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Microscopic theory for long-range spatial correlations in lattice gas automata
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Lattice gas automata with collision rules that violate the conditions of semidetailed balance exhibit algebraic
decay of equal-time spatial correlations between fluctuations of conserved densities. This is shown on the basis
of a systematic microscopic theory. Analytical expressions for the dominant long-range behavior of correlation
functions are derived using kinetic theory. We discuss a model of interacting random walkerg-yvith
anisotropy whose pair correlation function decays &3, ldnd an isotropic fluid-type model with momentum
correlations decaying asr?/ The pair correlation function for an interacting random walker model with
interactions satisfying all symmetries of the square lattice is shown to haeldnsity correlations. Theo-
retical predictions for the amplitude of the algebraic tails are compared with the results of computer simula-
tions.[S1063-651X96)07006-7

PACS numbgs): 05.70.Ln, 05.40¢+j, 05.20.Dd

I. INTRODUCTION from symmetry considerations alone, using a Langevin equa-
tion approachi2,5], there is currently no theory available that
Closed, isolated physical systems, whose dynamics is dgredicts theamplitude Aof the tail.
scribed by a Hamiltoniai (I'), reach for long times a ther- We propose lattice gas automdtaGA’s) as an alterna-
modynamic equilibrium state in which each microstate withtive class of simplified models that can be used to study the
total energyE has equal weighp(I')~8(H(I')—E): the  basic properties of nonequilibrium steady states. But more
so-called microcanonical ensemble. When brought into conimportantly, we present a systematic approximate theory for
tact with a heat reservoir, so that the energy is not fixed buthe large distance behavior of the correlation function of con-
fluctuates around an average value, the system is describedrved quantities. Thus we are able to calculate the ampli-
by the canonical distributiop(I')~e~#"M), with 8 the in-  tude of the algebraic tails, starting from the microscopic defi-
verse temperature. An essential observation is that in bothition of the model.
cases the equilibrium distribution is completely known in  In addition to the type of lattice on which particles move
terms of the Hamiltonian, without the need to explicitly and a required set of local conservation lafparticle den-
solve the dynamics generated ByI"). sity, momentum density, el¢.a LGA is defined by a set of
The situation is quite different in the casedrivensys-  stochastic transition probabilities that define the stochastic
tems, where the dynamics does not satisfy the detailed batollision rules at each node. In the context of LGA’s there is
ance condition, and prevents the system from reaching thee distinction between collision rules that satisfy the condition
mal equilibrium, e.g., due to an external driving field or dueof detailed or semidetailed balang@ and rules that violate
to heat reservoirs at different temperatures. An example othis condition. Semidetailed balance models reach for long
the latter is a fluid layer heated from above and cooled fromimes a completely factorized equilibrium state that is inde-
below, so that a temperature gradient across the layer sendent of the transition probabilities. However, to study
maintained. After long times this system reaches a nonequinonequilibrium steady states of driven systems one needs to
librium steady state. The corresponding phase space distribgensider models with collision rules that violate semidetailed
tion can only be determined by explicitly solving the dynam-balance. Such collision rules are incompatible with a factor-
ics, e.g., using kinetic theord]. ized state. Strong violation of semidetailed balance may even
It is helpful to study simple models for driven systems tolead to spatial instability and pattern formatipfn-9].
gain insight into the nature of nonequilibrium steady states, An advantage of LGA’s over Ising-type models is that
and to compare theoretical predictions with the result ofthey can be used to model nonequilibrium statefiuofls as
computer simulations. It is in fact simple to define modelswell. In Ref.[10] it is explained how non-detailed-balance
with stochastic dynamics that violate detailed balance. LGA fluids are to be considered as generalizations of driven
A class of models that has been studied quite extensivelgiffusive systems.
in recent years is driven kinetic Ising models with Kawasaki- Here we exclusively deal with LGA's having only stable
type spin-flip dynamics[2] and certain particle hopping modes, so that after long times a spatially homogeneous but
models[3]. For a recent review see R¢#]. Computer simu-  correlated equilibrium state is reach¢dote that we use the
lations have revealed algebraic decay of the density-densityerm “equilibrium state” as a synonym for “steady state,”
correlation function, i.e.G(r)=A/r" for larger, in the sta- to emphasize that we consider LGA’s driven only through
tionary state. Although the exponentcan be determined strictly local collision rules that are the same for each node
and applied simultaneously to each node at each time) step.
Such LGA’s can be interpreted as effective models, whose
*Permanent address: Institute for Physical Science and Technotlynamics represents a coarse-grained, mesoscopic descrip-
ogy, University of Maryland, College Park, MD 20742. tion of a physical system kept out of thermal equilibrium.
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Due to their discrete nature LGA’s are relatively easy toc,=0. The absencepresence of a particle in channel
analyze, and studying their behavior will provide insight into (r,¢;) is denoted by Boolean occupation numbers
the physics of nonequilibrium processes. On the other hand(r)={0,1}.

many authors use LGA’s lacking detailed balance to model The state of a nodeis denoted bys(r)={s;(r)}. During
physical phenomena, without analyzing how the lack of dethe collision stepof the LGA the precollision stats(r) is
tailed balance may affect the validity of their conclusions. Itreplaced by a postcollision state(r) at all nodes simulta-

is therefore important to have a fundamental understandingeously, according to a stochastic process with transition
of the statistical mechanics of non-detailed balance LGA'’s. probabilitiesAs,=0. The 2x 2P matrix A, is normalized:

To describe the correlations occurring in the correlated
equilibrium state of non-detailed-balance LGA’s a micro-
scopic description beyond the Boltzmann equation is re-
quired. Bussemaker, Ernst, and Duftyl] were the first to
derive kinetic equations for LGA's at the level of pair cor- The collision step is followed by propagation stemluring
relations, by neglecting three-point and higher order correlawhich a particle with postcollisional velocitg; is moved
tion functions. This theory successfully predicts the magnifrom noder to a neighboring node+c;. The combined
tude of the pair correlations between occupation numbers abllision and propagation steps constitute a time evolution of
the same or at nearby nodes, as was shown in[R&f.by  the entire LGA from timet to timet+ 1.
numerically evaluating the solution to the kinetic equations, In most LGA’s the collision rules satisfy certain local
and comparing it with simulation results. conservation laws. For instance, in a LGA describing the

Here we extend the analysis lerge distancesand show diffusive behavior ofinteracting random walkers, the num-
that all LGA’s lacking detailed balance possess spatial corber of particles at a node does not change during collision,
relations between fluctuations of locally conserved quantitiebut the distribution among velocity directions does. This
that decayalgebraically for large distances. This is surpris- conservation law is conveniently formulated in terms of the
ing since the collision rules only involve occupation numberscollisional invarianta; = 1. In a fluid-type LGA the local mo-
at the same node: zero-range interactions thus lead tmentum at each node is also conserved during collision, and
infinite-range correlations. The mechanism that is resporwe have a;={1,c}. Nonzero transition probabilities
sible for the buildup of these long-range correlations in-A,,>0 are only allowed if
volves the slow evolution of diffusive or hydrodynamic
modes at large scales. It is the same mechanism that is re- _
sponsible for the existence of the well-known long-time tails E. &ioi= Z &isi @
in hydrodynamic time correlation functions of equilibrium
fluids, and the logarithmic density dependence of transporer, stated compactly, the matrixs, must satisfy
coefficients[12].

Th_e organization 01_‘ the paper is as followg. In Sec. Il we E a(o;—s)A,=0. 3)
recapitulate the kinetic equations of R¢L1] in terms of i
excess correlation functions, and obtain an expression for the
pair correlation function in terms of diffusive or hydrody-  The transition matrix As, is said to satisfy the
namic modes that resembles results derived from the ph&emidetailed-balancer Stueckelberg conditioftL3] if
nomenological mode coupling theory. This expression is
analyzed for interacting random walkers on a square lattice > A, =1 (4)
with x-y anisotropy in Sec. lll, and with the full square lat- s
tice symmetry in Sec. IV. In Sec. V we discuss a fluid-type
LGA with full triangular lattice symmetry, which exhibits
long-range momentum correlations. We end with a discus
sion in Sec. VI.

