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Lattice gas automata with collision rules that violate the conditions of semidetailed balance exhibit algebraic
decay of equal-time spatial correlations between fluctuations of conserved densities. This is shown on the basis
of a systematic microscopic theory. Analytical expressions for the dominant long-range behavior of correlation
functions are derived using kinetic theory. We discuss a model of interacting random walkers withx-y
anisotropy whose pair correlation function decays as 1/r 2, and an isotropic fluid-type model with momentum
correlations decaying as 1/r 2. The pair correlation function for an interacting random walker model with
interactions satisfying all symmetries of the square lattice is shown to have 1/r 4 density correlations. Theo-
retical predictions for the amplitude of the algebraic tails are compared with the results of computer simula-
tions. @S1063-651X~96!07006-7#

PACS number~s!: 05.70.Ln, 05.40.1j, 05.20.Dd

I. INTRODUCTION

Closed, isolated physical systems, whose dynamics is de-
scribed by a HamiltonianH(G), reach for long times a ther-
modynamic equilibrium state in which each microstate with
total energyE has equal weightr(G);d„H(G)2E…: the
so-called microcanonical ensemble. When brought into con-
tact with a heat reservoir, so that the energy is not fixed but
fluctuates around an average value, the system is described
by the canonical distributionr(G);e2bH(G), with b the in-
verse temperature. An essential observation is that in both
cases the equilibrium distribution is completely known in
terms of the Hamiltonian, without the need to explicitly
solve the dynamics generated byH(G).

The situation is quite different in the case ofdriven sys-
tems, where the dynamics does not satisfy the detailed bal-
ance condition, and prevents the system from reaching ther-
mal equilibrium, e.g., due to an external driving field or due
to heat reservoirs at different temperatures. An example of
the latter is a fluid layer heated from above and cooled from
below, so that a temperature gradient across the layer is
maintained. After long times this system reaches a nonequi-
librium steady state. The corresponding phase space distribu-
tion can only be determined by explicitly solving the dynam-
ics, e.g., using kinetic theory@1#.

It is helpful to study simple models for driven systems to
gain insight into the nature of nonequilibrium steady states,
and to compare theoretical predictions with the result of
computer simulations. It is in fact simple to define models
with stochastic dynamics that violate detailed balance.

A class of models that has been studied quite extensively
in recent years is driven kinetic Ising models with Kawasaki-
type spin-flip dynamics@2# and certain particle hopping
models@3#. For a recent review see Ref.@4#. Computer simu-
lations have revealed algebraic decay of the density-density
correlation function, i.e.,G(r ).A/r n for larger , in the sta-
tionary state. Although the exponentn can be determined

from symmetry considerations alone, using a Langevin equa-
tion approach@2,5#, there is currently no theory available that
predicts theamplitude Aof the tail.

We propose lattice gas automata~LGA’s! as an alterna-
tive class of simplified models that can be used to study the
basic properties of nonequilibrium steady states. But more
importantly, we present a systematic approximate theory for
the large distance behavior of the correlation function of con-
served quantities. Thus we are able to calculate the ampli-
tude of the algebraic tails, starting from the microscopic defi-
nition of the model.

In addition to the type of lattice on which particles move
and a required set of local conservation laws~particle den-
sity, momentum density, etc.!, a LGA is defined by a set of
stochastic transition probabilities that define the stochastic
collision rules at each node. In the context of LGA’s there is
a distinction between collision rules that satisfy the condition
of detailed or semidetailed balance@6# and rules that violate
this condition. Semidetailed balance models reach for long
times a completely factorized equilibrium state that is inde-
pendent of the transition probabilities. However, to study
nonequilibrium steady states of driven systems one needs to
consider models with collision rules that violate semidetailed
balance. Such collision rules are incompatible with a factor-
ized state. Strong violation of semidetailed balance may even
lead to spatial instability and pattern formation@7–9#.

An advantage of LGA’s over Ising-type models is that
they can be used to model nonequilibrium states offluidsas
well. In Ref. @10# it is explained how non-detailed-balance
LGA fluids are to be considered as generalizations of driven
diffusive systems.

Here we exclusively deal with LGA’s having only stable
modes, so that after long times a spatially homogeneous but
correlated equilibrium state is reached.~Note that we use the
term ‘‘equilibrium state’’ as a synonym for ‘‘steady state,’’
to emphasize that we consider LGA’s driven only through
strictly local collision rules that are the same for each node
and applied simultaneously to each node at each time step.!
Such LGA’s can be interpreted as effective models, whose
dynamics represents a coarse-grained, mesoscopic descrip-
tion of a physical system kept out of thermal equilibrium.
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Due to their discrete nature LGA’s are relatively easy to
analyze, and studying their behavior will provide insight into
the physics of nonequilibrium processes. On the other hand,
many authors use LGA’s lacking detailed balance to model
physical phenomena, without analyzing how the lack of de-
tailed balance may affect the validity of their conclusions. It
is therefore important to have a fundamental understanding
of the statistical mechanics of non-detailed balance LGA’s.

To describe the correlations occurring in the correlated
equilibrium state of non-detailed-balance LGA’s a micro-
scopic description beyond the Boltzmann equation is re-
quired. Bussemaker, Ernst, and Dufty@11# were the first to
derive kinetic equations for LGA’s at the level of pair cor-
relations, by neglecting three-point and higher order correla-
tion functions. This theory successfully predicts the magni-
tude of the pair correlations between occupation numbers at
the same or at nearby nodes, as was shown in Ref.@11# by
numerically evaluating the solution to the kinetic equations,
and comparing it with simulation results.

Here we extend the analysis tolarge distances, and show
that all LGA’s lacking detailed balance possess spatial cor-
relations between fluctuations of locally conserved quantities
that decayalgebraically for large distances. This is surpris-
ing since the collision rules only involve occupation numbers
at the same node: zero-range interactions thus lead to
infinite-range correlations. The mechanism that is respon-
sible for the buildup of these long-range correlations in-
volves the slow evolution of diffusive or hydrodynamic
modes at large scales. It is the same mechanism that is re-
sponsible for the existence of the well-known long-time tails
in hydrodynamic time correlation functions of equilibrium
fluids, and the logarithmic density dependence of transport
coefficients@12#.

The organization of the paper is as follows. In Sec. II we
recapitulate the kinetic equations of Ref.@11# in terms of
excess correlation functions, and obtain an expression for the
pair correlation function in terms of diffusive or hydrody-
namic modes that resembles results derived from the phe-
nomenological mode coupling theory. This expression is
analyzed for interacting random walkers on a square lattice
with x-y anisotropy in Sec. III, and with the full square lat-
tice symmetry in Sec. IV. In Sec. V we discuss a fluid-type
LGA with full triangular lattice symmetry, which exhibits
long-range momentum correlations. We end with a discus-
sion in Sec. VI.

II. RING KINETIC THEORY

A. Basic definitions

We consider a LGA defined on ad-dimensional lattice of
linear sizeL. The lattice has periodic boundary conditions
and containsV5Ld nodes. In this paper we will only use
two-dimensional models withd52. At each noder there are
b channels (r ,ci) for moving particles with velocityci
( i51, . . . ,b). We will consider two specific LGA’s in this
paper:~i! a model defined on a square lattice, whereci are
the nearest neighbor vectors„cos(i21)p/2,sin(i21)p/2… with
i51, . . . ,4, and~ii ! a model defined on a triangular lattice,
whereci5„cos(i21)p/3,sin(i21)p/3… for i51, . . . ,6; in ad-
dition, there may be a channeli50 for a rest particle with

c050. The absence~presence! of a particle in channel
(r ,ci) is denoted by Boolean occupation numbers
si(r )5$0,1%.

The state of a noder is denoted bys(r )5$si(r )%. During
the collision stepof the LGA the precollision states(r ) is
replaced by a postcollision states(r ) at all nodes simulta-
neously, according to a stochastic process with transition
probabilitiesAss>0. The 2b32b matrix Ass is normalized:

(
s

Ass51. ~1!

The collision step is followed by apropagation stepduring
which a particle with postcollisional velocityci is moved
from node r to a neighboring noder1ci . The combined
collision and propagation steps constitute a time evolution of
the entire LGA from timet to time t11.

