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Cluster-variation —Pade-approximants method and the critical exponents of the fcc Ising model
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We report results of the application of a recently proposed technique, which combines the cluster variation
method(CVM) and Padepproximants, to the analysis of the critical behavior of the face-centered-cubic Ising
model. The highest-order CVM approximation ever considered for this lattice is used to estimate magnetization
and susceptibility, which are then analyzed by means of Dlog Bageoximants in order to extract informa-
tion about the critical behavior, taking also into account the effects of confluent singularities. Our results are in
good agreement with the most recent simulation and series expansion estimates and require a remarkably small
numerical effort[S1063-651X96)11805-5

PACS numbsd(s): 05.50+4q

It is well-known that mean-field approximations and their whereK is the (reducedl interaction strengths;= *+ 1 is the
generalizations are not adequate to describe the critical-point component of a spin-1/2 operator at the lattice sitand
behavior of low-dimensional Ising-like models with short- the first summation is over nearest neighb@is!).
range interactions, because of the effects associated with the The CVM, in its modern formulatiof2], is based on the
divergence of the correlation length, which cannot be takefninimization of a free-energy density functional that is ob-
into account by approximations dealing with finite clusterstained by a truncation of the clustesumulant expansion of
and finite numbers of degrees of freedom. . the corresponding functional appearing in the exact varia-

However, Kikuchi[1] developed a variational technique tjong) formulation of statistical mechanics. The particular ap-
named the cluster variation meth¢@VM) that was subse- proximation we use was proposed by Sanchez and de Fon-

que_ntly reformulated by several auth_(ﬁﬁ, which can de- taine[8] and never actually used, because of its gagleast
scribe very accurately the low- and high-temperature behav;

ior of thermodynamical quantities like specific heat, order or the computational t.OOIS. of that timeomplexity. It was
parameter, response and correlation functions, at such a poiﬂ?med t_he TF approximation since th_e largest clust_ers ap-
that it has been shown by Aggarwal and Tanf&kgthat the pearing in the expansion are the :'L3-p0|nt cluster obtalngd by
method exactly reproduces many terms of the low- and high'gak_lng a site and |ts'1_2 nearest neighbors and the 14.—p0|nt'fcc
temperature series expansions of these quantities. This obs&iit cell. The remaining relevant clusters are the nine-point
vation led us to propose a techniqi for the analysis of cluster(quadrup_le tetrahedr(_))mbtf_imed by removing a face
critical-point behavior in Ising-like models, which uses from the fcc unit cell; the six-point clustédouble tetrahe-
Kikuchi's CVM to estimate accurately low- and high- dron, half of the preceedingbtained by removing two ad-

temperature values of quantities that are singular at the criticent faces from the fcc unit cell; and the four-point single
cal point, and Padapproximantg5,6] as a tool to extract tetrahedron. _ _ _
information about critical-point behavior. This technique will ~ FOr €ach of these clusters we introduce a density matrix

be called the cluster-variation—Pagpproximants method Pn» Wheren is the number of sites in the cluster. Notice that,
(CVPAM) from now on. since we are dealing Wlth a cla§S|caI model, only diagonal
The results of the first test applications of the CVPAM on éléments of such matrices are different from zero.
the Ising model in two and three dimensions were quite en- USing the result by Sanchez and de Fontd@iefor the
couraging[4], although the largest clusters used were com&xponential of the entropy, the free-energy density functional
posed of no more than seven to eight points. In a subsequel P& minimized can be written in terms of the density ma-
work, we applied our method to the semi-infinite Ising modelices, obtaining
in three dimension§7] using 20-point clusters and obtained
results as accurate as those of the most recent Monte Carlt(pq3,p14) = — 6KTr(S1S,04) + Tr(p13dnp13) + Tr(p14np1s)
simulations.
In the present paper, we report results for the Ising model —6Tr(pelnpe) +6Tr(pglnpe) = 2Tr(palnpa),
on the face-centered-cubifcc) lattice, obtained by means of 2
the highest-order CVM approximation ever considered for

this lattice, involving 13- and 14-point clusters, and show . . :
that the CVPAM is a quite promising method, almost at the//Nere TreiSzp4) IS the NN correlation functionsg ands,

. . : an be any two spins of the single tetrahedrand only
level of up-to-date extensive Monte Carlo simulations andzm and p,4 are treated as independent variables, since the
series expansions, although much less time consuming.