> A,=1. (1)

The strongedetailed-balancecondition,A,,=A,, implies
semidetailed balance on account of the normalizatign It

can be shown that if Eq4) holds, the equilibrium distribu-
tion is completely factorized over &l channels (,c;), and
only depends on the microscopic state through global invari-
ants, like the total number of particles or the total momentum
[6]. Since the collision step does not change the value of
A. Basic definitions these invariants, it follows that the equilibrium distribution is
invariant under the collision step.

II. RING KINETIC THEORY

We consider a LGA defined ondzdimensional lattice of
linear sizeL. The lattice has periodic boundary conditions

and containsV=LY nodes. In this paper we will only use B. Simple versus repeated ring approximation

two-dimensional models witd=2. At each node there are We restrict ourselves in this paper to properties of spa-
b channels {,c;) for moving particles with velocityc; tially homogeneous equilibrium states in LGA'’s lacking de-
(i=1,...b). We will consider two specific LGA’s in this tailed balance. The quantities of interest are the average oc-

paper:(i) a model defined on a square lattice, wher@re  cupation number or single particle distribution function
the nearest neighbor vectdi®s{—1)n/2,sin{—1)7/2) with  fi=(si(r)) and the pair correlation functiongG(r)
i=1,...,4, andii) a model defined on a triangular lattice, =(ds;(r)8s;(0)) with dsj(r)=s;(r)—f;.

wherec; = (cos{—1)n/3,sinf—1)n/3) fori=1, ... ,6; in ad- We give a short summary of necessary results derived in
dition, there may be a channie:0 for a rest particle with  Ref. [11]. In semidetailed-balance models with zero-range
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interactions the average occupation number equals the Fermi (9Qi1v0 53
distribution, and the pair correlation function has the diago- Q= i :2 (oi—s; )ASUF(s)ﬁ (13
nal form AT (1=1)
Gii(n) :gidj(r)z 8;8(r,0f; (11, (5)  For a derivation of these equations as well as a detailed dis-

cussion of how to obtain énumerical solution, we refer to
showing the absence of spatial or velocity correlations. Ref. [11]. Using the definition in Eq(9) or (12) it can be
Next we consider models that violate semidetailed balshown thatE satisfies all local conservation laws of the
ance. It is convenient to introduce teecesgair correlation model, i.e.,
function

Cij(r):gij(r)_gﬂ'(r), (6) (aa|E>E<a|E|a)Ei§j: a;a;E;;=0. (14

where a special role is played by the on-node correlations
Cij=C;;(0). In the so-calledsimple ring approximatiorthe
average equilibrium occupatiod$;} are the solution to the
stationary nonlinear Boltzmann equation

We have found11] that for models with local conserva-
tion laws the numerical difference between the simple and
repeated ring values faf; is on the order of 10%. Correc-
tions to the Boltzmann value fdf;, as obtained from Eq.
10 (12), are even smaller — typically 1%.

QMH=2 (0i—5)As,F()=0, (7 As shown in Ref[11] and the next subsection, all spatial
7 correlations in the system are linear in the source ternif

where the nonlinear Boltzmann opera(daf'o(f) depends on this term vanishes, all correlations in the system vanish, and

the average occupatiofisthrough the factorized distribution the €quilibrium state is completely factorized. That the
F(s), defined as source term does indeed vanish if the collision rules satisfy

the detailed-balance condition can be seen as follows. As
s e noted above Eq(5), f; is a Fermi distribution. Then the
F(S)=H f(1—1)" 5. (8  single node distribution (8) satisfies the relation
F(s)As,=F (o)A, . Using normalization(1) and semide-
H : 2,0_
The source of all spatial correlations is the maixwhich ~ tailed balance4) it follows that Q{;"=0, and consequently

in the Simp|e ring approximation is given by E” =0, in both Simple and repeated rlng apprOXImatlonS. If

the transition rates do not obey the semidetailed-balance con-

dition (4) thenQ3°is in general nonvanishin

Eij=Q3%=2 (80,80;— 8585 As,F(9). ) @ g g
So

) ] C. Mode coupling formula
OnceE;; is known, the on-node correlatiod§ can be cal-

culated from the stationary ring equation Here we are concerned with correlation functions of con-

served (hydrodynami¢ densities. In diffusive models the
only conserved density is the number densip(r)
Cij= > RijxEu- (100 =3,5(r). In fluid-type models the momentum density
1 g(r)=3;csi(r) is conserved as well. We denote the con-
The explicit form of the ring operatdR, given in Ref[11],  Served densities collectively ar)=2;a;s(r). The hydro-
is not needed here. dynamic correlation functions are then expressed in terms of
At a more sophisticated level, thepeated ring approxi- @ Scalar product:
mation {f;} and{C;;} are obtained as the solution to the

stationary(generalizegyl Boltzmann equation Ga(r)={da(r)da(0))= E a;a,G;; (r)=(aalg(r)), (15)
ij

Qlo(f)+2 Ql kl(f)ckl:o' (1D where the fluctuatioda(r) = =;a;ds;(r). The Fourier trans-
form of the correlation functioj;;(r), defined by
where the term containing)!Z=°Q % ofof, describes
1,0 ~ .
corrections td;"". The on-node excess correlation function Gi Q):E e 197G (1), (16)
C couples the generallzed Boltzmann equati@d) to the
stationary ring kinetic equatiofi0), where the source matrix
E is now given by can be split as

ElJ:Qi20+2 O kICkI+2 (1= 0)ij kCa, (12 Gi (@)= fi(1= )+ G (). (a7

The constant contribution on the right hand side comes from
with Q, K= azﬂzol&fk(?ﬁ and l;j = 6 ;. Furthermore, the diagonal part defined in E¢p), andC;;(q) denotes the
Wi} 1= (H+Q),k(]+Q)]| , wherel is the unit matrix with  Fourier transform of the excess correlation function defined
(Dij=&;;, andQ is the linearized Boltzmann collision op- in Eq. (6). In a similar manner, the susceptibilify,(q) is
erator, defined as defined as the Fourier transform @f(r), i.e.,
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Xa(®=2 e Gy(r), (18)
and split into two parts:
Xa(@)=x5+Axa(q). (19
Its diagonal parb(g is given by
xa=2 (2)*fi(1=f) (20)
and the excess pafty,(q) by
Axa(=2 aaiCy(a)=(aalC(q). (21)

The main result of Ref.10] describes the dominant behavior
of the susceptibility asmall wave numbefq—0) as

~ _ 1
Axa(q)= 2 <aa| %(Q)%( - q)> 1—eZu@FZ,(—0)
uwv
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Explicit expressions for the functiorzs)(gm)(a) occurring in
Eg. (25 can be obtained by expanding the eigenvectors and
eigenvalues in Eq.23) in powers ofq:

P ()= 2@+ (i) (@) + (i) 22 (@) + -,

D=2+ ()PP (@) + (i) 2@+ - - 06

z2,(@)=22(q) + (i) Z"(§) + (i9)?22 (@) + - - -
From Egs.(3) and(13) it follows that
> 20;;=0. (27)

In other words, the collisional invariants are left zero
eigenvectors of). The dimensionality of the null space of
Q is equal to the number of collisional invariants: one for
diffusive models, andd+1 for athermal(without energy
conservationfluid-type models. From Eq27) we conclude
that forg=0 the left zero eigenvectors of the propagator are
#,(0)=a with z,(0)=0. These eigenmodgs, associated
with local conservation laws, are calledow or hydrody-
namic modes. It will be shown below that only pajts of

which has the structure of a mode coupling formula.slow modes are responsible for singularitigere a discon-

HereEM(q) andy,(q) are the slow right and lefiffusive
or hydrodynamit eigenmodes of the LGA, determined by
the eigenvectors of the lattice Boltzmann equation:

[ @19~ 1= Oy, () =0,

| (23
[e2u(@+ide—1—QT]y (q)=0.

