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Causality, response theory, and the second law of thermodynamics
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We show that there is a close connection between the assumption of causality and the second law of
thermodynamics. We also show that for a class of classical reversible deterministic systems it is overwhelm-
ingly improbable either to find causal steady states that violate the second law, or anticausal states that satisfy
the second law. These arguments indicate that the existerfaadthe sign associated wijtthe second law of
thermodynamics is ultimately determined by causality. Our discussion employs a Green-Kubo relation that we
derive for an anticausal linear transport coeffici¢®t1063-651X%96)11205-§

PACS numbeps): 05.20-y, 47.10+g

I. INTRODUCTION proportional to the magnitude of that volumend on the
assumption of causality.
We live in a universe where cause precedes effect. This is In this paper we show that if we derive Green-Kubo rela-
in spite of the fact that the equations of motion, whethert!lONS for the cor_respondlng transport coefﬂqents defm_ed by
classical or quantum mechanical, are time reversible, and nticausal constitutive relations the following hold: first,

is therefore dynamically possible for effect to precede causd!'€S€ antitransport coefficients haye a sign opposite to 'ghelr
In our attempts to model the macroscopic behavior of th causal counterparts, and, second, it becomes overwhelmingly
(’hkely to observe anticausal nonequilibrium steady states that

yvorld around us, we describe apparently |r_rever5|ble beha"_\?iolate the second law. This argument, again based on the
ior such as heat or momentum flows by using causal constigoltzmann ansatz, shows that in an anticausal world it be-
tutive relations. comes overwhelmingly probable to obsefiral equilibrium

In the 1950s and 1960s fluctuation relations—the somicrostates that evolved from nonequilibrium steady states
called Green-Kubo relations—were derived for the causathat violate the second law. Although this behavior is not
transport coefficients that are defined by causal linear constseen in the macroscopic worldnticausalbehavior is per-
tutive relations such as Fourier's law of heat flow or New-Mitted by the solution of the time reversible laws of dynam-
ton’s law of viscosity[1-4]. The Mori-Zwanzig projection ICS, and we demonsrate, using computer simulation, how to
operator formalism shows that the Green-Kubo relations foFInd phase space trajectories which exhiticausalbehav-

causal linear transport coefficients are a direct consequené%r'

of the e_qugtions of motion. Some years ago an objection t0 || cAUSAL AND ANTICAUSAL CONSTITUTIVE

the denva‘uoni of Green-Kubo relations by Imea}r response RELATIONS

theory was raised by van Kampgh|. However, this objec- _ _ _
tion has more recently been dismissed by Morgssl. [6]. Consider the component of the linear response at time

It would thus seem that the derivation of Green-KubodB(t1), of a system characterized by a response function
relations, which give a unique sign for each of the Navier-L(l1,t2). The response is due to the application of an exter-
Stokes transport coefficients, constitutes a proof of the irreP@! forceF, acting for an infinitesimal timet,(>0), at time
versibility of macroscopic behavior. The argument wouldt2:
run as follows: the Green-Kubo relations are derived using a 8B(ty)=L(ty,t,)F(t,)dt,. (1
self-consistent procedure; they lead directly to equilibrium
fluctuation relations for the transport coefficients; these exThis is the most general scalar linear relation between the
pressions have a unique sign; therefore the derivation dieSPonse and the force components. If the response of the
Green-Kubo relations shows that the universe is macroscopfySteém is independent of the time at which the experiment is
cally asymmetric with respect to time reversal. Anhoughperformed[l.e.,_ if th(_e same response is generated when both
Green-Kubo relations do not indicate the sign of the transtimes appearing in(1) are translated by an amount

port coefficient, they do indicate that the transport coefficient” : tz—ta+ 7, ty—t;+ 7], it is trivial to show that the re-
has a definite sign. sponse functiorL(t;,t,) is solely a function of the differ-