In most LGA’s the collision rules satisfy certain local
conservation laws. For instance, in a LGA describing the
diffusive behavior of~interacting! random walkers, the num-
ber of particles at a node does not change during collision,
but the distribution among velocity directions does. This
conservation law is conveniently formulated in terms of the
collisional invariantai51. In a fluid-type LGA the local mo-
mentum at each node is also conserved during collision, and
we have ai5$1,ci%. Nonzero transition probabilities
Ass.0 are only allowed if

(
i
ais i5(

i
aisi , ~2!

or, stated compactly, the matrixAss must satisfy

(
i
ai~s i2si !Ass50. ~3!

The transition matrix Ass is said to satisfy the
semidetailed-balanceor Stueckelberg condition@13# if

(
s
Ass51. ~4!

The strongerdetailed-balancecondition,Ass5Ass , implies
semidetailed balance on account of the normalization~1!. It
can be shown that if Eq.~4! holds, the equilibrium distribu-
tion is completely factorized over allbV channels (r ,ci), and
only depends on the microscopic state through global invari-
ants, like the total number of particles or the total momentum
@6#. Since the collision step does not change the value of
these invariants, it follows that the equilibrium distribution is
invariant under the collision step.

B. Simple versus repeated ring approximation

We restrict ourselves in this paper to properties of spa-
tially homogeneous equilibrium states in LGA’s lacking de-
tailed balance. The quantities of interest are the average oc-
cupation number or single particle distribution function
f i5^si(r )& and the pair correlation functionGi j (r )
5^dsi(r )dsj (0…& with dsi(r )5si(r )2 f i .

We give a short summary of necessary results derived in
Ref. @11#. In semidetailed-balance models with zero-range
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interactions the average occupation number equals the Fermi
distribution, and the pair correlation function has the diago-
nal form

Gi j ~r !5Gi jd ~r ![d i jd~r ,0! f i~12 f i !, ~5!

showing the absence of spatial or velocity correlations.
Next we consider models that violate semidetailed bal-

ance. It is convenient to introduce theexcesspair correlation
function

Ci j ~r !5Gi j ~r !2Gi jd ~r !, ~6!

where a special role is played by the on-node correlations
Ci j[Ci j (0). In the so-calledsimple ring approximationthe
average equilibrium occupations$ f i% are the solution to the
stationary nonlinear Boltzmann equation

V i
1,0~ f ![(

ss
~s i2si !AssF~s!50, ~7!

where the nonlinear Boltzmann operatorV i
1,0( f ) depends on

the average occupationsf i through the factorized distribution
F(s), defined as

F~s!5)
i
f i
si~12 f i !

12si. ~8!

The source of all spatial correlations is the matrixE, which
in the simple ring approximation is given by

Ei j5V i j
2,0[(

ss
~ds ids j2dsidsj !AssF~s!. ~9!

OnceEi j is known, the on-node correlationsCi j can be cal-
culated from the stationary ring equation

Ci j5(
i jkl

Ri j ,kl Ekl . ~10!

The explicit form of the ring operatorR, given in Ref.@11#,
is not needed here.

At a more sophisticated level, therepeated ring approxi-
mation, $ f i% and $Ci j % are obtained as the solution to the
stationary~generalized! Boltzmann equation

V1,0~ f !1(
k, l

V i ,kl
1,2 ~ f !Ckl50, ~11!

where the term containingV i ,kl
1,25]2V i

1,0/] f k] f l describes
corrections toV i

1,0. The on-node excess correlation function
C couples the generalized Boltzmann equation~11! to the
stationary ring kinetic equation~10!, where the source matrix
E is now given by

Ei j5V i j
2,01(

k, l
V i j ,kl

2,2 Ckl1(
k,l

~12v! i j ,klCkl , ~12!

with V i j ,kl
2,2 5]2V i j

2,0/] f k] f l and 1i j ,kl5d ikd j l . Furthermore,
v i j ,kl5(11V) ik(11V) j l , where 1 is the unit matrix with
(1) i j5d i j , andV is the linearized Boltzmann collision op-
erator, defined as

V i j5
]V i

1,0

] f j
5(

ss
~s i2si !AssF~s!

dsj
f j~12 f j !

. ~13!

For a derivation of these equations as well as a detailed dis-
cussion of how to obtain a~numerical! solution, we refer to
Ref. @11#. Using the definition in Eq.~9! or ~12! it can be
shown thatE satisfies all local conservation laws of the
model, i.e.,

^aauE&[^auEua&[(
i j

aiajEi j50. ~14!

We have found@11# that for models with local conserva-
tion laws the numerical difference between the simple and
repeated ring values forCi j is on the order of 10%. Correc-
tions to the Boltzmann value forf i , as obtained from Eq.
~11!, are even smaller — typically 1%.

As shown in Ref.@11# and the next subsection, all spatial
correlations in the system are linear in the source termE. If
this term vanishes, all correlations in the system vanish, and
the equilibrium state is completely factorized. That the
source term does indeed vanish if the collision rules satisfy
the detailed-balance condition can be seen as follows. As
noted above Eq.~5!, f i is a Fermi distribution. Then the
single node distribution ~8! satisfies the relation
F(s)Ass5F(s)Ass . Using normalization~1! and semide-
tailed balance~4! it follows thatV i j

2,050, and consequently
Ei j50, in both simple and repeated ring approximations. If
the transition rates do not obey the semidetailed-balance con-
dition ~4! thenV i j

2,0 is in general nonvanishing.

C. Mode coupling formula

Here we are concerned with correlation functions of con-
served ~hydrodynamic! densities. In diffusive models the
only conserved density is the number densityr(r )
5( isi(r ). In fluid-type models the momentum density
g(r )5( icisi(r ) is conserved as well. We denote the con-
served densities collectively asa(r )5( iaisi(r ). The hydro-
dynamic correlation functions are then expressed in terms of
a scalar product:

Ga~r !5^da~r !da~0!&5(
i j

aiajGi j ~r ![^aauG~r !&, ~15!

where the fluctuationda(r )5( iaidsi(r ). The Fourier trans-
form of the correlation functionGi j (r ), defined by

Ĝi j ~q!5(
r
e2 iq•rGi j ~r !, ~16!

can be split as

Ĝi j ~q!5d i j f i~12 f i !1 Ĉi j ~q!. ~17!

The constant contribution on the right hand side comes from
the diagonal part defined in Eq.~5!, andCi j (q) denotes the
Fourier transform of the excess correlation function defined
in Eq. ~6!. In a similar manner, the susceptibilityxa(q) is
defined as the Fourier transform ofGa(r ), i.e.,
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xa~q!5(
r
e2 iq•rGa~r !, ~18!

and split into two parts:

xa~q!5xa
d1Dxa~q!. ~19!

Its diagonal partxa
d is given by

xa
d5(

i
~ai !

2f i~12 f i ! ~20!

and the excess partDxa(q) by

Dxa~q!5(
i j

aiaj Ĉi j ~q![^aauĈ~q!&. ~21!

The main result of Ref.@10# describes the dominant behavior
of the susceptibility atsmall wave number(q→0) as

Dxa~q!5(
mn

^aauc̃m~q!c̃n~2q!&
1

12ezm~q!1zn~2q!

3^cm~q!cn~2q!uE&, ~22!

which has the structure of a mode coupling formula.
Herec̃m(q) andcm(q) are the slow right and left~diffusive
or hydrodynamic! eigenmodes of the LGA, determined by
the eigenvectors of the lattice Boltzmann equation:

@ezm~q!1 iq•c212V#c̃m~q!50,
~23!

@ezm~q!1 iq•c212VT#cm~q!50.

HereVT is the transpose of the linearized Boltzmann colli-
sion operatorV in Eq. ~13!. The matriceseiq•c and 1 are
diagonal matrices with elementsd i j e

iq•ci and d i j , respec-
tively. The eigenvalue or relaxation rate of the slow mode
$cm ,c̃m% is zm(q). For smallq it behaves aszm(q);q2 for
purely diffusive modes, and aszm(q);q for propagating
sound modes. The right and left eigenmodesc̃m(q) and
cm(q) areb-dimensional vectors@or (b11)-dimensional if
the model admits states with a rest particle#, with compo-
nentsc̃m i andcm i . They form a biorthonormal set, satisfy-
ing the orthogonality relation

^cm~q!ueiq•cuc̃n~q!&[(
i

cm i~q!eiq•cic̃n i~q!5dmn . ~24!

Note that all inner products in this article are defined without
complex conjugation.

D. Perturbation theory

The small-q behavior of the susceptibilityxa(q) deter-
mines the long-range behavior of the corresponding correla-
tion functionGa(r ). We therefore writeDxa(q) as a Taylor
expansion in powers of the wave numberq5uqu:

Dxa~q!5Dxa
~0!~ q̂!1q2Dxa

~2!~ q̂!1q4Dxa
~4!~ q̂!1•••.