Here QT is the transpose of the linearized Boltzmann colli-

sion operator) in Eq. (13). The matricese'®® and 1 are
diagonal matrices with elemenig;e'®“ and &;, respec-

tively. The eigenvalue or relaxation rate of the slow mode

{#,.¢,} is z,(q). For smallq it behaves asﬂ(q)~q2 for
purely diffusive modes, and as,(q)~q for propagating
sound modes. The right and left eigenmodgs(q) and
#,(q) areb-dimensional vectorgor (b+ 1)-dimensional if
the model admits states with a rest parficieith compo-
nentsy,; and¢,;. They form a biorthonormal set, satisfy-
ing the orthogonality relation

<m(q)Ie‘q'°|?,&y(q>>zEi Yu(QETTY(@)=0,,. (24

tinuity or anisotropy atq=0) in the q dependence of the
susceptibilities, and hence for the existence of algebraic de-
cay of the pair correlation function.

By expanding Eq(23) in powers of {q) we obtain the
following hierarchy of equations for the left zero eigenvec-
tors:

QTylP=o0, (283
Ty = 2.0, (28b)
ATy =(c,+z )i+ 2D+ 3(c +2,.) 710
(280
where Q7 is the transpose of), andc,;=0-¢ . Similar

equations hold for the right zero eigenvectors, but with
replaced by(). The biorthonormality condition24) must
also holds to all powers ofi§), which yields

<t/f§f’>|3/7i°)>= O v
N 5 B (29
WOTEDY + (e Py + (p Py =0,

Note that all inner products in this article are defined withoutetc. Note that if();; is symmetric so tha)"'=Q, then

complex conjugation.

D. Perturbation theory
The smallg behavior of the susceptibility,(q) deter-

¥,(dq) and ¢,(q) are equal, up to a normalization factor.
The perturbation equation283—(28c) have the general
form Ty =1V where the inhomogeneous tetf de-
pends on the unknown eigenvalaf’. As the matrix"

. . . i we(0) it i
mines the long-range behavior of the corresponding correld1@s left zero eigenvectogs, ™, it is required that

tion functionG,(r). We therefore writeA x,(q) as a Taylor
expansion in powers of the wave numizgs |q|:

Axa(@)=Ax2(@) +PPAx (@) +q* Ax (@) + -
(25)

0=V =FON) @

for all slow modesv. Solving these equations fm(;) en-
ables us to determine the eigenvalues perturbatively.
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E. Algebraic correlations

OnceA x,(q) is calculated, Fourier inversion of E¢L8)

5841

IIl. INTERACTING RANDOM WALKERS
WITH x-y ANISOTROPY

enables us to calculate the spatial correlation functions. In In this section we discuss a LGA for interacting random
the limit of large system size we can make the continuumwalkers on the square lattice. The collision rules of the

approximation,

1

Vo
V% ~ @), dq. (31

Herev, is the volume of a unit cell in the lattice = 1\3
for a triangular latticepy=1 for a square or cubic lattige

and theq integration extends over the first Brillouin zone.

The excess correlation function is then given by

__Yo ig-r

Ca(r) (2_'77')dJBZ dge™ " Axa(q). (32

Combining Egs(25) and(32) we have
Ca(N)=CO(r)+C2 (N +CP () +- - -. (33

Consider the contribution of th@(q™) term in Eq.(25) to
Ca(r),

Vo

M) = s | daaeran@.

(39

It Ax{™(@)=Ax" is isotropic, i.e., continuous aj=0,

then the right hand side of E¢34) is essentially a represen-

tation of (the mth derivative of the Dirac é function, and

model break the symmetry between thendy directions.
We choose a model that is still invariant under reflections in
both thex andy axes, so that no average particle drift oc-
curs. Collision rules that break they symmetry are most
easily formulated in terms of the particle fluXs) corre-
sponding to a stats,

Js)=2 Gs;. (37)
We choose the matrix of transition probabilities as
As(f:mexr{J(S)M-J(cr)]r?(p(S),p(cr)), (38)

whereZ(s) is a normalization constant,
2(9)= 2, exJ(s)-M-()]8(p(s).p(), (39

andM is a diagonal matrix,

Bx 0O
0 By
If By=pB,=0 then the detailed-balance condition is satisfied,

and a completely factorized equilibrium state exists. For all
other choices of3, and 8, — positive or negative — the

. (40

therefore all correlations are short ranged. The situation i§ensity-density correlations in the correlated equilibrium

very different whem x{™(q) is anisotropic, i.e., it depends

on g asg—0. A rescaling ofg in Eq. (34) then shows that

vo 1 . .
Cém)(r):(z—ﬁrﬁlrmfRd dgqme " Axa"(G), (35

wherer=r/|r|. Therefore for larger the pair correlation
function G,(r) behaves as

A(F)

ga(r): rﬂ+_mv (36)

with a coefficientA(r) that depends on the direction of

state decay algebraically. In the special cgge 5, # 0 the
model has the complete symmetry of the underlying lattice.
This case will be discussed in the next section. In the remain-
der of this section we show that whe)# B, the correla-
tions are of type #. We derive an analytical expression for
the amplitude, for the specific interacting random walker
model defined by Eqg37)—(40).

The system of interacting random walkdiRW's) on a
(bipartite square lattice, which make a move at each time
step, consists in fact of two totally independent subsystems:
the IRW'’s initially on the even sublatticé , and those ini-
tially on the odd sublatticeC_. In a single time step all
particles on , move to£_ and vice versa. Therefore equal-
time correlations can only exist between particles at posi-
tionsr andr’ on the same sublattice. Consequently, the dif-

The value ofm is determined by the first anisotropic term in ferencer —r’ always belongs to the even sublattice, so that
the expansion(25) of the susceptibility. The amplitude G(r)=0 forre £_, andg(r) is possibly nonvanishing for
A(r) can be calculated from the microscopic definition of there £, .

model by performing the Fourier integral in E@5).
In the remainder of this paper we determmeand calcu-

The above features of the bipartite square lattice are con-
tained in the mode coupling formul22) through the exist-

late A(t) for two different models(i) interacting random ence of two slow modes, both contributing to the long-range
walkers on the square lattice with an anisotropic transitiorpart of the pair correlation function. Léd, (t) and N_(t)
matrix A, yielding spatial density-density correlations of denote the total number of particles at timeon £, and
type 142 or 1k*, depending on whether or not the symmetry £_ , respectively; then their difference oscillates in time, and

betweenx andy directions is broken, anéii) a fluid-type

Ny=(—)'[N,(t)—N_(t)] is a conserved quantity, just like

model on a triangular lattice with spatial correlations of typethe total number of particleBl=N_ (t) +N_(t). The slow

1/r? in the momentum density.

mode corresponding to the conservationNyf is called the
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staggered diffusive mode; the one corresponding to the con- 10"

servation ofN is the usual diffusive mode. . .
The regular diffusive mode has a relaxation rate that for N
small wave number behaves [@ee Eq(A22) of Appendix N
Al N
A 2 2 107 ¢ NN
()= -°2(4) =~ (Dya+Dyay), 4D N
with diffusion coefficients in the andy directions given by & .
Eq. (A23). To leading order the excess susceptibility R ’~.' S
Ax(g)=Ax,(q) contains a contribution from a pair of dif- 107 ¢ ”%
fusive modes, i.e., - - - - simple ring approximation ﬁ ! .
repeated ring approximation
~ ~ 1 « simulation
Ax(g)=(11] l/fD(Q)l!fD(—q»(m) 10 .
1 10 100
X (p(a) ¥p(—aq)|E). (42 '