Recently we provided a simple argument that if a deter€nce between the times at which the force is applied and the
ministically and reversibly thermostatted system which isféSponse is monitored,
initially at equilibrium is subject to a perturbing external SB(t)=L(t:—t,)F(t-) St 2
field, then it becomes overwhelmingly probable to observe (t) =Lt~ 1) F(tz) ot @
initial equilibrium microstates that subsequently generatélhe invariance of the response to time translation is called
nonequilibrium steady states that satisfy the second[ldw the assumption of stationarity. Equati¢®) does not in fact
This argument is based on the Boltzmann anghiat in the  describe the results of actual experiments because it allows
equilibrium microcanonical ensemble the probability of ob-the response at timg to be influenced not only by forces in
serving microstates within a specified phase space volume the pastF(t,), wheret,<t,, but also by forces that have not
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yet been appliedt,>t; [8]. We therefore distinguish be- . —kf, t
tween the causal and anticausal response components, Ji(ky,t)= T fo nc(ky,t—s)J, (k,,s)ds, t>0,
SBe(t)=+Lc(ti—t)F(tp) 8, 1>, ®
3
OBA(t))=—La(t;—t5)F(ty) Sty, t1<t,. where 7 is the causal response functiéor memory func-

tion) and p is the density. The corresponding anticausal re-
Of course in actual laboratory experiments the anticausal rdation is
sponse cannot easily be seen. Below, we will prove that
Le(t)=La(—1). . K2 (o
Considering the response at tirh& be a linear superpo- Ji(ky,t)= 4 f na(ky,t—9)J, (ky,s)ds, t<0, (9)
sition of influences due to the external field at all possible pJt
previous(or future times gives
where 7, is the anticausal response function. Note that be-

[t causet<0, we find that the argument{s) in (9) is less
Be(t)= f_xLC(t_tl)F(tl)dtl @ than zero, and we are indeed exploring the response of the
system to a strain rate that is yet to be imposed.
for the causal response, and It is straightforward to use standard techniques to evaluate

the Green-Kubo relations for the causal and anticausal shear

+oo viscosity coefficients. In the anticausal case it is important to
Ba(t)=— ft La(t—tyF(tydt; (5)  remember that the usual Laplace transform
for th i I . ~ tee
or the anticausal response F(s)zj F(he-sidt, t=0 (10)
0

Ill. GREEN-KUBO RELATIONS FOR THE CAUSAL AND

ANTICAUSAL LINEAR RESPONSE FUNCTIONS is inappropriate, and needs to be replaced by an anti-Laplace

To make this discussion more concrete we will discusdransform
Green-Kubo relations for shear viscosjty]. Analogous re-
sults can be derived for each of the Navier-Stokes transport A 0 ot
coefficients. We assume that the regression of fluctuations in F(S)Eﬁw':(t)e dt, t<0. (11
a system at equilibrium, whose constituent particles obey
Newton’s equations of motion, are governed by the Navier-

Stokes equations. We consider the wave vector dependetiote: F(s)=JgF(—t)e *'dt=F'(s), =0, where
transverse momentum density F'(t)=F(—t).] Using the fact that the anti-Laplace trans-

form of a time derivative id=(s)=F(0)—sF(s), and that
_ the anti-Laplace transform of a convolution is the product of
J1(ky ’t)EZ Pyi(t)e Wi, (6)  the anti-Laplace transforms of the convolutes, one can easily
derive the following relations for the shear viscosity and the

wherep,; is thex component of the momentum of particle anticausal shear viscosity:

y; is they coordinate of particle, andk, is they component
of the wave vector. ThéNewtonian equations of motion ~ B C(ky,0) B C(ky,0)
can be used to calculate the rate of change of the transvers& (Ky,S) = . k§77c(ky s)’ (ky,8)= . k§77A(ky s)’

momentum density. They give P

p

. . 1—e'kyii (12)

I =iky| 2 pyibyi€ i +5 2 yiiFyij kv ey

! b yYii where
=ikyPyx(ky,1). (7)
_ _ _ C(ky,t)=(J, (ky,1)J, (—k,0)), Vt. (13
In this equatiorF,;; is thex component of the force exerted
on particlei by particlej, y;=y;—y;, and Py, is the yx
component of the pressure tensor.