Let us consider the lsing model with onlv nearest- remaining density matrices can be defined as partial traces of
9 y these. Forpg (and thenpg and p,) to be properly defined,

neighbor interactions, described by the reduced Hamlltomarl}13 and p,, must satisfy the compatibility condition
=KX s Si 1)

kgT (i) Tri30013= Tr49014, (3
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TABLE I. T, estimates fob=15. 0.324

T T T T T 12460
L (LL—1] [LL] [L,L+1] 0323+ J1.2455
8 9.8028 9.7866 9.7953
9 9.8001 9.7956 9.8011 0'322_' ] 1240
10 9.8015 9.8014 9.8006 = 0321k 110445 =
11 9.7970 9.8027 9.9059 | ]
12 9.8013 9.8017 9.8009 03201 112440
13 9.8007 9.8007 9.8011 L ]
14 9.8010 9.8022 9.8011 0.319— L L a1y 535
15 9.8008 9.8006 9.8007 9.799 9.800 9.801 9.802 9.803
16 9.8007 9.8007 9.8005 T,
17 9.8008 9.8024 9.8014 FIG. 1. The critical exponentg (squares, left axisand y
18 9.8025 9.8011 9.8019  (circles, right axi$ vs the critical temperaturg, as given by biased
19 9.8010 9.8013 9.8000 Dlog Padeapproximants.
20 9.8016 9.8005 9.8010

able, with a stepsx and up to a limiting value;,<Xc,
where x; corresponds to the critical temperature. Theg,
where Tia9 denotes a summation over all the spins of thevalue is chosen, according to the rules outlined in R&f.as
13-point cluster except those of the nine-point cluster, andhe point at whichF differs by e=10"° from the result of a
similarly for Try,g. Finally, p;3 andp,4 must also satisfy the simpler approximation, in this case the oriented rombohe-
normalization condition Tg13=Trp4= 1. dron approximatiorj9]. This choice ensures that the errors
In order to reduce our variational problem, which in prin- on F will be of order e for the oriented rombohedron ap-
ciple has 23+ 2 variables(the diagonal elements qgf;;  proximation and considerably smaller for the TF approxima-
andp,,) and 2+1 linear constraintsone for each diagonal tion. The logarithmic derivative of is then determined nu-
element ofpg and one for the normalizatipnwe can take merically (here by means of a six-point formyjaand
advantage of the symmetries of the lattice to identify nondeinterpolated by means of Pad@proximants.
generate configurations for each cluster, together with their We recall[5,6] that an[L,M] Padeapproximant in the
multiplicities, as discussed in detail in R€®] in the case of variablex is defined as the ratio of two polynomials of de-
smaller clusters. Such nondegenerate configurations turn ogteeL andM, respectively:
to be 554 forp,,, 288 forp43 (corresponding to those deter-
mined by Clapp[10] in a different context and 102 for T Tored]

po, thereby reducing our problem to one in 842 variables 20k
with 103 linear constraints among thdril]. The latter can I l
now be solved numerically by means of an iterative approach 18F i
called the natural iteration methd®,12] in a time of the L ]
order of the minutéon small workstationsfor each value of 4 Lor -
K (not too close tK,). - 1
In the CVPAM one calculates a thermodynamical func- L4r 1
tion F, like the magnetization or the susceptibility, for a set i 1
of closely spaced values of a suitable temperaturelike vari- 12r . ]

0284 0286 0.288 0.290 0.292 0.294 0.296

TABLE Il. B estimates from biased approximants for B
T.=9.801. 0.62
L [L,L—1] [L,L] [L,L+1] 0.60
4 0.32150 0.32046 0.32178 0.58 F
5 0.32090 0.32139 0.32135 L
6 0.32133 0.32135 0.32138 <4 056 |
7 0.32136 0.32140 0.32089 i
8 0.32138 0.32136 0.32134 0.54 |-
9 0.32141 0.32178 0.32138 i
10 0.32139 0.32138 0.32139 02F ' - - L]
11 0.32139 0.32138 0.32137 0.370 0375 0380 0.385 0.390
12 0.32138 0.32138 0.32137 B
13 0.32138 0.32138 0.32137 FIG. 2. A, vs 8 plot obtained by method1 for trial critical
14 0.32137 0.32137 0.32137 temperature§ .=9.769 and 9.865, respectively, lower and higher
15 0.32136 0.32136 0.32135 than the truel, . Data is from the sevefL,M] approximants with