In Appendix A the left and right diffusive eigenvectors FIG. 1. Anisotropic interacting random walker model. Pair cor-
Yp(q) and ’JD(Q) are calculated using perturbation theory. relation functiong(r), at evenr values, withr=(r,0) along thex
For smallq the amplitude factors in Eq42) are calculated axis, for interacting random walkers on a square lattice with inter-

in Egs.(A18) and (A27) with the result actions that break the symmetry betweensttendy axes. For =
odd the pair correlation function vanishes. The average density per
<11|ED(q)ED( —q))=1, velocity channel if =1/2, and the model parameters @e=1 and
43) By=3. Syf/mbgls \gith errﬁr bars inldbicate simula(tjifon re(')s4ults for a
_ _ 2 2 system of 512 nodes, with an equilibration time df,,= 10" time
(Yo(@)do(~D|E)=2(B,a+ Byqy). steps. The lines denote the asymptotic algebraicdia?.{rz, as pre-
The factor involving the eigenvalug, is given by dicted by ring kinetic theory in the simpl@dashed ling and re-

peated ring approximatio¢solid line).
1-e¥0(@=2(D,q%+Dya?). (44)
mode atq= s gives a contribution to the pair correlation

In Eq. (A25) of Appendix A the coefficient8,, are given  fynction equal tee™'™'Gp(r), so that the final result for the
explicitly. In the majority of publications on driven diffusive pajr correlation reads

systemd2,4,5], the transport coefficient® , and the coeffi-

cientsB, — which in the phenomenological description rep- _ 2G5(1), X+y even
resent the noise strength of the fluctuating force in theg(r)=(1+e '™ ")Gp(r)= 47
Langevin equation — are simply phenomenological input in 0, x+y odd.

the theory. In the present paper both sets of coefficibnts

andB,, arecalculatedfrom the microscopic definition of the ~ T0 test the accuracy of our prediction we have performed
model. computer simulations fog,=1 andg,=3 at the half-filled

From Egs. (42—(44) it can be seen that the limit lattice, wheref; = 3 for all four velocity directions. To obtain
Ax©(@)=lim,_,Ax(q) exists and that the dominant part numerical values for the source mati; in the repeated

of this contribution to the excess susceptibility is given by "Ng approximation, Eq(12), we determined the on-site cor-
relationsC;; using the methods of Reff11].

A Bxa§+ Bygf Figure 1 shows a comparison between simulation data and
M= ————. (45  the analytical prediction of the largebehavior. The re-
Dxax+Dyay peated ring theory agrees well with the simulation values

over the range €[ 10,50. For larger there is a systematic
deviation of the simulation data that is a result of the slow
diffusive equilibration on large spatial scales, according to
r2~Dt, whereD is the smaller of the two diffusion con-

Inverse Fourier transformation vyields the contribution
Gp(r) of the two diffusive modes to the largebehavior of
the pair correlation function,

Go (1) D,By—D,By DyXZ—DXyz s stantsD, andD,,.
(M= 2 7
N D,x“+D
2 Dny ( g ¥ IV. INTERACTING RANDOM WALKERS

However, the staggered slow mode also contributes to the WITH SQUARE LATTICE SYMMETRY

excess susceptibility. It occurs at the wave vector | this section we discuss the behavior of general diffu-
7= (m,7), and is intimately related to the diffusive mode sjye LGA's with collision rules that obey all symmetries of
w=D occurring at g=0. We have I'(q+a)  the underlying lattice, but violate detailed balance. An ex-
=e '"AI(q)=—T(aq), where T'(q)=€%(1+Q) is  ample of such a LGA is the model of the previous section in
the one-step propagator with eigenvale®. Then the special casgyx= B, 0. The collision rules then obey all
zp(q+ @) =2zp(q) +im, Yp(q+m)=4p(q), andyp(q+m)  symmetries of the square lattiGeflection inx or y axis, and
=iyp(q). It follows thatA x(q+ @)=Ax(q). The staggered rotation over multiples of 90°), which implies that second
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rank tensors are isotropic. Therefore the anisotropy givingquation by Grinsteiet al.[5]. The 1t tail is much weaker
rise to 1f2 correlation forB,# By, as discussed in the pre- than the 17 tail discussed in the previous section, and there-
vious section, is now absent. However, on the square latticeore a comparison with computer simulations would require
tensors of rank 4 contain anisotropic parts. In what followsa numerical effort that is beyond the scope of this paper.
we explain how this anisotropy gives rise to correlations de-
caying as 1. V. FLUID-TYPE MODEL

There are again two slow modes: the usual diffusion _ _ _ _ _
mode and the Staggered diffusive mode_ The Corresponding In this section we Study the Spatlal correlation functions

eigenvaluezy(q) of the diffusion mode has the form «(0)=(0a(r)gp(r)) of the momentum densities, with
a,B={x,y}, in a seven-bit LGA fluid defined on a triangular

Z5(q)=—Dg2+Dy(q)q*+ - - -. (48) lattice, which allows for a rest particle staigee Sec. Il A

] ) and violates detailed balance.
All odd terms vanish because of reflection symmetry. On the ¢ susceptibilityy,,5(q) is defined as the Fourier trans-

square lattice, the so-called super-Burnett coeffic2std)  form of the correlation functio, 5(r) =(g.(r)g4(0)) with

depends on the directiai of the vx,/g\zlgzvectoq. ltcontains  , s—x y. We decomposg.(q) into a longitudinal and a

?n a;ﬂsotropic term equal te 2D505qy on account of EQ.  transverse part, as
A30).

To calculate the excess correlation function in &) we Xap(D)=0a0pX A0+ (Sap—0alp) X1 (), (53
analyze its separate factors. The factor containing the eigen-
valuezp(q) behaves for smaly as where

1 1 D,(§) xA@)=(g (g (—a)
— 2
1—e2ZD(Q)_2Dq2{1 (T"’D +- . (49)
and
The first factor in Eq(42) equals unity for smalf [see Eq. _ B
(43)]. The last one behaves as x1(@)=(g.(a)g.(—a))
(o) ¥p(— Q) |E)=2B 2+ 2Bo(8)q*+- -+,  (50) are scalar fields with identical diagonal parts given by
d_ . d_

where the isotropi® and the anisotropiB,(q) are calcu- X,=x1=3H(1-1) (54)

lated in Eqs(A33) and(A34); B,(q) contains an anisotropic
1 a2n ; . on account of Eq.(5). The excess part\ and
term —2B45G;. Isotropic terms do not contribute to the Ax.(Q). given by gé ()22) with a= o ar?dazé(/(?zaspec-
algebraic correlations. After collecting terms, the dominzintti\/gI aire in enera'l different As/ we will z;r’ e below
anisotropic contribution of the two diffusion modes to the the >I/i’mits ’for ngO of,AX (a) énd Ay, (q) de%oted by ’
/ 1 ]

susceptibility becomes Ay, and Ay, , are nonvanishing. IfAx,#Ay, then
. B[Dy@ By, X(aoﬁ)(q)zlimzqﬂoxaﬁ(q) is anisotropic afj=0 and therefore
Axo(@=7|"p B Gop(r)~1ir? for larger.
To determine the dominant long-range parGof(r) we
need to know, according to Eq2), the right and left hy-

2B(Dj) B,

--5l5*® 45850 drodynamic modeg#,(q),,(q)} and eigenvalueg,,(q)
of the lattice Boltzmann equation, defined through &9).
— —Aaiaiqz- (51) The collisional invariants in this model agg,={1.,c,} or

equivalentlya,={a,,a,,a, }={1,c,,c, }, where longitudi-
The larger behavior of the inverse Fourier transform of the nal () and transversel() refer to theq direction. The set
anisotropic part of Eq(51) is given by {a,} are the zero left eigenvectors of the collision operator

Q, anda, are the corresponding zero right eigenvectors, i.e.,

_ it A daa2el T a2a2 0"a,=0 andQa,=0. The left and right eigenvectors form
gr=-(1+e )(27)?r4 aq e Oxdy a biorthogonal set, i.e(a,|ag)=J,4.
Symmetry properties and the complete set of eigenvectors

2 and eigenvalues are discussed in Appendix B, and summa-
(52)  rized in Table 11, wheraiy=a,, u,=a,, anduz=a, . Itis
convenient for what follows to show how eigenvalues and
The factor (ke '™ ") accounts for the contribution of the eigenvectors transform under the inversgps —q. We first
staggered diffusive modes, as explained below(&6). This  observe that, (q) =z} (—q) for all modes. Moreover, com-
result represents tHeng-rangebehavior of the pair correla- plex conjugation of Eq(22) shows
tion function of interacting random walkers with interactions

=(1+ —imry___
(1+e )ﬂ_r4

(BNt

having the full square lattice symmetry. The important con- Pr@=v_,(—q), zz(@)=2z_,(q),
clusion of this calculation is that the amplitude of the*1/ (55)
tail is nonzero for general choices gf=g,#0. Thus the yr@=—¢ (-, zi(p=z.(q),

model provides an explicit microscopic realization of the _
scenario that was discussed in the context of the Langeviand the same relations with,— ¢, .