We now consider the response of the pressure tensor to
strain ratey, applied to the fluid fot>0 in the causal system
and fort<<0 in the anticausal system. Since the pressure ten-
sor is related to the time derivative of the transverse momen- 1
tum current by(7), and the strain rate is related to the Fourier N(ky. )= VkgT (Pyx(ky DPy(—ky,0)),  VE. (14)
transform of the transverse momentum density by
y(ky,t)=—ik,J, (k,,t)/p, the most general linear, station- . ~
ary, and causal constitutive relation can be written as Using the fact thalN= —C/kf,VkBT, one can show1,9]

More useful relations for the viscosity coefficients, espe-
cially at k=0, can be obtained by utilizing the equilibrium
s?ress autocorrelation function
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N(ky,s) then use the Maxwell memory kernel
7c(ky,8)=—->= ’ ~ s
1-kyN(ky,s)/ps p(t)=G.e "7, WVt (22
_ N(ky,s) in (17) and the fact that the causal. and anticausaly,
7a(ky,8)= (15  Maxwell shear viscosities in the zero frequency limit are

1-K2N(ky ,S)/ps’
, . =gp=G,7= 17, 23
At zero wave vector, we find that the causal and anti- KE = @3
causal memory functions are both given by the equilibriumye find that the causal response is
autocorrelation function of the pressure tensor,
nyC(t): _an(l_eitlr)y 0<t<ty,
ﬂc(t): 7]A(_t) where t>0 (24)
— —(t—=t)/7_ o=t/ _ _a—(t=ty)/7

Pyct)=—an(e” " V" —e ") —by(l—e "72"7),

Vv
=(t) :kB_T<Pyx(t)Pyx(o)>’ vt (19 t,<t<t,.

where we have usef,(t)V=Iim,_Py(kyt). Since equi- |t we now consider the corresponding anticausal experiment
librium autocorrelation functions are symmetric in time, oneyith strain rate histories given by

does not have to distinguish between the positive and nega-

tive time domains. This proves, at least for shear viscosity, va(t)=a, —t;<t<0,

our contention made in Sec. Il thhg(t)=LA(—1). (25)
Using Egs.(7)—(9) and taking the zero wave vector limit, va(h)=b, —tr<t<-—ty,

we obtain the causal response of tve component of the

pressure tensor, we find that the anticausal response is

t Pyyat)=an(l—e'7), —t;<t<0,
PyxC(t)=—J n(t—s)y(s)ds, t>0, (17) -
0 PXyA(t):an(e(tﬂl)/r_et/r)_’_bn(l_e(tﬂz)/q-),

and the anticausal response is
- t1<t< - t2 .

0
Pyxa(t)= ft n(t—s)y(s)ds, t<O. (18  From Egs.(24) and(26), it is clear that

. . A nyA(t): - nyC(_t)- (27)
In the linear regime close to equilibrium the entropy pro-
duction per unit timedSdt, is given by These response functions are shown graphically in Fig. 1. A
two step strain rate ramp wita=1.0, b=0.5, t;,=2, and
t,=4 was considered. Equatiof®4) and (26) were used to
FT Pyx(t) y(1)V, (19 predict the causal and anticausal responses, respectively, of
thexy component of the pressure tensor. Value&g&40.0
wherey(t) is the time dependent strain rate. From E(JS) and 7=0.05 were used in the model. These values were ob-
and (18), it is easy to see that if we conduct two shearingtained from approximate fits to computer simulation data
experiments, one on a causal system with a strain rate histofgee Sec. ¥
%(t) and one on an anticausal system with The datain Fig. 1 show that for the causal respoRsg,
va(t)= = yc(—1), then is zero at equilibrium(t<0) and decreases when the field is
applied until the steady state value is obtained. It remains at
ds()| —ds(-1) the steady value untii=2, at which time the strain rate is
dt | dt reduced. Since this system is causal, no chandggjroccurs
until after the strain rate is reduced, when it increases until

This proves that if the causal system satisfies the second lathe System reaches a different steady state. We display the
of thermodynamics, then the anticausal system must violatnticausal response frots=—4, where it is in an antisteady