~25!

Explicit expressions for the functionsDxa
(m)(q̂) occurring in

Eq. ~25! can be obtained by expanding the eigenvectors and
eigenvalues in Eq.~23! in powers ofq:

cm~q!5cm
~0!~ q̂!1~ iq !cm

~1!~ q̂!1~ iq !2cm
~2!~ q̂!1•••,

c̃m~q!5c̃m
~0!~ q̂!1~ iq !c̃m

~1!~ q̂!1~ iq !2c̃m
~2!~ q̂!1•••,

~26!

zm~q!5zm
~0!~ q̂!1~ iq !zm

~1!~ q̂!1~ iq !2zm
~2!~ q̂!1•••.

From Eqs.~3! and ~13! it follows that

(
i
aiV i j50. ~27!

In other words, the collisional invariantsa are left zero
eigenvectors ofV. The dimensionality of the null space of
V is equal to the number of collisional invariants: one for
diffusive models, andd11 for athermal~without energy
conservation! fluid-type models. From Eq.~27! we conclude
that forq50 the left zero eigenvectors of the propagator are
cm(0)5a with zm(0)50. These eigenmodesm, associated
with local conservation laws, are calledslow or hydrody-
namic modes. It will be shown below that only pairsmn of
slow modes are responsible for singularities~here a discon-
tinuity or anisotropy atq50) in the q dependence of the
susceptibilities, and hence for the existence of algebraic de-
cay of the pair correlation function.

By expanding Eq.~23! in powers of (iq) we obtain the
following hierarchy of equations for the left zero eigenvec-
tors:

VTcm
~0!50, ~28a!

VTcm
~1!5~cl 1zm

~1!!cm
~0! , ~28b!

VTcm
~2!5~cl 1zm

~1!!cm
~1!1@zm

~2!1 1
2 ~cl 1zm

~1!!2#cm
~0! ,

~28c!

whereVT is the transpose ofV, and cl i5q̂•ci . Similar
equations hold for the right zero eigenvectors, but withVT

replaced byV. The biorthonormality condition~24! must
also holds to all powers of (iq), which yields

^cm
~0!uc̃n

~0!&5dmn ,
~29!

^cm
~0!uc̃n

~1!&1^cm
~0!ucl uc̃n

~0!&1^cm
~1!uc̃n

~0!&50,

etc. Note that ifV i j is symmetric so thatVT5V, then
cm(q) and c̃m(q) are equal, up to a normalization factor.
The perturbation equations~28a!–~28c! have the general
form VTcm

(n)5Im
(n) , where the inhomogeneous termIm

(n) de-
pends on the unknown eigenvaluezm

(n) . As the matrixVT

has left zero eigenvectorsc̃m
(0) , it is required that

05^c̃n
~0!uVTcm

~n!&5^c̃n
~0!uIm

~n!& ~30!

for all slow modesn. Solving these equations forzm
(n) en-

ables us to determine the eigenvalues perturbatively.
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E. Algebraic correlations

OnceDxa(q) is calculated, Fourier inversion of Eq.~18!
enables us to calculate the spatial correlation functions. In
the limit of large system size we can make the continuum
approximation,

1

V(
q
→

v0
~2p!d

E
BZ
dq. ~31!

Herev0 is the volume of a unit cell in the lattice (v05
1
2A3

for a triangular lattice;v051 for a square or cubic lattice!,
and theq integration extends over the first Brillouin zone.
The excess correlation function is then given by

Ca~r !5
v0

~2p!d
E
BZ
dqeiq•rDxa~q!. ~32!

Combining Eqs.~25! and ~32! we have

Ca~r !5Ca~0!~r !1Ca~2!~r !1Ca~4!~r !1•••. ~33!

Consider the contribution of theO(qm) term in Eq.~25! to
Ca(r ),

Ca~m!~r !5
v0

~2p!d
E
BZ
dqqmeiq•rDxa

~m!~ q̂!. ~34!

If Dxa
(m)(q̂)5Dxa

(m) is isotropic, i.e., continuous atq50,
then the right hand side of Eq.~34! is essentially a represen-
tation of ~themth derivative of! the Diracd function, and
therefore all correlations are short ranged. The situation is
very different whenDxa

(m)(q̂) is anisotropic, i.e., it depends
on q̂ asq→0. A rescaling ofq in Eq. ~34! then shows that

Ca~m!~r !.
v0

~2p!d
1

r d1mE
Rd
dqqmeiq• r̂Dxa

~m!~ q̂!, ~35!

where r̂5r /ur u. Therefore for larger the pair correlation
functionGa(r ) behaves as

Ga~r !.
A~ r̂ !

r d1m , ~36!

with a coefficientA( r̂ ) that depends on the direction ofr .
The value ofm is determined by the first anisotropic term in
the expansion~25! of the susceptibility. The amplitude
A( r̂ ) can be calculated from the microscopic definition of the
model by performing the Fourier integral in Eq.~35!.

In the remainder of this paper we determinem and calcu-
late A( r̂ ) for two different models:~i! interacting random
walkers on the square lattice with an anisotropic transition
matrix Ass yielding spatial density-density correlations of
type 1/r 2 or 1/r 4, depending on whether or not the symmetry
betweenx and y directions is broken, and~ii ! a fluid-type
model on a triangular lattice with spatial correlations of type
1/r 2 in the momentum density.

III. INTERACTING RANDOM WALKERS
WITH x-y ANISOTROPY

In this section we discuss a LGA for interacting random
walkers on the square lattice. The collision rules of the
model break the symmetry between thex and y directions.
We choose a model that is still invariant under reflections in
both thex and y axes, so that no average particle drift oc-
curs. Collision rules that break thex-y symmetry are most
easily formulated in terms of the particle fluxJ(s) corre-
sponding to a states,

J~s!5(
i
cisi . ~37!

We choose the matrix of transition probabilities as

Ass5
1

Z~s!
exp@J~s!•M•J~s!#d„r~s!,r~s!…, ~38!

whereZ(s) is a normalization constant,

Z~s!5(
s

exp@J~s!•M•J~s!#d„r~s!,r~s!…, ~39!

andM is a diagonal matrix,

M5S bx 0

0 by
D . ~40!

If bx5by50 then the detailed-balance condition is satisfied,
and a completely factorized equilibrium state exists. For all
other choices ofbx and by — positive or negative — the
density-density correlations in the correlated equilibrium
state decay algebraically. In the special casebx5byÞ0 the
model has the complete symmetry of the underlying lattice.
This case will be discussed in the next section. In the remain-
der of this section we show that whenbxÞby the correla-
tions are of type 1/r 2. We derive an analytical expression for
the amplitude, for the specific interacting random walker
model defined by Eqs.~37!–~40!.

The system of interacting random walkers~IRW’s! on a
~bipartite! square lattice, which make a move at each time
step, consists in fact of two totally independent subsystems:
the IRW’s initially on the even sublatticeL` and those ini-
tially on the odd sublatticeL2. In a single time step all
particles onL` move toL2 and vice versa. Therefore equal-
time correlations can only exist between particles at posi-
tions r andr 8 on the same sublattice. Consequently, the dif-
ferencer2r 8 always belongs to the even sublattice, so that
G(r )[0 for rPL2, andG(r ) is possibly nonvanishing for
rPL`.

The above features of the bipartite square lattice are con-
tained in the mode coupling formula~22! through the exist-
ence of two slow modes, both contributing to the long-range
part of the pair correlation function. LetN1(t) andN2(t)
denote the total number of particles at timet on L1 and
L2 , respectively; then their difference oscillates in time, and
Nu5(2) t@N1(t)2N2(t)# is a conserved quantity, just like
the total number of particlesN5N1(t)1N2(t). The slow
mode corresponding to the conservation ofNu is called the
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staggered diffusive mode; the one corresponding to the con-
servation ofN is the usual diffusive mode.

The regular diffusive mode has a relaxation rate that for
small wave number behaves as@see Eq.~A22! of Appendix
A!#

zD~q!.2q2z2~ q̂!52~Dxqx
21Dyqy

2!, ~41!

with diffusion coefficients in thex andy directions given by
Eq. ~A23!. To leading order the excess susceptibility
Dx(q)[Dxr(q) contains a contribution from a pair of dif-
fusive modes, i.e.,

Dx~q!5^11uc̃D~q!c̃D~2q!&S 1

12e2zD~q!D
3^cD~q!cD~2q!uE&. ~42!