5844

For small q the shear mode or transverse momentum
mode w=1) is

WO@=a,, ¥@=3,, z(@=-ra (56
and the sound modeuE o= *) are
v@=a,Tova,, dP(@)=3a+ 3,
S
(57)

z,(q)=—iqovs—Tg?

The vectorsa, (a=p,/,L) are also given in Table Il. The
shear viscosityy, the speed of soundg, and the sound
damping constani’ can be expressed in terms of matrix
elementd);; of the collision operator, as shown in Appendix
B 3, where the higher order coefficients in theexpansion,
(), are also determined.

We start with the transverse susceptibility in E2R) and
observe that only the pairv)=(L) has a nonvanishing
overlap for smallg, i.e., (CJ_CJ_|¢J_(Q)¢J_( q))=-1 for
smallg. The excess susceptibility then has the form

1
AXL(Q)Z_W<¢L(Q)|E|'/&(_Q)>- (58
Inserting theq expansion(26) for ¢, , and using the rela-
tions (55) and (a,|E|ag)=0 [see Eq.(14)], the dominant
smallg term in Eq.(58) is then

Axl<q>——[< P VIE[ D)y - 2(p P E[y?)]. (59

These terms are evaluated in H&24) of Appendix B 3
with the result

3 /e
Ay (q)= 8_<_2)

14 Wy

(60

The eigenvalues- w, and e, of () andE are calculated in
Appendixes B 1 and B 2, and listed in Tables Il and IlI.

Next consider the longitudinal susceptibility in E@2),
where only sound modes) = (o,0’) give a nonvanishing
contribution for smallig, i.e.,

(C/ e Yo Yo (—a)=1, (61)
and the excess susceptibility becomes
AxA@)=%2 [ia(o+o )us+2Iq?]
X (U (QIEIY (). (62)

For parallel sound modesg’ =, the denominator yields
2igov, for smallg, and the last factor in Eq62) yields

(WA DIE[Y* (@) =ia[(w|E[p 1))+ (pV|E[¢ )]
:2iq0'l}s(€10/(1)1. (63)

The latter equality is derived in EqB25); the coefficient
&1, defined in Eq(B26), is calculated in Eg(B33) in terms
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of the Ej;’s defined in Eqs(9) and(12). For oppositesound
modes,o’ = — o, the denominator becomed 82 and the
latter factor in Eq.(62) yields

((DIE[L}(a))
=’ (P PIEI Sy = 2(uP [E[ 2]

2y 2]

4w 4 (1)_%_ w1 5_
Here the latter equality is derived in Eq827)—(B31), and
the coefficient€;; is calculated in Eq(B33) in terms of
Ei;’s. Combining Eqs(62)—(64) yields the final result,

364

Ay mfa B
X 16l w2 ' 16T w?

vi- i) . (65
w1

Egot 6E19
8F0)1

In the case of the simple ring approximation, defined in
Eq.(9) asE;;=07°, the above expressions simplify consid-
erably because all diagonal elements are vanishing. It fol-

lows from Egs.(7) and(9) that

En=ﬂﬁ'°=<1—2fi>52 (01— S)As,F(s)
=(1-2fpQi’=0 (66)
for all i=0,1,...,b. We have used the relation
(607)°=(0;—f;)?=(1—2f)o;+f?, valid for Boolean

variables ;. In this case the relevant eigenvalue in Eq.
(B13) reduces toe,=—2E;3 and the excess longitudinal
susceptibility becomes

V2 =

S (1)1 :

This simplification does not apply in the more genegirat+
peated ring case.

In generaly, and y, are different, unless the collision
rules satisfy detailed balance so tiai,=E;=E3=0. By
inverse Fourier transformation of Ep3) we find that the
asymptotic behavior of the correlation function is given by

3Eiz  3Eygg

AX T g2 T AT e,

(67)

— 3 2_\2
gxx(r):_gyy(r): us 47):_I)\/_<X r4y ) (68)
and
- 3
gxy(r):gyx(r):%—():_}:)- (69

An equivalent statement, stressing the isotropy of the corre-
lation functions, is that

X/)\/_

g//(f)— g

(70
G ,(r)=—G,.(r), andG, (r)=0. The labels” andL here
refer to the vector. In Egs.(68)—(70) we may replacey,

andy, by Ay, andAy, , respectively, on account of Eqgs.
(19) and (54).
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. TABLE |. Symmetries on the square lattice.

10 - ;
. - - - - simple ring approximation _ _
o \y repeated ring approximation n Un(C) X=X ye oy
AN « simulation: -G,(r)
. o simulation: G,{r) 1 1 + +
102 o N 2 ci—cs + +
LI 3 Cy - +
4 c + -

puter simulations for two different two-dimensional models,
both violating the condition of semidetailed balance. First we
considered a model of interacting random walkers with dif-
ferent diffusion coefficients in the andy directions, exhib-
iting an algebraic decay of the density-density correlation
100 functionG,(r)=(8p(r) 8p(0))~ 1/r2. The second model we
considered was a fluid-type model in which the correlation
o S _function of momentum densities behaves &s,(r)

FIG. 2. Isotropic fluid-type model defined in Sec. V. Correlation =(ga(r)gg(0)>~1/r2. In both cases we found good agree-
function for the longitudinalg,(r), and transversgj, , (1), COM-  mant petween the simulated and theoretical values for the
ponents of the momentum density. The average density-5/2 59ty de, in particular when we used the so-called repeated
and the total momentum is zero. Symbols with error bars mdmatqing approximation, in which all pair correlation effects are
simulation results for a system of Z560des, with an equilibration taken into account,in a self-consistent manner
time of Te= 10* time steps. The lines denote the asymptotic alge- Most studies of nonequilibrium states usin .sim le mod-
braic tail .~1/r2‘ as prediCte.d by ring k.ineti.c th?or.y in the simple els so far have employe?j kinetic Ising modelg Sinrc):e lattice
(dashed linpand repeated ring approximati¢solid fine). gas automata are easily implemented and analyzed, as well
as flexible, they provide an attractive alternative. This holds
in particular if one wishes to study fluid-type systems in

litflice frlluid-t_ygpe LGA %e{ine? 33 :nodeldlll int'Flig.dl'ffOf Ref. \vhich the momentum density is an additional conserved
[14], where it was used to study tagged particle diffusion Inquantity. The algebraic momentum correlations discussed in

a non-detailed-balance LGA fluid. Figure 2 shows a COM-co. v/ have to our knowledge not been observed before,

parison between si.mulation results and.the t_heoretical pre.dicéither in computer simulations or in Langevin equation stud-
tions for the amplitude of the algebraic tail. The StalisticSjgg |t is an interesting question whether such correlations

was improved b_y averaging, (r) andgu(_r) over a”_d" ._could be detected in real systems, e.g., in nonequilibrium
rections. In particular when the repeated ring approximation -+« of molecular fluids or of granular media

is used, the _agreem_ent IS quite s_ansfactory. We expect that the techniques used here to analyze lattice
Although in the limit of long t|r_nesg//(r) _and gl.L(r) ._gas automata can be extended to kinetic Ising models, since
are the same up to an overall sign, tht_ere IS an Interesting e |5t constitute just a different class of cellular automata.
difference concerning the way in which equilibrium is ;g ossibility is under investigation. So far there exists no
reached. The b“"d“P o, (r) is gpverned by traveling microscopic theory providing the amplitude of algebraic spa-
sound modes, for which~t. The buildup ofG, , (r), how- a1 correlations in kinetic Ising model[st].
ever, involves the diffusive shear mode, so théat vt. For
the data shown in Fig. 2 the shear viscosity has the value
v=0.2, so that the range over whi¢h , (r) has equilibrated
in Teq=10" time steps is ¢Te)?~45 lattice spacings, in 1. Structure of Q
agreement with Fig. 2.