(20

n e

that law, and vice versa. state. Jusbeforethe strain rate is increasddtt=—2), P,,
increases to another antisteady state value. UsinglRgwe
IV. EXAMPLE: THE MAXWELL MODEL OF VISCOSITY see that the causal response is entropy increasing and satis-

fies the second law, whereas the anticausal response is en-
In this section we examine the consequences of the causabpy decreasing and violates the second law.
and anticausal responses by considering the Maxwell model
for linear viscoelastic behavigf]. If we consider the causal PHASE SPACE TRAJECTORIES FOR SHEAR FLOW

response of a system to a two step strain rate ramp, . .
We now examine the causal and anticausal responses on a

ve(t)=a, 0<t<ty, microscopic scale, and consider the relative probability of
(22) observing causal and anticausal trajectories by studying a
ye(t)=b, t;<t<t,, thermostatted system of particles under shear. In this sys-
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FIG. 1. The(a) causal andb) an-
ticausal response @, to a two step
strain rate ramp determined using the
Maxwell model for linear viscoelastic
behavior with G,,=40 and 7=0.05
(solid line). In both cases the time de-
pendence of the strain rate is shown
as a dashed line.

is determined using Gauss'’s principle of least constraint to

gradient of thex-streaming velocity and the shear stress keep the internal energi,=3p?2/2m+®(q) fixed [1].

—P,, times the system volum¥ is the dissipative flux-J

Thus

[1]. The equations of motion for the particles are given by

the so-called1] thermostatted Sllod equations

At arbitrary strain rates these equations give an exact de-
scription of adiabatic Couette flow. This is because the adia-

ai=pi/m+ivyy;,

pi=Fi—iypyi—

a=—vy

ap;. (28)

batic Sllod equations for a step function strain rate

du,(t)/ay=y(t)=yO(t), are equivalenfl] to Newton’'s

izl pxipyi/m_%

N
— Py WV /21 pZ/m,

whereF;; is they component of the intermolecular force

N N
iEj xiij”} /;l pZ/m

(29

equations after the imposition of a linear velocity gradient atexerted on particlé by j andx;=x;—X;.

t=0 [i.e., dg;(0")/dt=dq;(07)/dt+iyy;]. At a low Rey-
nolds number, the momenfm are peculiar momenta, and

The thermostatted Sllod equations of mot{@8) and(29)
are time reversiblgl]. Therefore for every segment’(;(t),
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40 1T T T T T T
[ _— > ]
3.0 F \ % ’\WA FIG. 2. Py, for trajectory seg-
- . ' [ . ments from a simulation of 200
20 i‘\:) \VJ\A A / ! Py 4 \v.\ A/V\V/\ N /v\v/‘/ \' disks afT=1.0 andn=0.8. A con-
- / | j / \ \ / (5‘{ W V ] stant strain rate ofy=1.0 is ap-
1.0 F \ A - plied att=0. The trajectory seg-
[ r =M®Tr ment I'; 3 was obtained from a
P 0.0 - 5" @) (6) forward time simulation. At=2,
Xy . (1) b a K map was applied td’, to
3 give I';.. Forward and reverse
-1.0 : \ . ’\ - time simulations from this point
20 - A /\U/\/\'\A N -/\(3) / :' A ‘ l\[ .\"n '-'.,A / \- 3) givde the trajectory slegmelﬂ(s@ ]
. \j\/v \ / Yy " BT X \_! 1 andl's 4, _respectlve y. If one in
: \'J T \/ : . verts Py, in P,,=0 and inverts
-3.0 B VN‘V G : ] time aboutt=2, one transforms
C 3 ] the P,(t) values for the antiseg-
/1 J S Y Y S S S N S N S S B R mentI' g into those for the con-
0 0.5 1 1.5 2 2.5 3 3.5 4 jugate segmert’, 5.

t

(O<t<7), there exists a conjugate trajectory segmentwill necessarily be anticausal with systematic increases in