In Appendix A the left and right diffusive eigenvectors
cD(q) and c̃D(q) are calculated using perturbation theory.
For smallq the amplitude factors in Eq.~42! are calculated
in Eqs.~A18! and ~A27! with the result

^11uc̃D~q!c̃D~2q!&51,
~43!

^cD~q!cD~2q!uE&52~Bxqx
21Byqy

2!.

The factor involving the eigenvaluezD is given by

12e2zD~q!.2~Dxqx
21Dyqy

2!. ~44!

In Eq. ~A25! of Appendix A the coefficientsBa are given
explicitly. In the majority of publications on driven diffusive
systems@2,4,5#, the transport coefficientsDa and the coeffi-
cientsBa — which in the phenomenological description rep-
resent the noise strength of the fluctuating force in the
Langevin equation — are simply phenomenological input in
the theory. In the present paper both sets of coefficientsDa
andBa arecalculatedfrom the microscopic definition of the
model.

From Eqs. ~42!–~44! it can be seen that the limit
Dx (0)(q̂)[ limq→0Dx(q) exists and that the dominant part
of this contribution to the excess susceptibility is given by

DxD
~0!~ q̂!5

Bxq̂x
21Byq̂y

2

Dxq̂x
21Dyq̂y

2
. ~45!

Inverse Fourier transformation yields the contribution
GD(r ) of the two diffusive modes to the large-r behavior of
the pair correlation function,

GD~r !.S DxBy2DyBx

2pADxDy
D Dyx

22Dxy
2

~Dyx
21Dxy

2!2
. ~46!

However, the staggered slow mode also contributes to the
excess susceptibility. It occurs at the wave vector
p5(p,p), and is intimately related to the diffusive mode
m5D occurring at q50. We have G(q1p)
5e2 ip•ciG(q)52G(q), where G(q)5eiq•c(11V) is
the one-step propagator with eigenvalueezD(q). Then
zD(q1p)5zD(q)1 ip, cD(q1p)5cD(q), andc̃D(q1p)
5c̃D(q). It follows thatDx(q1p)5Dx(q). The staggered

mode atq5p gives a contribution to the pair correlation
function equal toe2 ip•rGD(r ), so that the final result for the
pair correlation reads

G~r !5~11e2 ip•r !GD~r !5H 2GD~r !, x1y even

0, x1y odd.
~47!

To test the accuracy of our prediction we have performed
computer simulations forbx51 andby53 at the half-filled
lattice, wheref i5

1
2 for all four velocity directions. To obtain

numerical values for the source matrixEi j in the repeated
ring approximation, Eq.~12!, we determined the on-site cor-
relationsCi j using the methods of Ref.@11#.

Figure 1 shows a comparison between simulation data and
the analytical prediction of the large-r behavior. The re-
peated ring theory agrees well with the simulation values
over the rangerP@10,50#. For larger there is a systematic
deviation of the simulation data that is a result of the slow
diffusive equilibration on large spatial scales, according to
r 2;Dt, whereD is the smaller of the two diffusion con-
stantsDx andDy .

IV. INTERACTING RANDOM WALKERS
WITH SQUARE LATTICE SYMMETRY

In this section we discuss the behavior of general diffu-
sive LGA’s with collision rules that obey all symmetries of
the underlying lattice, but violate detailed balance. An ex-
ample of such a LGA is the model of the previous section in
the special casebx5byÞ0. The collision rules then obey all
symmetries of the square lattice~reflection inx or y axis, and
rotation over multiples of 90°), which implies that second

FIG. 1. Anisotropic interacting random walker model. Pair cor-
relation functionG(r ), at evenr values, withr5(r ,0) along thex
axis, for interacting random walkers on a square lattice with inter-
actions that break the symmetry between thex andy axes. Forr 5
odd the pair correlation function vanishes. The average density per
velocity channel isf51/2, and the model parameters arebx51 and
by53. Symbols with error bars indicate simulation results for a
system of 5122 nodes, with an equilibration time ofTeq5104 time
steps. The lines denote the asymptotic algebraic tail;1/r 2, as pre-
dicted by ring kinetic theory in the simple~dashed line! and re-
peated ring approximation~solid line!.
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rank tensors are isotropic. Therefore the anisotropy giving
rise to 1/r 2 correlation forbxÞby , as discussed in the pre-
vious section, is now absent. However, on the square lattice
tensors of rank 4 contain anisotropic parts. In what follows
we explain how this anisotropy gives rise to correlations de-
caying as 1/r 4.

There are again two slow modes: the usual diffusion
mode and the staggered diffusive mode. The corresponding
eigenvaluezD(q) of the diffusion mode has the form

zD~q!52Dq21D2~ q̂!q41•••. ~48!

All odd terms vanish because of reflection symmetry. On the
square lattice, the so-called super-Burnett coefficientD2(q̂)
depends on the directionq̂ of the wave vectorq. It contains
an anisotropic term equal to22D28q̂x

2q̂y
2 on account of Eq.

~A30!.
To calculate the excess correlation function in Eq.~42! we

analyze its separate factors. The factor containing the eigen-
valuezD(q) behaves for smallq as

1

12e2zD~q! 5
1

2Dq2 H 11q2SD2~ q̂!

D
1D D1•••J . ~49!

The first factor in Eq.~42! equals unity for smallq @see Eq.
~43!#. The last one behaves as

^cD~q!cD~2q!uE&52Bq212B2~ q̂!q41•••, ~50!

where the isotropicB and the anisotropicB2(q̂) are calcu-
lated in Eqs.~A33! and~A34!; B2(q̂) contains an anisotropic
term 22B28q̂x

2q̂y
2 . Isotropic terms do not contribute to the

algebraic correlations. After collecting terms, the dominant
anisotropiccontribution of the two diffusion modes to the
susceptibility becomes

DxD~ q̂!.
B

D SD2~ q̂!

D
1
B2~ q̂!

B Dq2
52

2B

D SD28

D
1
B28

B D q̂x2q̂y2q2
[2Aq̂x

2q̂y
2q2. ~51!

The large-r behavior of the inverse Fourier transform of the
anisotropic part of Eq.~51! is given by

G~r !.2~11e2 ip•r !
A

~2p!2r 4E dqq2eiq• r̂q̂x
2q̂y

2

5~11e2 ip•r !
3A

pr 4 F S xr D
2

2S yr D
2G2. ~52!

The factor (11e2 ip•r) accounts for the contribution of the
staggered diffusive modes, as explained below Eq.~46!. This
result represents thelong-rangebehavior of the pair correla-
tion function of interacting random walkers with interactions
having the full square lattice symmetry. The important con-
clusion of this calculation is that the amplitude of the 1/r 4

tail is nonzero for general choices ofbx5byÞ0. Thus the
model provides an explicit microscopic realization of the
scenario that was discussed in the context of the Langevin

equation by Grinsteinet al. @5#. The 1/r 4 tail is much weaker
than the 1/r 2 tail discussed in the previous section, and there-
fore a comparison with computer simulations would require
a numerical effort that is beyond the scope of this paper.

V. FLUID-TYPE MODEL

In this section we study the spatial correlation functions
Gab(0)5^ga(r )gb(r )& of the momentum densities, with
a,b5$x,y%, in a seven-bit LGA fluid defined on a triangular
lattice, which allows for a rest particle state~see Sec. II A!
and violates detailed balance.

The susceptibilityxab(q) is defined as the Fourier trans-
form of the correlation functionGab(r )5^ga(r )gb(0)& with
a,b5x,y. We decomposexab(q) into a longitudinal and a
transverse part, as

xab~q!5q̂aq̂bx l ~q!1~dab2q̂aq̂b!x'~q!, ~53!

where

x l ~q!5^gl ~q!gl ~2q!&

and

x'~q!5^g'~q!g'~2q!&

are scalar fields with identical diagonal parts given by

x l
d5x'

d53 f ~12 f ! ~54!

on account of Eq.~5!. The excess partsDx l (q) and
Dx'(q), given by Eq.~22! with a5cl anda5c' , respec-
tively, are, in general, different. As we will argue below,
the limits for q→0 of Dx l (q) and Dx'(q), denoted by
Dx l and Dx' , are nonvanishing. IfDx l ÞDx' then
xab
(0)(q̂)5 limq→0xab(q) is anisotropic atq50 and therefore
Gab(r );1/r 2 for large r .

