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We report results of the application of a recently proposed technique, which combines the cluster variation
method~CVM! and Pade´ approximants, to the analysis of the critical behavior of the face-centered-cubic Ising
model. The highest-order CVM approximation ever considered for this lattice is used to estimate magnetization
and susceptibility, which are then analyzed by means of Dlog Pade´ approximants in order to extract informa-
tion about the critical behavior, taking also into account the effects of confluent singularities. Our results are in
good agreement with the most recent simulation and series expansion estimates and require a remarkably small
numerical effort.@S1063-651X~96!11805-5#

PACS number~s!: 05.50.1q

It is well-known that mean-field approximations and their
generalizations are not adequate to describe the critical-point
behavior of low-dimensional Ising-like models with short-
range interactions, because of the effects associated with the
divergence of the correlation length, which cannot be taken
into account by approximations dealing with finite clusters
and finite numbers of degrees of freedom.

However, Kikuchi@1# developed a variational technique
named the cluster variation method~CVM! that was subse-
quently reformulated by several authors@2#, which can de-
scribe very accurately the low- and high-temperature behav-
ior of thermodynamical quantities like specific heat, order
parameter, response and correlation functions, at such a point
that it has been shown by Aggarwal and Tanaka@3# that the
method exactly reproduces many terms of the low- and high-
temperature series expansions of these quantities. This obser-
vation led us to propose a technique@4# for the analysis of
critical-point behavior in Ising-like models, which uses
Kikuchi’s CVM to estimate accurately low- and high-
temperature values of quantities that are singular at the criti-
cal point, and Pade´ approximants@5,6# as a tool to extract
information about critical-point behavior. This technique will
be called the cluster-variation–Pade´-approximants method
~CVPAM! from now on.

The results of the first test applications of the CVPAM on
the Ising model in two and three dimensions were quite en-
couraging@4#, although the largest clusters used were com-
posed of no more than seven to eight points. In a subsequent
work, we applied our method to the semi-infinite Ising model
in three dimensions@7# using 20-point clusters and obtained
results as accurate as those of the most recent Monte Carlo
simulations.

In the present paper, we report results for the Ising model
on the face-centered-cubic~fcc! lattice, obtained by means of
the highest-order CVM approximation ever considered for
this lattice, involving 13- and 14-point clusters, and show
that the CVPAM is a quite promising method, almost at the
level of up-to-date extensive Monte Carlo simulations and
series expansions, although much less time consuming.

Let us consider the Ising model with only nearest-
neighbor interactions, described by the reduced Hamiltonian

H

kBT
52K(̂

i j &
sisj , ~1!

whereK is the ~reduced! interaction strength,si561 is the
z component of a spin-1/2 operator at the lattice sitei , and
the first summation is over nearest neighbors~NN!.

The CVM, in its modern formulation@2#, is based on the
minimization of a free-energy density functional that is ob-
tained by a truncation of the cluster~cumulant! expansion of
the corresponding functional appearing in the exact varia-
tional formulation of statistical mechanics. The particular ap-
proximation we use was proposed by Sanchez and de Fon-
taine@8# and never actually used, because of its great~at least
for the computational tools of that time! complexity. It was
named the TF approximation since the largest clusters ap-
pearing in the expansion are the 13-point cluster obtained by
taking a site and its 12 nearest neighbors and the 14-point fcc
unit cell. The remaining relevant clusters are the nine-point
cluster~quadruple tetrahedron! obtained by removing a face
from the fcc unit cell; the six-point cluster~double tetrahe-
dron, half of the preceeding! obtained by removing two ad-
jacent faces from the fcc unit cell; and the four-point single
tetrahedron.

For each of these clusters we introduce a density matrix
rn , wheren is the number of sites in the cluster. Notice that,
since we are dealing with a classical model, only diagonal
elements of such matrices are different from zero.

Using the result by Sanchez and de Fontaine@8# for the
exponential of the entropy, the free-energy density functional
to be minimized can be written in terms of the density ma-
trices, obtaining

f ~r13,r14!526KTr~s1s2r4!1Tr~r13lnr13!1Tr~r14lnr14!