Lixy(t), (0<t<7) with the property thatP,(I';(t))= shear stress occurringeforethe corresponding increases in
—Pyy(Liy(—1)), (0<t<7). Thus ther-averaged shear stress strain rate,y,(t) (t>0).
(Pyy) r.y="1I7J 5P«y(I'y(s))ds for segment is equal and We will now indicate in more detail how to construct the

opposite to that for its conjugatgP,y), iky=—(Py,),¢@  Conjugate segment) from an arbitrary phase space trajec-
[7]. We note that since the solution of the equations of motory segmeni [7]. The construction is illustrated in Fig. 2
tion is a unique function of the initial conditions, the conju- for the case where the strain rate remains the same for the
gate segment is also unique. duration of the trajectory. A trajectory of lengthr & gener-
We have previously shown that for shear flow conjugateated by solving the equations of motion. The conjugate seg-
segments may be generated by using a phase space mappimgnt is then constructed by applyingkamap to the phase at
known as a Kawasaki d{ map[1]. A K map of a phas& the midpoint of the segmert=1) MKF(2)=F5. We then
is defined as a time-reversal map which is followed by a advance in time from the poiril's), to t=27, by solving the
reflection. In the case of shear flow tle map leaves the equations of motion and also go backwards in time from the
strain rate unchanged but changes the sign of the shear streKsmapped pointt=7, to t=0. A conjugate trajectory of
that is MKF=MK(x,y,z,pX,py,pz,y)=(x,—y,z,—px,py, length 2r is thereby produced. This construction has previ-
—p,,y)=I'® [1]. It is straightforward to show that the ously been described in more detgl.
Liouville operator for the system(28) and (29), Clearly, the mapped trajectory is a solution of the equa-
iL(I',y)=2[q;(I")-dloq;+p;(T)-dldp;], has the property that tions of motion for the system. When tie map is carried
under ak map MKIL(I,y)=iL(@T% yK)=—iL(I',y) [1].  out att=0, the shear stress is inverted, and E3f) shows
If we assume a strain rate history such tha(—t)=y(t)  that ny(t+r,l“)=—Pw((t—r,l“(")) and  similarly
Vt, then it follows that if aK map is carried out on an P, (t—7)=—P, (t+7I )): therefore, for every point on
arbitrary phasd™ att=0 then evolutiorforwardin time from  the original trajectory there is a unique point on the mapped
I'®) under a strain ratgy(t) is equivalent to time evolution trajectory with opposite shear stress. Thaveraged shear
backwardsin time fromI" under the strain rate histor(t) stress of the conjugate trajectory is opposite to that of the
(t<0), original trajectory, that igPyy); iky=—(Pxy) . Thus if
the original segment satisfied the second law, then the con-
Pyy(—t,T, y(—t))=exf —iL (I, y(— t)t]Py,(T) jugate segment violates the second law, and vice versa.
In a causal world, which is described by causal
= — Py (t, T,y (1)). (300 macroscopic constitutive relations such &, observed
segments are overwhelmingly likely to satisfy the second
We note that if we do not assume that(—t)=y(t) Vt, law. We can show this by discussing the ratio of probabilities
then there is no general method for generating conjugate tr&f finding the initial phasesl’;) and I’ in Fig. 2, which
jectory segments. This is because propagators with differergenerate these conjugate segments. In a causal world, the
strain rates do not commute, and the inverse propagator mugtobabilities of observing the segmenty; 3 and I'4 g
therefore retrace the strain rate history of the conjugatére of course proportional to the probabilities of observing
propagator in inverse historical order. theinitial phases which generate those segmdidste that
If the original segment’(t) was causal with systematic we denote the trajectory segmentI';)—I';,=I'i(7) by
increases in shear stressP,, occurringafter increases in [j-] It is convenient to consider a small phase space
strain rate, then the forward mapped segniéffi(t) (t>0)  volume V(I';(0)) about an initial phasd’(;(0). Because
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FIG. 3.P_xy (solid line) from nonequilibrium mo-
lecular dynamics simulations of 56 particles at
T=1.0 and n=0.8 undergoing shear flow. The

dashed line gives the time dependence of the strain
4 rate. In(a), Py, was determined using 100 trajecto-
ries whose initial phases were selected from an equi-
librium distribution, and to which a two step strain

15 o . T T ]
r a) Causal ¥ ]
_ 1 p====- t==——- - .
ny’y F |
os | b +————=-
E
1
O e e R R TR —
25 1 | 1 A 1 | 1
0 0.5 1 1.5 2 2.5 3 3.5
t
2.5 T T T T T T T
b) Anticausal
_ 2 F : ]
ny"Y ]
1.5 Py ]

rate was applied(b) showsP,, for their conjugate

. trajectories. The conjugate trajectories were obtained
] by applying aK map to the phase of the trajectory at
t=2, simulating forward and backward in time from
this point and translating in time so that the conju-
gate trajectory ends at=0. Note that the strain rate
history of the conjugate trajectory is reversed.