To determine the dominant long-range part ofGab(r ) we
need to know, according to Eq.~22!, the right and left hy-
drodynamic modes$cm(q),c̃m(q)% and eigenvalueszm(q)
of the lattice Boltzmann equation, defined through Eq.~23!.
The collisional invariants in this model areaa5$1,cx ,cy% or
equivalentlyaa5$ar ,al ,a'%5$1,cl ,c'%, where longitudi-
nal (l ) and transverse (') refer to theq direction. The set
$aa% are the zero left eigenvectors of the collision operator
V, andãa are the corresponding zero right eigenvectors, i.e.,
VTaa50 andVãa50. The left and right eigenvectors form
a biorthogonal set, i.e.,̂aauãb&5dab .

Symmetry properties and the complete set of eigenvectors
and eigenvalues are discussed in Appendix B, and summa-
rized in Table II, whereu05ar , u25al , andu35a' . It is
convenient for what follows to show how eigenvalues and
eigenvectors transform under the inversionq→2q.We first
observe thatzm(q)5zm* (2q) for all modes. Moreover, com-
plex conjugation of Eq.~22! shows

cs* ~q!5c2s~2q!, zs* ~q!5z2s~q!,
~55!

c'
* ~q!52c'~2q!, z'* ~q!5z'~q!,

and the same relations withcm→c̃m .
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For small q the shearmode or transverse momentum
mode (m5') is

c'
~0!~q!5a' , c̃'

~0!~q!5ã' , z'~q!52nq2, ~56!

and the sound modes (m5s56) are

cs
~0!~q!5al 1svsar , c̃s

~0!~q!5 1
2 S ã'1

s

vs
ãrD ,

~57!
zs~q!52 iqsvs2Gq2.

The vectorsãa (a5r,l ,') are also given in Table II. The
shear viscosityn, the speed of soundvs , and the sound
damping constantG can be expressed in terms of matrix
elementsV i j of the collision operator, as shown in Appendix
B 3, where the higher order coefficients in theq expansion,
cm
(n) , are also determined.
We start with the transverse susceptibility in Eq.~22! and

observe that only the pair (mn)5(') has a nonvanishing
overlap for smallq, i.e., ^c'c'uc̃'(q)c̃'(2q)&.21 for
smallq. The excess susceptibility then has the form

Dx'~q!.2
1

2nq2
^c'~q!uEuc'~2q!&. ~58!

Inserting theq expansion~26! for c' , and using the rela-
tions ~55! and ^aauEuab&50 @see Eq.~14!#, the dominant
small-q term in Eq.~58! is then

Dx'~q!5
1

2n
@^c'

~1!uEuc'
~1!&22^c'

~0!uEuc'
~2!&#. ~59!

These terms are evaluated in Eq.~B24! of Appendix B 3
with the result

Dx'~q!5
3

8n S e4
v4
2D . ~60!

The eigenvalues2v4 and e4 of V andE are calculated in
Appendixes B 1 and B 2, and listed in Tables II and III.

Next consider the longitudinal susceptibility in Eq.~22!,
where only sound modes (mn)5(s,s8) give a nonvanishing
contribution for smallq, i.e.,

^cl cl uc̃s~q!c̃s8~2q!&. 1
4 , ~61!

and the excess susceptibility becomes

Dx l ~q!5 1
4 (

s,s8
@ iq~s1s8!vs12Gq2#21

3^cs~q!uEuc2s8
* ~q!&. ~62!

For parallel sound modes,s85s, the denominator yields
2iqsvs for smallq, and the last factor in Eq.~62! yields

^cs~q!uEuc2s* ~q!&. iq@^cs
~0!uEuc2s

~1! &1^cs
~1!uEuc2s

~0! &#

52iqsvsE10/v1 . ~63!

The latter equality is derived in Eq.~B25!; the coefficient
E10, defined in Eq.~B26!, is calculated in Eq.~B33! in terms

of theEi j ’s defined in Eqs.~9! and~12!. For oppositesound
modes,s852s, the denominator becomes 2Gq2 and the
latter factor in Eq.~62! yields

^cs~q!uEucs* ~q!&

.q2@^cs
~1!uEucs

~1!&22^cs
~0!uEucs

~2!&#

5q2H 3e4
4v4

2 1
E11
v1
2 2

2E10
v1

FG1vs
2S 122

1

v1
D G J . ~64!

Here the latter equality is derived in Eqs.~B27!–~B31!, and
the coefficientE11 is calculated in Eq.~B33! in terms of
Ei j ’s. Combining Eqs.~62!–~64! yields the final result,

Dx l 5
3e4

16Gv4
2 1

E00

16Gv1
2 1

E0016E10

8Gv1
S vs22 1

v1
D . ~65!

In the case of the simple ring approximation, defined in
Eq. ~9! asEi j5V i j

2,0, the above expressions simplify consid-
erably because all diagonal elements are vanishing. It fol-
lows from Eqs.~7! and ~9! that

Eii5V i i
2,05~122 f i !(

ss
~s i2si !AssF~s!

5~122 f i !V i
1,050 ~66!

for all i50,1, . . . ,b. We have used the relation
(ds i)

25(s i2 f i)
25(122 f i)s i1 f i

2 , valid for Boolean
variabless i . In this case the relevant eigenvalue in Eq.
~B13! reduces toe4522E13 and the excess longitudinal
susceptibility becomes

Dx l 52
3E13

8Gv4
2 1

3E10

4Gv1
S vs22 1

v1
D . ~67!

This simplification does not apply in the more general~re-
peated ring! case.

In generalx l and x' are different, unless the collision
rules satisfy detailed balance so thatE105E115E1350. By
inverse Fourier transformation of Eq.~53! we find that the
asymptotic behavior of the correlation function is given by

Gxx~r !52Gyy~r !5
~x'2x l !A3

4p S x22y2

r 4 D ~68!

and

Gxy~r !5Gyx~r !5
~x'2x l !A3

4p S xyr 4 D . ~69!

An equivalent statement, stressing the isotropy of the corre-
lation functions, is that

Gl l ~r !5
~x'2x l !A3

4pr 2
, ~70!

G''(r )52Gl l (r ), andG'l (r )50. The labelsl and' here
refer to the vectorr . In Eqs.~68!–~70! we may replacex l
andx' by Dx l andDx' , respectively, on account of Eqs.
~19! and ~54!.

5844 53H. J. BUSSEMAKER AND M. H. ERNST



We performed a computer simulation for the triangular
lattice fluid-type LGA defined as model III in Fig. 1 of Ref.
@14#, where it was used to study tagged particle diffusion in
a non-detailed-balance LGA fluid. Figure 2 shows a com-
parison between simulation results and the theoretical predic-
tions for the amplitude of the algebraic tail. The statistics
was improved by averagingGl l (r ) andG''(r ) over all di-
rections. In particular when the repeated ring approximation
is used, the agreement is quite satisfactory.

Although in the limit of long timesGl l (r ) and G''(r )
are the same up to an overall sign, there is an interesting
difference concerning the way in which equilibrium is
reached. The buildup ofGl l (r ) is governed by traveling
sound modes, for whichr;t. The buildup ofG''(r ), how-
ever, involves the diffusive shear mode, so thatr 2;nt. For
the data shown in Fig. 2 the shear viscosity has the value
n.0.2, so that the range over whichG''(r ) has equilibrated
in Teq5104 time steps is (nTeq)

1/2.45 lattice spacings, in
agreement with Fig. 2.

VI. DISCUSSION

We have formulated a general ring kinetic theory for lat-
tice gas automata, and used it to calculate the pair correlation
function for conserved densities. These correlation functions
have algebraic tails,G(r ).A( r̂ )/r n, for large r . The expo-
nentn can be determined on the basis of symmetry consid-
erations alone, using a conceptually simple phenomenologi-
cal Langevin equation approach@2,5#. However, a theoretical
estimate for the amplitudeA( r̂ ) can only be obtained by
approximately solving the kinetic equations that define the
evolution in phase space, and analyzing the large-r behavior
of its stationary solution. This is exactly what we did in this
paper.

To test the validity of our approach we performed com-

puter simulations for two different two-dimensional models,
both violating the condition of semidetailed balance. First we
considered a model of interacting random walkers with dif-
ferent diffusion coefficients in thex andy directions, exhib-
iting an algebraic decay of the density-density correlation
functionGr(r )5^dr(r )dr(0)&;1/r 2. The second model we
considered was a fluid-type model in which the correlation
function of momentum densities behaves asGab(r )
5^ga(r )gb(0)&;1/r 2. In both cases we found good agree-
ment between the simulated and theoretical values for the
amplitude, in particular when we used the so-called repeated
ring approximation, in which all pair correlation effects are
taken into account in a self-consistent manner.