6<L+M=10 and|L-M|<1.
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FIG. 3. Confluent exponer; vs 3, as given by metho 1, for T,=9.795(a), 9.797(b), 9.799(c), 9.801(d), 9.803(e), and 9.805f).
The same approximants of Fig. 2 have been used, except for(casghere the[5,4] approximant has been discarded because it was
defective.

PL(X)  PotpiX+px2+---+p.x- susceptibility y(w) has been calculated for 600 values of
On(X) ~ Gor QX gt Fax™ P w=taniK, with Sw=5x10"> and up tow;,=0.048. Al
the data have been obtained in about one day of CPU time on

and is generally normalized by settiog=1 (or po=1). If & DEC AXP 3000 Workstatiomsignificant!y Iowgr than the.
an[L,M] Padeapproximant is used to approximate the func-time taken by extensive Monte Carlo simulations or series
tion D(x)= (d/dx) InF(x), with F(x) diverging atx, as €Xpansions while the analysis in the following has been
(x.—x)~*, then the critical point can be estimated as a poledone interactively. )
of [L,M](x), and the critical exponent as the correspond- A preliminary analysis with Padeapproximants to
ing residue [5,6]. Since an[L,M] approximant has (d/dz)Inm(z) has been carried out to determine the critical
L+M+1 free parameters we must ulse-M+1 interpola-  point. In Table | we report a set of estimates o= 1/K
tion points, given byx,=Xmax—NAX, n=0,1,...L+M, obtained for b=15, from which one could deduce
whereAx=bdx andb is an integer. T.=9.801. Values ob ranging from 10 to 20 yield essen-

Using the TF approximation, we have calculated the ordetially the same results, although slightly more scattered; al-
parameterm(z) of the fcc Ising model for 800 equally most all entries, however, are in the range 9.799 to 9.803,
spaced values af=e ¥ (a typical low-temperature expan- corresponding to 0.10166w.<0.10170, which has to be
sion variablg, with a stepsz=5x10"* and up to the limit- compared with the estimates 0.010172 by Guttnfd®hand
ing value X ,,=0.871. On the high-temperature side, the0.10175 by Adlef14].

[L.M](x)=
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FIG. 4. Critical exponenp vs A;, as given by method12, for T.=9.797 (b), 9.799(c), 9.801(d), and 9.803(e). Data is from the
approximantg3,2], [3,3], [3,4], [4,3], [4,4], and[5,4]. There is no sublabe&h) here in order to maintain the correspondence between Figs.
3,4, and 5.

Using this range of values for the critical temperature, one A first method, denoted b1, considers Padapproxi-
can easily construct biased approximaf$ for both the mants to the logarithmic derivative of the function
magnetization and the susceptibility, by forcing them to be
singular at the desired critical point. From now on, we shall dF(x)
always uséo=15, because all the results are essentially un- BOX)=AF(X) = (Xc=X) —5 -~ ©®
changed over a wide range bfvalues.

The Padetables produced by biased approximants argnstead ofF(x), for assignedk, andx. The dominant sin-

very stable(see Table Il for an examplend varyingT; in - gularity in (d/dx)InB(X) in the caseA;<1 (respectively
the range corresponding to our estimate we have obtained the, > 1) is a pole atx, with residueh—A; (respectively

values ofg andy reported in Fig. 1. It can be seen that the , — 1).

values ofg (respectivelyy) are slightly lower(respectively Another method, denoted by 2, considers, for assigned

highep than the commonly accepted ones, and at least twQ anda,, the function

possible explanations for this discrepancy must be consid-

ered. d x| A1
As a first attempt, one might try to use the critical tem-  G(y)= —Al(y—l)d—InF(x), y=1—(1— —) ,

perature estimate by Liu and Fish@ithough ours is very y Xe @

close to Guttmann’s and Adley,sv.=0.10206,[15] but this

would significantly lower theg estimate (0.380.31) and which should converge ta for y=1.

