that this seemingly sen-

sible result for\ ¢ is actually invalid, since it lies outside the

terval[1—|v|,1+]|]].

For free BC's,(2.28 continues to apply, except thi
is replaced by amNxX N real tridiagonal matrixM’, identical
to M, except thatM; ,=My _;=—/8 and the corner ele-

allowed spectrum of relaxation rates for the Glauber modementsM} =My ;=0. Note thatM’ is not symmetric as it

(2.5), i.e., 3¢ 2<1—|y|~3£ 2. Moreover, to be consistent,

stands; in fact it is a real “quasisymmetric” tridiagonal
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matrix. As such,M’ can be cast into symmetric form vanish asx* in the smallx limit [6]. That is, 7 (&) is as-
using _a similarity transformation given in Ref16], sumed to scale ais” for finite L in the regimeL<¢. This

M’—M’'=PM'P1. The matrix M’ is identical toM’,  expectation, however, is not generally fulfiled for the
except for the four elementsMj,=Mj,;=My_;,  present model. For periodic BC's we find, with one excep-
=M\ n_1=—a, Wherea= B/ \/1+ﬁ2. tion, that for fixed, finiteL, 7 ~2¢&2 asé—o, whereas for

Now the key point is that the pair of Hermitian matrices free BC's we find, again for fixed, that 7 ~L¢ asé— .
M andM’, corresponding, respectively, to periodic and freeThis anomalous behavior, of (§) becoming divergent as
BC's, differ by only four rows, the top two and bottom two; £— for finite L, is related to the fact that the critical tem-
otherwise they are identical. As applied to the present situgperaturel =0 for this system. Even for finite, the dynam-
tion, the Ledermann theorem states that within any intervaics stops in the low-temperature limit, ard(£) diverges as
of the real line, the number of eigenvalueshbfcan differ by ~ ¢—co. Note that this low-temperature “freezing” of the dy-
at most_eight(twice the number of differing rowsfrom  namics for the finite system is not a critical effect. The dy-
those ofM’. This has the immediate consequence that in theéxamics stops in this limit because the finite system can attain
limit of large N, the smallest eigenvalue &4’,\;, cannot its lowest-energy ground state, and hence the single-spin re-
be separated by an interval fafiite width from the smallest laxation time diverges. The one exceptional systéhat
eigenvalue oM, namely\;=1—|vy|. These considerations with periodic BC’s, antiferromagnetic interactions, and an
prove that asN— the smallest eigenvalue for the case of odd number of spinscannot attain a ground-state configura-
free BC'’s coincides with the smallest eigenvalue for the caséion. This system exhibits frustration d&—0 K, and the
of periodic BC'’s, and hence that the dynamic critical expo-jifetime of the slowest mode remains finite &s:. Indeed,
nent is independent of the BC'’s in the thermodynamic limit.to this one system we have ~L2 as&—, in agreement
with the conventional expectation.
The form of the FSS function is rather intricate in the case
of free BC's. In particular, the result d2.14) involves the
In this paper we have investigated the finite-size scalindunction w(x), which is a solution of the transcendental
behavior of the critical relaxation timg (£) for the Glauber equation(2.15. As shown in Sec. Il C 2, this function pos-
kinetic Ising model of spins on a 1D lattice of finite length sesses an infinite number of branch points in the complex
L, where¢ is the bulk correlation length, for both periodic plane. As a result of these singularities, the series expansion
and free BC’s and for ferromagnetic and antiferromagnetid2.18 in powers of x converges only for
interactions. We have seen that the ratid£)/7..(€) be- |x|<R=5.27% ..., whereas the expansidq@.23 in pow-
comes a functiorf . of the single variabld./& in the double ers ofx ™! converges only fofx|>R.
limit L,&é— <0, with the ratiox=L/¢ held fixed, and we have These considerations hint of a potentially serious lesson
determined the exact form df(x) for each choice of BC's that can be inferred for the FSS for other specific model
in Sec. Il. Having establishefl. for all x, it follows that systems. In essence, FSS implicitly provides a hope-
(1.1) provides a good approximation tq (£) when both of ful message, that knowledge of the properties of a system
the inequalitiesL/d>5 and &/d>5 apply, whered is the for é&>L>d can be used to infer properties in the regime
lattice constant. We are not familiar with any other model ofL>¢>d. This message is warranted as long as one can es-
critical dynamics for which the exact form of the FSS func- tablish the major properties of the FSS function throughout
tion has been determined. the complexx plane. In particular, the presence of math-
The dynamic scaling hypothesj§] states that théoulk  ematical singularities, such as those manifested for the 1D
relaxation timer. (&) scales ast” for large &, wherez is  Glauber model with free BC’s, must be expected to play an
the dynamic critical exponent. In Sec. Il we have emphasize@mportant role in any efforts to extrapolate to the regime
that the nominal critical region for thdinite system >1 results derived for the opposite regimes 1. To use the
should be identified with the reginie>£>d. In this regime  present model as a specific example, suppose that one is
one can expect that (£) also scales ag”. We have explic- informed about(2.14) and the six terms displayed {2.18
itly confirmed that, for the 1D Glauber model, in the regimederived for the regim&>L>d, but that one is unaware of
L>¢&>d, 7.(&) scales as?, independent of the BC’s and (2.15 and the expansiof2.23. With such limited informa-
independent of the sign of the coupling constant, yieldingtion, to what extent can one make useful inferences for this
z=2, the well-known value of the dynamic critical exponent model regarding the behavior af (§) for the opposite re-
for the bulk system. In Sec. Il F we have used a well-knowngime > £>d? (As discussed in Sec. Il E, it was precisely
theorem from the theory of lattice dynamics to provide anthis, unjustified, extrapolation of the first few terms of an
explanation for the fact thaf, (¢) scales ag? irrespective of  expansion appropriate to the reginie-L>d to the regime
the specific BC employed. In particular, we showed that inL>¢>d that led in Ref.[10] to incorrect results for the
the thermodynamic limit the smallest relaxation rate, anddynamic explicit exponent of the FSS functiprunfortu-
hence the dynamic critical exponent, is unaffected by aately, without a comprehensive study the correct answer to
change in BC’s. In Sec. Il E we discussed in detail the resultshis question is, virtually nothing. ElsewhdrE7] we present
of Ref.[10], and in particular the claim that=1 for this  just such a study for the present model in the context of Pade
model. We showed that this conclusion is inappropriate sincapproximants. More generally, the global analytic properties
it was arrived at for th@ppositeregime,L<&, which is not  of the FSS function must be carefully considered and ac-
the nominal critical region for a finite system. counted for before any proposal for extrapolation
The FSS functionf (x) is conventionally expected to to large values ofx can be regarded as credible.

IIl. SUMMARY
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