26Tr~r9lnr9!16Tr~r6lnr6!22Tr~r4lnr4!,

~2!

where Tr(s1s2r4) is the NN correlation function (s1 ands2
can be any two spins of the single tetrahedron! and only
r13 and r14 are treated as independent variables, since the
remaining density matrices can be defined as partial traces of
these. Forr9 ~and thenr6 and r4) to be properly defined,
r13 andr14 must satisfy the compatibility condition

Tr13\9r135Tr14\9r14, ~3!
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where Tr13\9 denotes a summation over all the spins of the
13-point cluster except those of the nine-point cluster, and
similarly for Tr14\9 . Finally, r13 andr14 must also satisfy the
normalization condition Trr135Trr1451.

In order to reduce our variational problem, which in prin-
ciple has 2131214 variables~the diagonal elements ofr13
andr14) and 2

911 linear constraints~one for each diagonal
element ofr9 and one for the normalization!, we can take
advantage of the symmetries of the lattice to identify nonde-
generate configurations for each cluster, together with their
multiplicities, as discussed in detail in Ref.@9# in the case of
smaller clusters. Such nondegenerate configurations turn out
to be 554 forr14, 288 forr13 ~corresponding to those deter-
mined by Clapp@10# in a different context! and 102 for
r9 , thereby reducing our problem to one in 842 variables
with 103 linear constraints among them@11#. The latter can
now be solved numerically by means of an iterative approach
called the natural iteration method@9,12# in a time of the
order of the minute~on small workstations! for each value of
K ~not too close toKc).

In the CVPAM one calculates a thermodynamical func-
tion F, like the magnetization or the susceptibility, for a set
of closely spaced values of a suitable temperaturelike vari-

able, with a stepdx and up to a limiting valuexmax,xc ,
wherexc corresponds to the critical temperature. Thexmax
value is chosen, according to the rules outlined in Ref.@4#, as
the point at whichF differs by e51025 from the result of a
simpler approximation, in this case the oriented rombohe-
dron approximation@9#. This choice ensures that the errors
on F will be of order e for the oriented rombohedron ap-
proximation and considerably smaller for the TF approxima-
tion. The logarithmic derivative ofF is then determined nu-
merically ~here by means of a six-point formula!, and
interpolated by means of Pade´ approximants.

We recall @5,6# that an@L,M # Padéapproximant in the
variablex is defined as the ratio of two polynomials of de-
greeL andM , respectively:

TABLE I. Tc estimates forb515.

L @L,L21# @L,L# @L,L11#

8 9.8028 9.7866 9.7953
9 9.8001 9.7956 9.8011
10 9.8015 9.8014 9.8006
11 9.7970 9.8027 9.9059
12 9.8013 9.8017 9.8009
13 9.8007 9.8007 9.8011
14 9.8010 9.8022 9.8011
15 9.8008 9.8006 9.8007
16 9.8007 9.8007 9.8005
17 9.8008 9.8024 9.8014
18 9.8025 9.8011 9.8019
19 9.8010 9.8013 9.8000
20 9.8016 9.8005 9.8010

TABLE II. b estimates from biased approximants for
Tc59.801.

L @L,L21# @L,L# @L,L11#

4 0.32150 0.32046 0.32178
5 0.32090 0.32139 0.32135
6 0.32133 0.32135 0.32138
7 0.32136 0.32140 0.32089
8 0.32138 0.32136 0.32134
9 0.32141 0.32178 0.32138
10 0.32139 0.32138 0.32139
11 0.32139 0.32138 0.32137
12 0.32138 0.32138 0.32137
13 0.32138 0.32138 0.32137
14 0.32137 0.32137 0.32137
15 0.32136 0.32136 0.32135

FIG. 1. The critical exponentsb ~squares, left axis! and g
~circles, right axis! vs the critical temperatureTc as given by biased
Dlog Pade´ approximants.