We performed a computer simulation for the triangular

APPENDIX A: INTERACTING RANDOM WALKERS

The right eigenvectors,,, the left eigenvectorsi,,, and
the corresponding eigenvaluesw, of the Boltzmann colli-
VI. DISCUSSION sion operatoK) are defined by

We have formulated a general ring kinetic theory for lat- QU,=—wu,, Qu,=-—wyu,. (A1)
tice gas automata, and used it to calculate the pair correlation i ]
function for conserved densities. These correlation functiond "€ €igenvectors are constructed solely on the basis of the
have algebraic tailsg(r)=A(F)/r", for larger. The expo- Sguare lattice symmetry, and are given by

nentn can be determined on the basis of symmetry consid- 1=(1,1,1,

erations alone, using a conceptually simple phenomenologi- e

cal Langevin equation approaf®5]. However, a theoretical 2-c2=(1,-1,1,-1)

estimate for the amplitudé(r) can only be obtained by A A

approximately solving the kinetic equations that define the ¢, =(1,0-1,0, (A2)
evolution in phase space, and analyzing the largpehavior

of its stationary solution. This is exactly what we did in this ¢,=(0,1,0-1).

paper.

To test the validity of our approach we performed com-Table | shows how these vectors behave under reflection in
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thex andy axis, respectively. There are three invariant sub- 2. Structure of E

2 2 ;
spaces, spanned Bjlci—cy}, ¢, andcy, respectively. The eigenvalues:,, of the symmetric source matrik,
Thus, on the basis of square symmetry alone, it can be seqfined in Egs(9) and(12), are defined by
thatc, andc, are both left and right eigenvectors 9f and

E (cf. Ref.[15]). The square symmetry implies th@t; has Ev,=€nv,. (A9)
only six independent elements, i.e., ) ) ) )
In the asymmetric case of Sec. lll, the inversion symmetry in

Q1 Qp Q3 O the x andy axes together with the symmet8y; =E;; im-
Qi Oon O O poses the structure
21 22 21 24
Q=1 015 Q1 Oy Q- (A3) Ein En Eiz Ep
Qo1 Qo Qpp Oy E= Eio Bz Erp Eag _ (A10)
E13 E12 Ell E12
Number conservation, expressed iy =0, or explicitly, Ey» Esy Epp En

Q13+ 2051+ Q13=00+ 2015+ 054=0,  (A4)  The conservation lawé1|E|1)=0 [see Eq.(14)] imposes
. . ) . one more relation between the matrix elemefjis Because
imposes two more relations, leaving only four independents the symmetryE=ET there is no distinction between left

elements. We easily obtain the following biorthonormal setyq right eigenvectors. The symmetry argument of Table | of
of eigenvectors: course also holds fdE. We therefore know that

Q12‘3>2<+921C§ U3=Cy, U4=Cy, (A11)

U=l = 2(Qyt Qs

are two eigenvectors with eigenvalues
_ 2(Qp105~ 912032,)

U,= €3=Enn—Ei3, €=Exn—Ey. (A12)
2 Q1o+ Qp

~ _1.A2 2
u2_ Z(CX_Cy)y

The two remaining eigenvalues are the solutions of the qua-
Ug=Cy, Us=31Cy, (A5)  dratic equation
us=c,, Us=3c,, €2~ €(Eqy+ Eppt Eqgt Epg) +(Eqgt Eq) (Eqpt Epg) —4ES,

with eigenvalues given by =0, (A13)

and the corresponding eigenvectors are linear combinations
of ¢; andc?. Their explicit form will not be needed in the
(A6) present paper.
In the symmetric case of Sec. IV, when there is no differ-
ence betweer andy directions, we find tha€) andE have
the same set of eigenvectors,

(1)1:0, w2=2(912+921),
03=Q13=Qq1,  04=Q%— Qpo.

The asymmetry),# (),, leads to the mixing between the
vectors 1 ancz—c. If the model is symmetric for inter-
change between thg and y directions, thenQ,;=,,
025=0y;, and Q4= Q3.

This is the relevant set of eigenfunctions for the asymmetwith eigenvalues
ric interactions of Sec. lll. In Sec. IV the interactions do not
break the symmetry between tReandy directions, and the €,=0, e=—4E,,, e3=¢€,=E;;—E;3. (Alb)
eigenfunctions and eigenvalues simplify. A table similar to )
Table | which includes the behavior under the symmetryHere ;=0 follows from the conservation layl|E|1)=0
X<y can be constructed for this case. All four vectors 1,together with the symmetry properties Bf
c)z(—ci, Cyx, andc, now span one-dimensional invariant sub-
spaces; so that the eigenvectors for the symmetric case are 3. Asymmetric interacting random walkers

- Inspection of Sec. 1l shows that we need to calculate the
ui=1, u=gug, diffusion coefficientsD, andD, in Eq. (41) and the projec-
tions in Eq.(43), which also defines the source terBsand
B, . To determine these quantities we have to calculate

vi=1, vy=ci—ci, vs=Cy, wvs4=Cy, (Ald)

2 2 ~ _1
UZ—CX—Cy, UZ—ZUZ,

Ug=Cy, U3=3Us, (A7) ¥p(0,0) = Yo+ (iq) Yy + (i) . (A16)
Ug=Cy, Uy=3U4. The eigenvalue equatioli®3) show the symmetry properties
The corresponding eigenvalues are given by ¥p(0,0)=¢¥p(—0,—c)=¢,(9,0+¢_(q,0),
(A17)

01=0, 0,401, w3=ws=2(Q1+ Q3. (A8) zp(9)=2p(—q)=(iq)’D+- - -,
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where . has an even-{) or odd (—) parity inq andc (1|E|uy)=2(E11+Eq13— Eop— Ep). (A26)
separately. With the help of these equations we easily obtain
The projection in Eq(43) simply yields

B+ Byay= 2o (a) Elyin( - To(@)7 I
Gt Bty =2 (Vo(@|El¥o(~a) (1Y ygp(a) do(—a))=[(1|¢o)]1*=1, (A27)

_1 _
= 2l Elyr) — (Yol El ). because of the normalizatiqgA19).
(A18)
Here the relationg/y=1 and(1|E|1)=0 have been used. 4. Symmetric interacting random walkers
The solution of Eq. (289 is #p,=1=u;, and The required calculations for Sec. IV are much more in-

similarly %,="T,, whereu, andT, are defined in Appendix volved, as the eigenvalus,(q) in Eq. (48 and the source
A1l. We choose the normalization afy(q) such that its terms in Eq.(50) must be evaluated up to terr@{q*). This

component parallel ta; is unity to all orders in the pertur- requires the perturbation equations fary, ¢, . .. .¥,.
bation. This implies However, a substantial simplification occurs because the lin-

- - earized Boltzmann collision operator is now symmetric,

(Ul o) =(Usl o) =1, Q=Q7, and right and left eigenfunctions are the same.