the initial phases are distributedhicrocanonically the
probability of observing ensemble members
V(I';(0)), is proportional toV(I'(;,(0)). From the Liouville

equation df(I',t)/dt=3Na(I")f(I't)+0O(1) and the fact

that, for sufficiently small volumesy(I'(t))~1/f(I'(t),t),
we can make the following observations:

Vo=V, (7)=V(0) ex;{ - fOT3Na(s;F1)ds

and

27
BNQ(S,F(l))dS

V3:V1(27'):V1(0) eXF{ - f

0

begins, as=0, atI'(;(0).
Since the segmerif, ¢ is related tol'; 5 by a K map
which is applied at=r, and the Jacobian of the€ mapping

is unity, V,=Vs, V3=V,, andV,(0)=Vg4. However, since

V4(0) and V, are volumes at=0 and the distribution of

insideinitial phases is microcanonical, we can compute the ratio of

probabilities u;+, u; of observing, in a causal world=0
phases withinV,(0) and V;. This ratio is just the volume

ratio

Mix [ 1=V 41V1(0)=V1(27)/V1(0)

2w
:eX[{J‘ _3NC¥(S,F(1))dS y Vr. (31)
0

Thus if the world is causal and we assume segment
1(=I'i 3) satisfies the second law, the),;3>0 and
uix uq—0 (i.e., we overwhelmingly observe segment 1 rather
than the antisegment*1lwhich violates the second law
wherea(s;I';)) denotesy(s) computed along a segment that Conversely, if segment 1 violates the second law, then
(@);1.3<0 anduy«uy— (i.e., we overwhelmingly see seg-
ment I rather than antisegment 1 which violates the second
law). Equation(31) has recently been verified by numerical
simulations of a system undergoing shear flaik
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1.5 AL LA AU B B M U
a) Causal : i

ny’ Y

FIG. 4. The same as Fig. 3, but with a different
two step strain rate ramga) showsP, for trajec-
tories sampled from _an equilibrium distribution at
t=0, and(b) showsP,, for conjugate trajectories
generated from the trajectories (@). In both cases
the time dependence of the strain rate is shown by a
dashed line.

Py, Y

In an anticausal world where effects precede their causesf the system described by Eq®8) and (29). Figure 2
the probabilities of observing the segmeiitg 5 andI'yg  shows the response &, for a trajectory and its conjugate
are proportional to the probabilities of observing ttieal  when a constant strain rate is applied. The response was
phases generated by those segments. The system will be dgtermined using nonequilibrium molecular dynamics simu-
equilibrium at the end pointrather than the beginningdf  lations of 200 disks in two Cartesian dimensions. The disks
the trajectory segments and antisegments. It is trivial to semteract via the short range potential of Weeks, Chandler, and
that in an anticausal world it would be overwhelmingly more Andersen 10],
probable to observe segments that violate the second law 1 6 6
than segments that satisfy the second law. We do not make b(r)= Ar " =r ) +1, r<2 (32)
that argument here because it is a rather obvious extension of 0, r>218,
the argument given above for causal systems. Put simply, in ) o N o
order for a group of trajectory segments to have a large finaphearing periodic boundary conditions were used to mini-
equilibrium volume they have to violate the second law withMize boundary effectfl]. The system was maintained at a

an expandingrather than shrinkingvolume element. constant kinetic temperature =1.0 and the particle den-
sity wasn=N/V=0.8. An initial phase was selected from an
V1. SIMULATION RESULTS equilibrium distribution, and a strain rate ¢&=1.0 was ap-

plied to the system &t=0. A trajectory segment was gener-
We can demonstrate the relationships between the conj@ted by simulating forward in time to=4. The conjugate
gate pair trajectories, the second law of thermodynamics, antiajectory was constructed using the scheme described above.
causal and anticausal responses using numerical simulatiokxamination of the trajectories shows ttt, (7+t) for the