FIG. 2. D1 vs b plot obtained by methodM1 for trial critical
temperaturesTc59.769 and 9.865, respectively, lower and higher
than the trueTc . Data is from the seven@L,M # approximants with
6<L1M<10 anduL2M u<1.
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M , ~4!

and is generally normalized by settingq051 ~or p051). If
an@L,M # Padéapproximant is used to approximate the func-
tion D(x)5 (d/dx) lnF(x), with F(x) diverging at xc as
(xc2x)2l, then the critical point can be estimated as a pole
of @L,M #(x), and the critical exponentl as the correspond-
ing residue @5,6#. Since an @L,M # approximant has
L1M11 free parameters we must useL1M11 interpola-
tion points, given byxn5xmax2nDx, n50,1, . . .L1M ,
whereDx5bdx andb is an integer.

Using the TF approximation, we have calculated the order
parameterm(z) of the fcc Ising model for 800 equally
spaced values ofz5e2K ~a typical low-temperature expan-
sion variable!, with a stepdz5531024 and up to the limit-
ing value x max50.871. On the high-temperature side, the

susceptibilityx(w) has been calculated for 600 values of
w5tanhK, with dw5531025 and up towmax50.048. All
the data have been obtained in about one day of CPU time on
a DEC AXP 3000 workstation~significantly lower than the
time taken by extensive Monte Carlo simulations or series
expansions!, while the analysis in the following has been
done interactively.

A preliminary analysis with Pade´ approximants to
(d/dz) lnm(z) has been carried out to determine the critical
point. In Table I we report a set of estimates ofTc[1/Kc

obtained for b515, from which one could deduce
Tc59.801. Values ofb ranging from 10 to 20 yield essen-
tially the same results, although slightly more scattered; al-
most all entries, however, are in the range 9.799 to 9.803,
corresponding to 0.10166,wc,0.10170, which has to be
compared with the estimates 0.010172 by Guttmann@13# and
0.10175 by Adler@14#.

FIG. 3. Confluent exponentD1 vsb, as given by methodM1, for Tc59.795~a!, 9.797~b!, 9.799~c!, 9.801~d!, 9.803~e!, and 9.805~f!.
The same approximants of Fig. 2 have been used, except for case~c!, where the@5,4# approximant has been discarded because it was
defective.
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Using this range of values for the critical temperature, one
can easily construct biased approximants@5# for both the
magnetization and the susceptibility, by forcing them to be
singular at the desired critical point. From now on, we shall
always useb515, because all the results are essentially un-
changed over a wide range ofb values.

The Pade´ tables produced by biased approximants are
very stable~see Table II for an example! and varyingTc in
the range corresponding to our estimate we have obtained the
values ofb andg reported in Fig. 1. It can be seen that the
values ofb ~respectivelyg) are slightly lower~respectively
higher! than the commonly accepted ones, and at least two
possible explanations for this discrepancy must be consid-
ered.

As a first attempt, one might try to use the critical tem-
perature estimate by Liu and Fisher~although ours is very
close to Guttmann’s and Adler’s!, wc.0.10206,@15# but this
would significantly lower theb estimate (0.3040.31) and
raiseg (1.2641.27). It appears that this hypothesis has to be
rejected.

Another possibility, which has been proven to be very
useful in the past@14,16,17# to remove discrepancies be-
tween renormalization-group and high-temperature series ex-
pansions results, is to take into account confluent corrections
to scaling; that is, to assume that the singularity ofF(x) has
the form

~xc2x!2l@11a~xc2x!D1#, ~5!

by means of the method developed by Adler@14,17,18# for
series analysis.

A first method, denoted byM1, considers Pade´ approxi-
mants to the logarithmic derivative of the function

B~x!5lF~x!2~xc2x!
dF~x!

dx
~6!

instead ofF(x), for assignedxc andl. The dominant sin-
gularity in (d/dx) lnB(x) in the caseD1,1 ~respectively
D1.1) is a pole atxc with residueh2D1 ~respectively
h21).

Another method, denoted byM2, considers, for assigned
xc andD1 , the function

G~y!52D1~y21!
d

dy
lnF~x!, y512S 12

x

xc
D D1

,

~7!

which should converge tol for y51.
Applying methodM1 to our magnetization data we have

obtainedD1 versusb for several fixed values of the trial
critical temperature. A first observation, very useful to deter-
mine Tc , is that the plots given byM1 have a different
curvature above and belowTc , as can be clearly seen in Fig.
2. Below Tc the D1 versusb plot is bent upward, while
aboveTc it is bent downward. This behavior was already
observed in Ref.@18# for the exactly solved Baxter-Wu
model @19#.