Most studies of nonequilibrium states using simple mod-
els so far have employed kinetic Ising models. Since lattice
gas automata are easily implemented and analyzed, as well
as flexible, they provide an attractive alternative. This holds
in particular if one wishes to study fluid-type systems in
which the momentum density is an additional conserved
quantity. The algebraic momentum correlations discussed in
Sec. V have to our knowledge not been observed before,
either in computer simulations or in Langevin equation stud-
ies. It is an interesting question whether such correlations
could be detected in real systems, e.g., in nonequilibrium
states of molecular fluids or of granular media.

We expect that the techniques used here to analyze lattice
gas automata can be extended to kinetic Ising models, since
the latter constitute just a different class of cellular automata.
This possibility is under investigation. So far there exists no
microscopic theory providing the amplitude of algebraic spa-
tial correlations in kinetic Ising models@4#.

APPENDIX A: INTERACTING RANDOM WALKERS

1. Structure of V

The right eigenvectorsũn , the left eigenvectorsun , and
the corresponding eigenvalues2vn of the Boltzmann colli-
sion operatorV are defined by

Vũn52vnũn , VTun52vnun . ~A1!

The eigenvectors are constructed solely on the basis of the
square lattice symmetry, and are given by

15~1,1,1,1!,

cx
22cy

25~1,21,1,21!,

cx5~1,0,21,0!, ~A2!

cy5~0,1,0,21!.

Table I shows how these vectors behave under reflection in

FIG. 2. Isotropic fluid-type model defined in Sec. V. Correlation
function for the longitudinal,Gl l (r ), and transverse,G''(r ), com-
ponents of the momentum density. The average density isf51/2
and the total momentum is zero. Symbols with error bars indicate
simulation results for a system of 2562 nodes, with an equilibration
time of Teq5104 time steps. The lines denote the asymptotic alge-
braic tail;1/r 2, as predicted by ring kinetic theory in the simple
~dashed line! and repeated ring approximation~solid line!.

TABLE I. Symmetries on the square lattice.

n un(c) x↔2x y↔2y

1 1 1 1

2 cx
22cy

2 1 1

3 cx 2 1

4 cy 1 2
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thex andy axis, respectively. There are three invariant sub-
spaces, spanned by$1,cx

22cy
2%, cx , and cy , respectively.

Thus, on the basis of square symmetry alone, it can be seen
that cx andcy are both left and right eigenvectors ofV and
E ~cf. Ref. @15#!. The square symmetry implies thatV i j has
only six independent elements, i.e.,

V5S V11 V12 V13 V12

V21 V22 V21 V24

V13 V12 V11 V12

V21 V24 V21 V22

D . ~A3!

Number conservation, expressed by^1uV50, or explicitly,

V1112V211V135V2212V121V2450, ~A4!

imposes two more relations, leaving only four independent
elements. We easily obtain the following biorthonormal set
of eigenvectors:

u151, ũ15
V12cx

21V21cy
2

2~V121V21!
,

u25
2~V21cx

22V12cy
2!

V121V21
, ũ25

1
4 ~cx

22cy
2!,

u35cx , ũ35
1
2cx , ~A5!

u45cy , ũ45
1
2cy ,

with eigenvalues given by

v150, v252~V121V21!,
~A6!

v35V132V11, v45V242V22.

The asymmetryV12ÞV21 leads to the mixing between the
vectors 1 andcx

22cy
2 . If the model is symmetric for inter-

change between thex and y directions, thenV215V12,
V225V11, andV245V13.

This is the relevant set of eigenfunctions for the asymmet-
ric interactions of Sec. III. In Sec. IV the interactions do not
break the symmetry between thex andy directions, and the
eigenfunctions and eigenvalues simplify. A table similar to
Table I which includes the behavior under the symmetry
x↔y can be constructed for this case. All four vectors 1,
cx
22cy

2 , cx , andcy now span one-dimensional invariant sub-
spaces; so that the eigenvectors for the symmetric case are

u151, ũ15
1
4u1 ,

u25cx
22cy

2 , ũ25
1
4u2 ,

u35cx , ũ35
1
2u3 , ~A7!

u45cy , ũ45
1
2u4 .

The corresponding eigenvalues are given by

v150, v254V12, v35v452~V121V13!. ~A8!

2. Structure of E

The eigenvaluesen of the symmetric source matrixE,
defined in Eqs.~9! and ~12!, are defined by

Evn5envn . ~A9!

In the asymmetric case of Sec. III, the inversion symmetry in
the x and y axes together with the symmetryEji5Ei j im-
poses the structure

E5S E11 E12 E13 E12

E12 E22 E12 E24

E13 E12 E11 E12

E12 E24 E12 E22

D . ~A10!

The conservation lawŝ1uEu1&50 @see Eq.~14!# imposes
one more relation between the matrix elementsEi j . Because
of the symmetryE5ET there is no distinction between left
and right eigenvectors. The symmetry argument of Table I of
course also holds forE. We therefore know that

v35cx , v45cy , ~A11!

are two eigenvectors with eigenvalues

e35E112E13, e45E222E24. ~A12!

The two remaining eigenvalues are the solutions of the qua-
dratic equation

e22e~E111E221E131E24!1~E131E11!~E121E24!24E12
2

50, ~A13!

and the corresponding eigenvectors are linear combinations
of cx

2 andcy
2 . Their explicit form will not be needed in the

present paper.
In the symmetric case of Sec. IV, when there is no differ-

ence betweenx andy directions, we find thatV andE have
the same set of eigenvectors,

v151, v25cx
22cy

2 , v35cx , v45cy , ~A14!

with eigenvalues

e150, e2524E12, e35e45E112E13. ~A15!

Here e150 follows from the conservation laŵ1uEu1&50
together with the symmetry properties ofE.

3. Asymmetric interacting random walkers

Inspection of Sec. III shows that we need to calculate the
diffusion coefficientsDx andDy in Eq. ~41! and the projec-
tions in Eq.~43!, which also defines the source termsBx and
By . To determine these quantities we have to calculate

cD~q,c!5c01~ iq !c11~ iq !2c2 . ~A16!

The eigenvalue equations~23! show the symmetry properties

cD~q,c!5cD~2q,2c!5c1~q,c!1c2~q,c!,
~A17!

zD~q!5zD~2q!.~ iq !2D1•••,
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wherec6 has an even (1) or odd (2) parity in q and c
separately. With the help of these equations we easily obtain

Bxq̂x
21Byq̂y

25 1
2 ^cD~q!uEucD~2q!&

5 1
2 ^c1uEuc1&2^c0uEuc2&.

~A18!

Here the relationsc051 and^1uEu1&50 have been used.
The solution of Eq. ~28a! is c0515u1 , and

similarly c̃05ũ1 , whereun and ũn are defined in Appendix
A 1. We choose the normalization ofcD(q) such that its
component parallel tou1 is unity to all orders in the pertur-
bation. This implies

^ũ1ucD&5^ũ1uc0&51,
~A19!

^ũ1ucn&50 ~n>1!.

The solution of the second order equation~28b!, where the
inhomogeneous termI D

(1) is a linear combination ofu3 and
u4 , then becomes

c15
1

VT cl 52S q̂xcxv3
1
q̂ycy
v4

D . ~A20!

Before we can determinec2 we impose the solubility condi-
tions

^ũ1uI D
~2!&5^ũ1cl uc1&1^ũ1uD~ q̂!1 1

2cl
2 &. ~A21!

We obtain in a straightforward manner

D~ q̂!5Dxq̂x
21Dyq̂y

252 K ũ1cl U 1VT 1
1

2Ucl L . ~A22!

Working this out yields

Dx5
V12

V121V21
S 1v3

2
1

2D ,
~A23!

Dy5
V21

V121V21
S 1v4

2
1

2D .
The eigenfunction can be solved from Eq.~28c! as

c25
1

4 SDxq̂x
2

V12
2
Dyq̂y

2

V21
Du2 . ~A24!

Inserting the results of Eqs.~A20! and~A24! into Eq. ~A18!
and using the properties of theE matrix in Appendix A 2
allows us to obtain the coefficientsBa in Eq. ~A18! as

Bx5
e3
v3
2 2

Dx

2V12
~E111E132E222E24!,

~A25!

By5
e4
v4
2 1

Dy

2V21
~E111E132E222E24!.