53 CAUSALITY, RESPONSE THEORY, AND THE SECOND LW. .. 5815

trajectory satisfying the second law is equal in magnitude but VII. CONCLUSION
opposite in sign td,,(7—t) for the trajectory violating the

second law, where is the time at which th& map is ap- We have derived a Green-Kubo relation for an anticausal

. . : ._linear transport coefficient. By comparing this relation with
plied (7=2). These. resullts ther.efo.r e verify the relat|onsh|pthe corresponding relation for the conjugate causal transport
betweenP,, of trajectories satisfying the second law and ¢qeficient we observe that if the causal transport coefficient
conjugate trajectories violating the second law given by Eqgaisfies the second law of thermodynamics, then the anti-
(30). ) _ causal transport coefficient necessarily violates the second
The causality of the response is more clearly demontaw. Further, we give an argument that in reversible, deter-
strated in Figs. 3 and 4, where the respons®gfto differ-  ministic systems it is overwhelmingly improbable either to
ent strain rate ramps is show,(t) was averaged over 100 find causal steady states that violate the second law or to find
individual trajectories to reduce the fluctuations in the steadwnticausal states that satisfy the second law. This argument is
state, and gav®,,, a partially averaged response. In thesebased on the Boltzmann ansatz that at equilibrium in the
simulations 56 disks were used. The initial phases of thenicrocanonical ensemble the probability of observing mi-
trajectories shown in Figs.(8 and 4a) were sampled from crostates within a given volume is proportional to the mag-
the equilibrium distribution at=0. Figure 3a) shows the nitude of that volume.
response of the shear stress of these trajectories to a strain We have thus shown that there is a deep connection be-
rate of y=1.0 applied at=0, and reduced tg=0.5 at the tween cqusality and the second law of therquyna_mics. We
midpoint of the trajectory(t=2). To ensure that the high Ccannot violate the second law for long and still satisfy cau-
symmetry of the strain rate ramp does not influence the resality.

sults, an alternative step strain rate ramp was considered. The Finally we would like to remark that for dilute gases an
response when the strain rate is reduced frgsl.0 to analogous state of affairs exists with regard to the calculation

y=0.5 att=1 was simulated, and is shown in Figa# In of transport coefficients from the Boltzmann equation. The
both-casesP_ is zero at eduilibrium and decreases to aBoltzmann equation is time irreversible and leads to trans-
Xy

. : . - port coefficients that satisfy the second law. This is analo-
steady state value after the field is applled. Alter the Stralrgous to Green-Kubo relati(]};]s that satisfy the second law for
rate is reducedP,, increases to a different steady state ;

near transport coefficients in fluids of arbitrary density—
value. . . . N Sec. lll. In 1960 Cohen and Berlirl1] showed that if the
The conjugate trajectories are shown in Fig8)3and  5jecylar chaomssumption of Boltzmann is assumed to ap-
4(b). They were constructed as described above and trangily to post-collisional distributions rather tharfas Boltz-
lated in time to begin at=—4. At this time, the system is in mann assumedo pre-collisional distributions, one can de-
an antisteady state, arfé,, maintains its antisteady state rjye ananti-Boltzmanrequation(our terminology. This use
value until justbeforethe the strain rate is changed, when it of Boltzmann's molecular chaos assumption for precolli-
increases to a different antisteady state value. sional and post-collisional distributions is analogous to our
These response curves demonstrate that trajectories satigse of Boltzmann’s ansatz before and after the strain rate
fying the second law only respond to the change in the straimramps—Sec. V. The anti-Boltzmann equation derived by Co-
rate after it is imposed and therefore they arausal Con-  hen and Berlin obeys an artti-theorem[11] which violates
versely, the conjugate trajectories violating the second lavhe second law. Consequently the anti-Boltzmann equation
respond to the step in the strain ra&foreit is made, so they also leads to negative values for the Navier-Stokes transport
areanticausal Close inspection of the graphs reveals that atcoefficients.
all points along individual pairs of conjugate trajectories,
ny(t)trajectory:_ny(_t)conjugate trajectory which  follows ACKNOWLEDGMENTS
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