— (A19) The calculations are tedious but straightforward, and we

(Ualg)=0  (n=1). guote some intermediate as well as final results. The coeffi-
The solution of the second order equati@hb), where the cients of the diffusion mOda’D(q):ELO('Q)n'/’" are
inhomogeneous terrtf” is a linear combination ofi; and 1
us, then becomes Yo=1, Y =-— w—sc/,

_ 1 _ Elxcx G]ycy)
wegrem- (e o Ja= (623, (n28)
2

Before we can determing, we impose the solubility condi-
tions 1 1.3 2D

Y3=— w—(4D— i5)Co+ w—(D+®)C/.
—~ —~ —~ - 3 3
W18y =(Tsc ) +(TUiD(G) +3¢2).  (A21)

We obtain in a straightforward manner

Here the transport coefficients are

b 1(1 1) 1(1 1 (A29)
R . . - 1 1 Y e i R
D(q)=DXq)2(+qu§=—<ulc/ W+§C/>' (A22) 2\wg 2 2\w; 2
and the super-Burnett coefficient is found as
Working this out yields
a, (1 1 D,(8)=D(d5+dy) +D3=—2D,8;8;+ D (A30)
DX2912+921(0)_3_ 5)’ It has an anisotropic paid;, and an isotropic part, whose
(A23) explicit form is not needed in this paper. Only the former
0y 1 1 part enters into the coefficiefgee Eqs(50) and(51)] of the
Dy:QlZ+ Ol wg 2 algebraic tail~1/r* of the pair correlation function, and it
reads
The eigenfunction can be solved from Eg@8c) as .
D,=4D(DO—%). (A31)

(A24) The source terms in E¢50) are determined by
B=3(y|El¢1), Bo(0)=3(ol E|th) — (1| El h3),
(A32)

1(D,dx Dy
Ll v
12 21

Inserting the results of Eq§A20) and(A24) into Eq. (A18)
and using the properties of tHe matrix in Appendix A 2

allows us to obtain the coefficienB, in Eq. (A18) as and the result$A28) enable us to calculate these contribu-
tions as
€3 Dy
By=_2~ m(E11+ Ei1s—E2—Ez), 1 €
3 B=—(c,|E|c,)=—3,
By=—% + ==L (Eqy+ Eqs— Epp— Es0)
Vw20, TR TR T Ba(G)=B5(ax+ay) +B5=—2B5G5a; + B, . (A33)

In deriving this result we have used the relationsAgain, only the anisotropic part enters the amplitude of the
(1|E|1)=0 and algebraic tail, and is given by
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4€2D2 €3 TABLE Il. Left and right eigenvectorsu,;=u,(¢) with
;=——>—+ —(8DO - . (A34) i=0,1,...,b, and eigenvalues- w, of the linearized Boltzmann
@2 @3 operator() for a seven-bit fluid-type LGA on a triangular lattice.
Finally, Eq.(A27) holds for the symmetric case as well. n Uy(C) T, () — oy
- 3 =(1—2p2 %2
APPENDIX B: FLUID-TYPE MODEL 0 2=l 3,= (1~ 20[3v5) 0
1 2C"—vsg (_2|§) W
The goal of this appendix is to calculate the left and right2 a,=c, a,=3u, 0
hydrodynamic modgi%(q) and ¢,(q) .for small wave 3 a, =c; 7314: 3u3 0
numberq] of the lattice Boltzmann equatidi23) for a fluid- 4 c,C, 3Uy —wy
type LGA, defined on a triangular lattice, that conserves botts c2—3c? 3Us - ws
particle number and momentum during collisions. More spe6 O[(-1)'*h g —wg

cifically, we need to determine the expansion coefficient
) (n=0,1,2) andy{) (n=0) of these modes in powers of
iq, as well as the coefficients)';"|E| ™).

A basic ingredient in this calculation is the structure of the
linearized Boltzmann collision operatél;; (i=0,1,...,6)
in Eq. (13), which is anonsymmetricmatrix because the
LGA under consideration violates the semidetailed-balance

(see Table I are left eigenfunctions, i.eQTa,=0. Multi-
plication of the matrix(B2) on the left withuy=(1|1) and
u,=(0|c,) imposes the conditions

a/0+ 65120,

condition(4). The appendix is organized as follows. In Sec. _

B 1 the eigenvectors and eigenvalueSbfare calculated in artat2fpt2y+s=0, B4
terms of its matrix elements, using the triangular symmetry a+ B—y—6=0.

of the lattice; in Sec. B 2 the same is done for fiyenmetric

source matrix defined in Eq$9) and(12). Section B 3 cal- Because of the symmet§;;=Q;; for i,j=1,2,...,6 the

culates the coefficientg{” and (¢|E[4{™) in so far as
they are needed in the body of the paper.

1. Structure of O

The left and right eigenvectons, andu, and the corre-
sponding eigenvalues w,, of the nonsymmetri€} are de-
fined as

QTu,=—wpu,, QU,=-—opl,, (B1)
where (QT)”-:QH andi,j=0,1,...,6. The left and right

eigenvectors together form a biorthogonal set, normalized

(Up|Um) = 8m- The lattice symmetries of the triangular lat-

tice impose the general structure

Qp @ oy @) a; a; A
a a B y & vy B
a B a B vy & v
Q=@ v B a B y 5|, B2
a 6 y B a B v
a vy 6 vy B a B
a By & v B a
where the submatri(};; ; i,j=1,...,8 is symmetric. We

frequently use a notation where a seven-veatfe) with
components;(¢c)=v(g) (i=0,1,...,b) will be denoted as
(v (co)|v(c)) or (v(cy)|v(c)). The first component(c,) re-
fers to the rest particle state witg=0, and the remaining
componentsi(=1,2,...,6) refer to moving particle states.
The conservation lawl4) implies that the set of collisional
invariants

aa:{ap,a/,al}:{l,C/,CL}:{Uo,Uz,Ug} (Bg)

as

eigenvectorsu,, (n=2,3) are proportional to right zero
eigenvectorsi,=a, andu;=2a, (see Table . To construct
the right zero eigenvectai, we note that by symmetry it
must have the structut& = (Xo|x), and satisfyfQty=0 with
(Ug|tp)=1. The result is

= (a|a;)= (ag] =5 ag). (B5)

To=8,=—
P a1+6a/l

a;— Qg

It is possible to identify the componentsiaf in terms of the
equilibrium  distribution  function f;(p)=(fo(p)|f(p)).
which is the stationary solution of the nonlinear Boltzmann
€quation(7), Q%f(p))=0, at a given density=fo+6f
[16]. Then we have for an infinitesimal chandg in the
density

df;
o=nﬁ%up+dm»=§lﬂuaw»ajdm (B6)

where we have used the definition@f; given above in Eq.
(13). This allows us to identify

_  [dfg|df
u0=(d—p0 $)=(1—2v§|%v§ , (B7)
where the speed of sound is defined by
dp df 1 dfy
2—_: —— — N —
ST %ap 2( dp)’ (B8)

with p=2ic§i i=3f=3(p—f,). One also verifies from Eq.
(B7) that (ug|tp)=1. From the identification of EqgB5)
and (B7) we obtain
[£7)) _ 1
ap— g _E

2_1( ‘Q’OO
UVs=75

%fmJ (B9)

2
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TABLE IlIl. Eigenvectorsv,(c) and eigenvalues, of the
source matrixE for a seven-bit fluid-type LGA on a triangular ¢§Lo)=C#pap+ C.a + C#Lalzz C.pa5. (B14)
lattice. B
n vn T, €n The solubility condition(30) for ¢{? yields the equation
0 linear comb. linear comb. €#0 E.B<a“|c/+zi‘l)|aﬂ.>cf‘ﬁ(:1? Wl’.[h .a=p,/,J_. Nonzero S_Olu—
1 of up andu, of T, and, €,#0 tionsC,, only exist if z,;” satisfies the secular equation,
2 u, U, 0 _
3 Us Uz 0 deﬂ(aa|c/+z£})|aﬁ>|=0. (B1H
4 Uy Tj4 €y
5 Us Us €5 The only nonvanishing elements af@,|c,|a,)=v3 and
6 Ug T €6 (a/|c/|a,)=1, and furthermorg(a,laz)=4,z. From the

secular equation we find three nondegenerate eigenvalues

) ) ZE}), and subsequently we can determine the coefficients
Table Il shows the complete set of right and left eigenvectorgs 5 to a normalization constant. Thus the threefold de-