In deriving this result we have used the relations
^1uEu1&50 and

^1uEuu2&52~E111E132E222E24!. ~A26!

The projection in Eq.~43! simply yields

^11uc̃D~q!c̃D~2q!&5@^1uc̃0&#251, ~A27!

because of the normalization~A19!.

4. Symmetric interacting random walkers

The required calculations for Sec. IV are much more in-
volved, as the eigenvaluezD(q) in Eq. ~48! and the source
terms in Eq.~50! must be evaluated up to termsO(q4). This
requires the perturbation equations forc0 ,c1 , . . . ,c4 .
However, a substantial simplification occurs because the lin-
earized Boltzmann collision operator is now symmetric,
V5VT, and right and left eigenfunctions are the same.

The calculations are tedious but straightforward, and we
quote some intermediate as well as final results. The coeffi-
cients of the diffusion modecD(q)5(n50

4 ( iq)ncn are

c051, c152
1

v3
cl ,

c25
2D

v2
~cl

22 1
2 !, ~A28!

c352
1

v3
~4DQ2 1

12 !cl
31

2D

v3
~D1Q!cl .

Here the transport coefficients are

D5
1

2 S 1v3
2
1

2D , Q5
1

2 S 1v2
2
1

2D , ~A29!

and the super-Burnett coefficient is found as

D2~ q̂!5D28~ q̂x
41q̂y

4!1D29522D28q̂x
2q̂y

21D2
- . ~A30!

It has an anisotropic partD28 and an isotropic part, whose
explicit form is not needed in this paper. Only the former
part enters into the coefficient@see Eqs.~50! and~51!# of the
algebraic tail;1/r 4 of the pair correlation function, and it
reads

D2854D~DQ2 1
24 !. ~A31!

The source terms in Eq.~50! are determined by

B5 1
2 ^c1uEuc1&, B2~ q̂!5 1

2 ^c2uEuc2&2^c1uEuc3&,
~A32!

and the results~A28! enable us to calculate these contribu-
tions as

B5
1

2v3
2 ^cl uEucl &5

e3
v3
2 ,

B2~ q̂!5B28~ q̂x
41q̂y

4!1B29522B28q̂x
2q̂y

21B2
- . ~A33!

Again, only the anisotropic part enters the amplitude of the
algebraic tail, and is given by
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B285
4e2D

2

v2
2 1

e3
v3
2 ~8DQ2 1

6 !. ~A34!

Finally, Eq. ~A27! holds for the symmetric case as well.

APPENDIX B: FLUID-TYPE MODEL

The goal of this appendix is to calculate the left and right
hydrodynamic modes@cm(q) and c̃m(q) for small wave
numberq# of the lattice Boltzmann equation~23! for a fluid-
type LGA, defined on a triangular lattice, that conserves both
particle number and momentum during collisions. More spe-
cifically, we need to determine the expansion coefficients
cm
(n) (n50,1,2) andc̃m

(n) (n50) of these modes in powers of
iq, as well as the coefficientŝcm

(n)uEucm
(m)&.

A basic ingredient in this calculation is the structure of the
linearized Boltzmann collision operatorV i j ( i50,1, . . . ,6)
in Eq. ~13!, which is a nonsymmetricmatrix because the
LGA under consideration violates the semidetailed-balance
condition ~4!. The appendix is organized as follows. In Sec.
B 1 the eigenvectors and eigenvalues ofV are calculated in
terms of its matrix elements, using the triangular symmetry
of the lattice; in Sec. B 2 the same is done for thesymmetric
source matrix defined in Eqs.~9! and ~12!. Section B 3 cal-
culates the coefficientscm

(n) and ^cm
(n)uEucm

(m)& in so far as
they are needed in the body of the paper.

1. Structure of V

The left and right eigenvectorsun and ũn and the corre-
sponding eigenvalues2vn of the nonsymmetricV are de-
fined as

VTun52vnun , Vũn52vnũn , ~B1!

where (VT) i j5V j i and i , j50,1, . . . ,6. The left and right
eigenvectors together form a biorthogonal set, normalized as
^unuũm&5dnm . The lattice symmetries of the triangular lat-
tice impose the general structure

V5S a0 a1 a1 a1 a1 a1 a1

ã1 a b g d g b

ã1 b a b g d g

ã1 g b a b g d

ã1 d g b a b g

ã1 g d g b a b

ã1 b g d g b a

D , ~B2!

where the submatrix$V i j ; i , j51, . . . ,6% is symmetric. We
frequently use a notation where a seven-vectorv(c) with
componentsv i(c)5v(ci) ( i50,1, . . . ,b) will be denoted as
„v(c0)uv(c)… or „v(c0)uv(ci)…. The first componentv(c0) re-
fers to the rest particle state withc050, and the remaining
components (i51,2, . . . ,6) refer to moving particle states.
The conservation law~14! implies that the set of collisional
invariants

aa5$ar ,al ,a'%5$1,cl ,c'%5$u0 ,u2 ,u3% ~B3!

~see Table II! are left eigenfunctions, i.e.,VTaa50. Multi-
plication of the matrix~B2! on the left withu05(1u1) and
u25(0ucl ) imposes the conditions

a016ã150,

a11a12b12g1d50, ~B4!

a1b2g2d50.

Because of the symmetryV i j5V j i for i , j51,2, . . . ,6 the
eigenvectorsun (n52,3) are proportional to right zero
eigenvectorsũ25ãl andũ35ã' ~see Table II!. To construct
the right zero eigenvectorũ0 we note that by symmetry it
must have the structureũ05(x0ux), and satisfyVũ050 with
^u0uũ0&51. The result is

ũ0[ãr5
1

a116ã1
~a1uã1!5

1

a12a0
~a1u2

1
6a0!. ~B5!

It is possible to identify the components ofũ0 in terms of the
equilibrium distribution function f i(r)5„f 0(r)u f (r)…,
which is the stationary solution of the nonlinear Boltzmann
equation~7!, V i

1,0
„f (r)…50, at a given densityr5 f 016 f

@16#. Then we have for an infinitesimal changedr in the
density

05V i
1,0
„f ~r1dr!…5(

j
V i j „f ~r!…

d f j
dr

dr, ~B6!

where we have used the definition ofV i j given above in Eq.
~13!. This allows us to identify

ũ05S d f0dr Ud fdr D5~122vs
2u 13vs

2!, ~B7!

where the speed of soundvs is defined by

vs
25

dp

dr
53

d f

dr
5
1

2S 12
d f0
dr D , ~B8!

with p5( icl i
2 f i53 f5 1

2(r2 f 0). One also verifies from Eq.
~B7! that ^u0uũ0&51. From the identification of Eqs.~B5!
and ~B7! we obtain

vs
25

1

2S a0

a02a1
D5

1

2S V00

V002V01
D . ~B9!

TABLE II. Left and right eigenvectorsuni5un(ci) with
i50,1, . . . ,b, and eigenvalues2vn of the linearized Boltzmann
operatorV for a seven-bit fluid-type LGA on a triangular lattice.

n un(c) ũn(c) 2vn

0 ar51 ãr5(122vs
2u 13vs

2) 0
1 1

2c
22vs

2 (22u 13) 2v1

2 al 5cl ãl 5
1
3u2 0

3 a'5c' ã'5
1
3u3 0

4 cl c'
4
3u4 2v4

5 cl
22

1
2c

2 4
3u5 2v5

6 „0u(21)i11
…

1
6u6 2v6
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Table II shows the complete set of right and left eigenvectors
of V. Most eigenvectors can be found on the basis of sym-
metry arguments alone, exceptu1 and ũ1 . The correspond-
ing eigenvalues are found as

v15V102V00, v45v552~V122V14!,
~B10!

v653~V122V13!.

2. Structure of E

So far we have calculated the eigenvectors and eigenval-
ues ofV. In a similar manner we can do so for the source
matrix Ei j defined in Eq.~9! or ~12!. Then

Evn5envn . ~B11!

As Ei j5Eji is symmetric, left and right eigenvectors are the
same up to a normalization factor, i.e.,ṽn5vn /^vnuvn&. The
structure ofE is also given by Eq.~B2!, with ã15a1 . The
lattice symmetry of the submatrix$Ei j ; i , j51,2, . . . ,6% im-
plies thatvn5un for n52,3, . . . ,6. The conservation laws
~14! imply

^1uEu1&5^cl uEucl &5^c'uEuc'&50, ~B12!

which imposes two relations between the matrix elements
Ei j , and implies thatv25cl andv35c' arezeroeigenvec-
tors withe25e350. However,e0Þ0, and the corresponding
eigenvectorv0 is a linear combination ofu0 and u1 . The
remaining eigenvalues in terms ofEi j are obtained from Eqs.
~B10! and ~B12! and read

e45e552~E142E12!52~E112E13!,
~B13!

e653~E132E12!53~E112E14!.