raisey (1.26+1.27). It appears that this hypothesis has to be Applying methodM 1 to our magnetization data we have

rejected. obtainedA; versusp for several fixed values of the trial

Another possibility, which has been proven to be very_ ... ' :
. ’ . . critical temperature. A first observation, very useful to deter-
useful in the pas{14,16,17 to remove discrepancies be- b y

tween renormalization-group and high-temperature series e

aboveT, it is bent downward. This behavior was already
observed in Ref[18] for the exactly solved Baxter-Wu
(xe=3) N[ 1+a(xe—x)%1], (5 ~modellld]. | _
The above criterion, applied to the series of plots reported
by means of the method developed by Adl#4,17,18 for  in Fig. 3, allows us to estimate the true critical temperature in
series analysis. the range 9.79% T.<9.803[casegb)—(e)], while the value

the form
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FIG. 5. Critical exponenty vs A;, as given by method2, for T,=9.797 (b), 9.799 (c), 9.801(d), and 9.803(e). Data is from
[L,M] approximants with &L<5 andL—-1<M=<L+1, excep{4,4], which is always defective.

9.795 (respectively 9.80bmust certainly be left apart since 0.87<A;=<0.91. One could also try to fi&; around 1/2, but

the corresponding plot is clearly bent upwdrdspectively this yields very poor results.

downward. Given this range foff ., the corresponding es- The analysis of the susceptibility data is more involved:

timates for the exponents can be easily deduced from thmethod M1 does not appear to converge, while method

plots as 0.32%8=<0.329 and 0.8%A;=<0.88. The result M2 converges only for quite high values df;, around

for B represents a remarkable improvement, which indicate4.5+2, as can be seen in Fig. 5. Nevertheless, the corre-

that the effect of confluent singularities on critical exponentsspondingy estimates are very good, being in the range 1.236

is not a negligible one, and is then worthy to be consideredio 1.242.

although our estimate for the correction to scaling exponent In Table Ill we have summarized our best estimates and

A, is significantly higher than the one commonly acceptedcompared them with the most recent results from other meth-

which is close to 1/414,16,17,20,2]L(but Liu and Fisher ods. The errors quoted for our results are those obtained, as

[15] report that they have obtained results ranging from 0.4xplained above, taking a8 and y estimates from the two

to 0.7. Adler methodgfor y only from M2) in the range of critical
MethodM 2 does not appear to provide a clear-cut way totemperatures deduced from the analysis ofitHe results for

estimateT,, so we have retained the result obtained byg. Such error bounds do not, however, account for possible

M1, and plotted in Fig. 8 vs A, for T, varying from 9.797  systematic errors introduced by the CVPAM procedure.

to 9.803. The result foB shrinks to 0.32% 8<0.327, while It can be seen from Table Il that the agreement with the

the confluent exponent estimate shifts to even higher valuesther methods is very good. Taking into account the effects

TABLE lll. Recent estimates for the critical exponertsand vy.

Method B y
CVPAM (present work 0.3254) 1.2393)
Monte Carlo[22] 0.325844) 1.239G71)
Cluster Monte Carl¢23] 0.3195) 1.237
Monte Carlo ren. group24] 0.3233) 1.2419)
e-expansion 25| 0.327Qq15) 1.239@25)
Series expansior|$,26) 0.3299) 1.243
Series expansion£0] 0.326%33) 1.2372)

Coherent-anomaly methd@7] 0.3274) 1.2374)
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of confluent corrections to scaling seems to improve thecan still be improved in several ways on the three cubic
method, as already happened for series expansions. lattices, and work is in progress along these lines. Further-
As a final remark we notice that the CVPAM method hasmore, all the machinery can be extended in a very straight-
not reached its limits at all: all the calculations needed for thdorward way to models with non-nearest-neighbor or multi-
present paper took about one day of CPU time on a DEGpin couplings, by simply adding linear combinations of the
AXP 3000 workstation, and the level of the approximationcorrelation functions to our free-energy density functional.
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