The above criterion, applied to the series of plots reported
in Fig. 3, allows us to estimate the true critical temperature in
the range 9.797<Tc<9.803@cases~b!–~e!#, while the value

FIG. 4. Critical exponentb vs D1 , as given by methodM2, for Tc59.797 ~b!, 9.799~c!, 9.801~d!, and 9.803~e!. Data is from the
approximants@3,2#, @3,3#, @3,4#, @4,3#, @4,4#, and@5,4#. There is no sublabel~a! here in order to maintain the correspondence between Figs.
3, 4, and 5.
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9.795 ~respectively 9.805! must certainly be left apart since
the corresponding plot is clearly bent upward~respectively
downward!. Given this range forTc , the corresponding es-
timates for the exponents can be easily deduced from the
plots as 0.321<b<0.329 and 0.81<D1<0.88. The result
for b represents a remarkable improvement, which indicates
that the effect of confluent singularities on critical exponents
is not a negligible one, and is then worthy to be considered,
although our estimate for the correction to scaling exponent
D1 is significantly higher than the one commonly accepted,
which is close to 1/2@14,16,17,20,21# ~but Liu and Fisher
@15# report that they have obtained results ranging from 0.4
to 0.7!.

MethodM2 does not appear to provide a clear-cut way to
estimateTc , so we have retained the result obtained by
M1, and plotted in Fig. 4b vsD1 for Tc varying from 9.797
to 9.803. The result forb shrinks to 0.321<b<0.327, while
the confluent exponent estimate shifts to even higher values,

0.87<D1<0.91. One could also try to fixD1 around 1/2, but
this yields very poor results.

The analysis of the susceptibility data is more involved:
methodM1 does not appear to converge, while method
M2 converges only for quite high values ofD1 , around
1.542, as can be seen in Fig. 5. Nevertheless, the corre-
spondingg estimates are very good, being in the range 1.236
to 1.242.

In Table III we have summarized our best estimates and
compared them with the most recent results from other meth-
ods. The errors quoted for our results are those obtained, as
explained above, taking allb andg estimates from the two
Adler methods~for g only fromM2) in the range of critical
temperatures deduced from the analysis of theM1 results for
b. Such error bounds do not, however, account for possible
systematic errors introduced by the CVPAM procedure.

It can be seen from Table III that the agreement with the
other methods is very good. Taking into account the effects

TABLE III. Recent estimates for the critical exponentsb andg.

Method b g

CVPAM ~present work! 0.325~4! 1.239~3!

Monte Carlo@22# 0.3258~44! 1.2390~71!
Cluster Monte Carlo@23# 0.319~5! 1.237
Monte Carlo ren. group@24# 0.323~3! 1.241~9!

e-expansion@25# 0.3270~15! 1.2390~25!
Series expansions@6,26# 0.329~9! 1.243
Series expansions@20# 0.3265~33! 1.237~2!

Coherent-anomaly method@27# 0.327~4! 1.237~4!

FIG. 5. Critical exponentg vs D1 , as given by methodM2, for Tc59.797 ~b!, 9.799 ~c!, 9.801 ~d!, and 9.803~e!. Data is from
@L,M # approximants with 3<L<5 andL21<M<L11, except@4,4#, which is always defective.
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of confluent corrections to scaling seems to improve the
method, as already happened for series expansions.

As a final remark we notice that the CVPAM method has
not reached its limits at all: all the calculations needed for the
present paper took about one day of CPU time on a DEC
AXP 3000 workstation, and the level of the approximation

can still be improved in several ways on the three cubic
lattices, and work is in progress along these lines. Further-
more, all the machinery can be extended in a very straight-
forward way to models with non-nearest-neighbor or multi-
spin couplings, by simply adding linear combinations of the
correlation functions to our free-energy density functional.
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