The results are summarized in Table III.

3. Perturbation theory to O„q2…

In this appendix we calculate the hydrodynamic modes
and matrix elements occurring in Eqs.~58! and ~62! by
means of perturbation theory for degenerate eigenvalues. We
use as a basis the eigenvectorsun and ũn of V that were
constructed in Sec. B 1. Our starting point is the observation
that according to Eq.~28a! a hydrodynamic zeroth order
modecm

(0) will be a linear combination of collisional invari-
ants:

cm
~0!5Cmrar1Cml al 1Cm'a'5(

b
Cmbab . ~B14!

The solubility condition~30! for cm
(0) yields the equation

(b^ãaucl 1zm
(1)uab&Cmb50 with a5r,l ,'. Nonzero solu-

tionsCma only exist if zm
(1) satisfies the secular equation,

detz^ãaucl 1zm
~1!uab& z50. ~B15!

The only nonvanishing elements are^ãrucl ual &5vs
2 and

^ãl ucl uar&51, and furthermorê ãauab&5dab . From the
secular equation we find three nondegenerate eigenvalues
zm
(1) , and subsequently we can determine the coefficients
Cma up to a normalization constant. Thus the threefold de-
generacy of the null space ofV is lifted, and we have a right
shear modem5',

c'
~0!5c' , z'

~1!50, ~B16!

and a pair of right sound modesm5s56,

cs
~0!5al 1svsar , zs

~1!52svs . ~B17!

In a similar manner we obtain the corresponding left eigen-
vectors of Eq.~B15! as

c̃'
~0!5ã'5 1

3c' ,
~B18!

c̃s
~0!5

1

2 S ãl 1
s

vs
ãrD .

Next we consider thefirst order left hydrodynamic modes.
The right modesc̃m

(n) are only required to zeroth order
(n50). The formal solution of Eq.~28b! is

cm
~1!5

1

VT ~cl 1zm
~1!!cm

~0!1(
l

Bml
~1!cl

~0! . ~B19!

It contains an arbitrary linear combination of zeroth order
modes. We always choose the normalization such
that the projection of cm onto cm

(0) is unity, i.e.,
^c̃ m

(0)ucm&5^c̃m
(0)ucm

(0)&51 and consequently forn>1

^c̃m
~0!ucm

~n!&50 or Bmm
~n!50. ~B20!

The corresponding coefficientsB̃mm
(n) in the right eigenmodes

c̃m
(n) are then determined by the normalization conditions

~29!. They are, however, not needed in the present paper.
The remaining coefficientsBml

(1) (lÞm) as well as the next
order eigenvaluezm

(2) are determined from the solubility con-
ditions of thesecondorder perturbation equations~30!. The
method to determineBml

(1) has been explained in Ref.@17# for
a symmetric collision operatorV, but the steps are all very
similar. In this manner we find for the eigenvalues to rel-
evant order

TABLE III. Eigenvectors vn(c) and eigenvaluesen of the
source matrixE for a seven-bit fluid-type LGA on a triangular
lattice.

n vn ṽn en

0 linear comb. linear comb. e0Þ0
1 of u0 andu1 of ũ0 and ũ1 e1Þ0
2 u2 ũ2 0
3 u3 ũ3 0
4 u4 ũ4 e4
5 u5 ũ5 e5
6 u6 ũ6 e6
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z'~q!52nq2,
~B21!

zs~q!52 iqsvs2Gq2,

where vs is the speed of sound, given in Eq.~B9!, while
G5 1

2(n1z) is the sound damping constant, withn andz the
shear and bulk viscosity, respectively, given in terms of the
eigenvalues2vn as ~see Table II!

n5
1

4 S 1v4
2
1

2D , z5S 122vs
2D S 1v1

2
1

2D . ~B22!

The eigenmodes to first order are found as

c'
~1!5

1

VT cl c'52
1

v4
u4 , ~B23a!

cs
~1!5

1

VT ~cl 2svs!cs
~0!1Bs,2sc2s

~0!

5
1

VT ~cl
22vs

2!2
sG

2vs
~cl 2svs!

52
u5
v5

2
u1
v1

1
G

2
u02

sG

2vs
u2,

~B23b!

where Table II has been used. The coefficientsB'l50 and
Bsl50 for lÞs.

The results so far are sufficient to calculate the transverse
susceptibility using Eq.~59!. From Table III we conclude
that Ec'

(0)5Eu350, and consequentlŷc'
(0)uEuc'

(2)&50.
The remaining term in Eq.~59!, combined with Eq.~B23!
then yields

Dx'~q!5
e4

2nv4
2 ^u4uu4&5

3e4
8nv4

2 , ~B24!

whereEu45e4u4 ~see Table III!.
Next we consider the contributions entering the longitudi-

nal susceptibility in Eq.~62!, starting with theparallel sound
modes. To calculate the matrix elements in Eq.~63! we ob-
serve thatEcs

(0)5svsEu0 ~see Table III!. This permits us to
combine the terms on the right hand side of Eq.~63! into

^cs~q!uEuc2s* ~q!&52 iqsvs^u0uEucs
~1!1c2s

~1! &

52iqsvsF 1v5
E051

1

v1
E012

1

2
GE00G .

~B25!

To obtain the second line we have inserted Eq.~B23! and
introduced

Enm5^unuEuum&. ~B26!

According to Table III,u55v5 is an eigenvector ofE, or-
thogonal to the subspace spanned byu0 and u1; conse-
quently E0550. Moreover,E005^11uE&50 because of the
conservation laws~14!. This yields the result listed in Eq.
~63!. To calculate the contributions of theoppositesound
modes we need ^cs

(0)uEucs
(2)& in Eq. ~64!. Using

Ecs
(0)5svsEu0 we write

^cs
~0!uEucs

~2!&5svsŠu0uEu$u0^ũ0ucs
~2!&1u1^ũ1ucs

~2!&%‹

5svsE01̂ ũ1ucs
~2!&. ~B27!

To obtain the first equality we note thatE0050 and that all
off-diagonal elementsEnm50 (nÞm), exceptE01Þ0 ~see
Table III!.

The coefficient̂ ũ1ucs
(2)& in Eq. ~B26! can be calculated

most conveniently by projecting the second order eigenvalue
equation~28c! onto the vectorũ1 , i.e.,

^ũ1uVTcs
~2!&5^ũ1~cl 2svs!ucs

~1!&1G^ũ1ucs
~0!&

1 1
2 ^ũ1~cl 2svs!u~cl

22vs
2!&. ~B28!

Substituting Eq.~B23! and using the relations

ũ1~cl 2svs!5ũ22svsũ1 ,

cl
22vs

25u51u1 ,

^ũ1ucs
~0!&50, ~B29!

^ũ1uVTcs
~2!&52v1^ũ1ucs

~2!&,

we find for the coefficient

^ũ1ucs
~2!&5

s

2vsv1
FG1vs

22
2vs

2

v1
G . ~B30!

The first term in Eq.~64!, ^cs
(1)uEucs

(1)&, is obtained simi-
larly by substituting Eq.~B23!, and yields

^cs
~1!uEucs

~1!&5
3

4

e5
v5
2 1

1

v1
2E112

G

v1
E10. ~B31!

Substituting Eqs.~B26!, ~B30!, and~B31! into Eq. ~64! then
yields the final result, Eq.~64!, listed in the body of the
paper. The excess susceptibility~62! is obtained by substi-
tuting Eqs.~63! and ~64! into ~62!, and carrying out thes
summation with the result

Dx l 5
3e4

16Gv4
2 1

E11
4Gv1

2 1
vs
2E10

2Gv1
S 1v1

2
1

2D . ~B32!

The final step is to express the coefficientsE11 andE10 in Eq.
~B25! in terms of the matrix elementsEi j defined in Eqs.~9!

and ~12!. To do so, we writeu15( 122vs
2)u02

1
2(12c2) and

useE0050 to find

E1052 1
2 ^1uEu12c2&52 1

2 ~E0016E10!,

E115 1
4 ^12c2uEu12c2&2~ 1

22vs
2!^1uEu12c2& ~B33!

5 1
4E002~ 1

22vs
2!~E0016E10!.
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