. . 14
of ). Most eigenvectors can be found on the basis of SYMyeneracy of the null space 6 is lifted, and we have a right

metry arguments alone, except andu;. The correspond-  ghear modes=1
ing eigenvalues are found as

(1)1:010_900, w4=w5=2(912—914), l//j_o)zcl y Z(Ll)ZO, (816)
(B10)
wg=3(Q1—Q13). and a pair of right sound modgs= o= *,
2. Structure of E yP=a,+ova,, zM=-ovs. (B17)

So far we have calculated the eigenvectors and eigenval-
ues ofQ). In a similar manner we can do so for the sourceln a similar manner we obtain the corresponding left eigen-
matrix E;; defined in Eq(9) or (12). Then vectors of Eq(B15) as

Ev,=€w,. (B11) iO)IaL: ic,,

As E;;=E; is symmetric, left and right eigenvectors are the (B1§)
same up to a normalization factor, i.6,=v,/{v,|v,). The ~0 1
structure ofE is also given by Eq(B2), with a;=a;. The by )
lattice symmetry of the submatrpg;; ; i,j=1,2,...,6 im-
plies thatv,=u, for n=2,3,...,6. The conservation laws
(14) imply

~ g _
a,+—a
/ Vs p

Next we consider thdirst order left hydrodynamic modes.
The right modesy{’ are only required to zeroth order
(1|E|1)=(c,|E|c,)=(c,|E|c,)=0, (B12)  (n=0). The formal solution of Eq(28b) is

which imposes two relations between the matrix elements 1

E;;, and implies thab,=c, andvz=c, arezeroeigenvec- ¢E})=F(c/+ Zill))%owg BRyY. (B19
tors with e,= e3=0. However,ey# 0, and the corresponding

eigenvectorvg is a linear combination ofiy andu,. The

remaining eigenvalues in terms Bf, are obtained from Egs. It contains an arbitrary linear combination of zeroth order

(B10) and (B12) and read modes. We _ al\{vays choose the . nqrmaliz_atioq such
that the projection of ¢, onto {? is unity, ie.,
€4=€5=2(E14—E1p)=2(E;3—Eyy), (W) =) =1 and consequently far=1
(B13)

€6=3(E13— Eq1) =3(E;1— Eq). (0] (M — (m—
6 13~ E1 11~ B4 WlyiMy=0 or BY) =0. (B20)
The results are summarized in Table Ill. _

The corresponding coefficienB;(M”}L in the right eigenmodes

3. Perturbation theory to O(g?) ¢ are then determined by the normalization conditions

In this appendix we calculate the hydrodynamic moded29). They are, however, not needed in the present paper.
and matrix elements occurring in Eq&8) and (62) by  The remaining coefficientBE})\) (N# ) as well as the next
means of perturbation theory for degenerate eigenvalues. Warder eigenvalueﬁf) are determined from the solubility con-
use as a basis the eigenvectorsand, of () that were ditions of thesecondorder perturbation equatiori80). The
constructed in Sec. B 1. Our starting point is the observatiomethod to determinBﬁ}Q has been explained in R¢f.7] for
that according to Eq(283 a hydrodynamic zeroth order a symmetric collision operatd®, but the steps are all very
modewif) will be a linear combination of collisional invari- similar. In this manner we find for the eigenvalues to rel-
ants: evant order
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z,(q)=—vq? According to Table lll,us=vs5 is an eigenvector oE, or-
(B21) thogonal to the subspace spanned uyy and u;; conse-
z,(q)=—iqovs—Tq? quently £,5=0. Moreover,&y=(11E)=0 because of the

conservation lawg14). This yields the result listed in Eq.
where v, is the speed of sound, given in EB9), while (63). To calculate the contributions of theppositesound
I'=1(v+{) is the sound damping constant, wittandZ the  modes we need(yV|E[y{?) in Eq. (64). Using
shear and bulk viscosity, respectively, given in terms of theE %)= gvEu, we write

eigenvalues- w, as(see Table |l (W O)E| 2y = av (Uo| E[{uo(Tio| ##'2) +uy (T 2V}
1/1 1 1,1 1 - =ovo(Ul). (827)
- Z(w_4_ E)’ = (E_US) (w—l— E)' (B22)  To obtain the first equality we note th&§,=0 and that all

off-diagonal element<,,,=0 (n#m), exceptEy#0 (see
Table IlI).

The coefficient(T;|#?)) in Eq. (B26) can be calculated
most conveniently by projecting the second order eigenvalue
1y L 1 equation(28¢ onto the vecto, i.e.,

—=C,C, = — — Uy, (823@ —_~ ~ i
LT T T (U QT2 =(Ta(c, —ovg)ly”) + T (Uil ¢y”)

+3(Uy(c,—ovg)|(c2—vd).  (B29)

The eigenmodes to first order are found as

1
D T e 0 0)
Vo =qr(Crmovis + By o, Substituting Eq(B23) and using the relations

Uy(c,—ovg)=Uy—ovgly,

ol’
=w(05—vg)—z—vs(c/—fws) c2—v2=ug+uy,
Usg uq r ol’ <Ul| lpETO)>:0! (829)
T es wy  2U07 2t
S

SOT N = — o (312
(stb) <U1|Q lpo’ > w1<ul|wa >’
- we find for the coefficient
where Table Il has been used. The coefficieBtg=0 and
BU)\=0fOI’7\?50' - o Ug
The results so far are sufficient to calculate the transverse (U] '7053)): 200 F+U§— o |
susceptibility using Eq(59). From Table Il we conclude s¥1 1

that Ey{”=Eu;=0, and consequentlyy{”|E|¢*)=0.  The first term in Eq.(64), (yWIE| ¢V, is obtained simi-

The remaining term in Eq(59), combined with Eq(B23)  |arly by substituting Eq(B23), and yields
then yields

(B30)

€4 364
Ax. (q)= m(uduz&: Brw?’ (B24)

3 € 1 r
(1) (N_=255, - O
(s |Elgrs") 2 w§+ w%gn wlglo- (B3

Substituting Eqs(B26), (B30), and(B31) into Eq.(64) then
yields the final result, Eq(64), listed in the body of the
paper. The excess susceptibilii§2) is obtained by substi-
tuting Egs.(63) and (64) into (62), and carrying out ther
summation with the result

whereEu,= €,u, (see Table IIJ.

Next we consider the contributions entering the longitudi-
nal susceptibility in Eq(62), starting with theparallel sound
modes. To calculate the matrix elements in E&f) we ob-

serve tha€ y\9)= gv E U, (see Table Il. This permits us to 3e, & 05510( 1 1)

: : : : = + + —— =
combine the terms on the right hand side of E&f) into Ax, 160w’ aTw? 2T ar 07 2 (B32
(WA DE[p* (@)= —iqovs(uo|E[ )+ y')) The final step is to express the coefficiefitgand&;, in Eq.

(B25) in terms of the matrix elements; defined in Eqs(9)
and(12). To do so, we writeu; = (3—v2)uy—3(1—c?) and

1 1 1
=2i —Epst —Eo1— 51" Ego] -
QO'US wWsg 05 w1 01 2 00 Usegoozo to f|nd

(B25)

_ _ . E10= — 7(1|E[1—c?)= — 3(Egot 6E 1),
To obtain the second line we have inserted EBR3) and

introduced En=H1-c?E|1-c?)—(3—v2)(1|E|1—c?) (B33)

gnm:<un|E|um>- (B26) :%EOO_(%_Ug)(EOO'I'GElO)-
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