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We show that there is a close connection between the assumption of causality and the second law of
thermodynamics. We also show that for a class of classical reversible deterministic systems it is overwhelm-
ingly improbable either to find causal steady states that violate the second law, or anticausal states that satisfy
the second law. These arguments indicate that the existence of~and the sign associated with! the second law of
thermodynamics is ultimately determined by causality. Our discussion employs a Green-Kubo relation that we
derive for an anticausal linear transport coefficient.@S1063-651X~96!11205-8#

PACS number~s!: 05.20.2y, 47.10.1g

I. INTRODUCTION

We live in a universe where cause precedes effect. This is
in spite of the fact that the equations of motion, whether
classical or quantum mechanical, are time reversible, and it
is therefore dynamically possible for effect to precede cause.
In our attempts to model the macroscopic behavior of the
world around us, we describe apparently irreversible behav-
ior such as heat or momentum flows by using causal consti-
tutive relations.

In the 1950s and 1960s fluctuation relations—the so-
called Green-Kubo relations—were derived for the causal
transport coefficients that are defined by causal linear consti-
tutive relations such as Fourier’s law of heat flow or New-
ton’s law of viscosity@1–4#. The Mori-Zwanzig projection
operator formalism shows that the Green-Kubo relations for
causal linear transport coefficients are a direct consequence
of the equations of motion. Some years ago an objection to
the derivation of Green-Kubo relations by linear response
theory was raised by van Kampen@5#. However, this objec-
tion has more recently been dismissed by Morrisset al. @6#.

It would thus seem that the derivation of Green-Kubo
relations, which give a unique sign for each of the Navier-
Stokes transport coefficients, constitutes a proof of the irre-
versibility of macroscopic behavior. The argument would
run as follows: the Green-Kubo relations are derived using a
self-consistent procedure; they lead directly to equilibrium
fluctuation relations for the transport coefficients; these ex-
pressions have a unique sign; therefore the derivation of
Green-Kubo relations shows that the universe is macroscopi-
cally asymmetric with respect to time reversal. Although
Green-Kubo relations do not indicate the sign of the trans-
port coefficient, they do indicate that the transport coefficient
has a definite sign.

Recently we provided a simple argument that if a deter-
ministically and reversibly thermostatted system which is
initially at equilibrium is subject to a perturbing external
field, then it becomes overwhelmingly probable to observe
initial equilibrium microstates that subsequently generate
nonequilibrium steady states that satisfy the second law@7#.
This argument is based on the Boltzmann ansatz~that in the
equilibrium microcanonical ensemble the probability of ob-
serving microstates within a specified phase space volume is

proportional to the magnitude of that volume!, and on the
assumption of causality.

In this paper we show that if we derive Green-Kubo rela-
tions for the corresponding transport coefficients defined by
anticausal constitutive relations the following hold: first,
these antitransport coefficients have a sign opposite to their
causal counterparts, and, second, it becomes overwhelmingly
likely to observe anticausal nonequilibrium steady states that
violate the second law. This argument, again based on the
Boltzmann ansatz, shows that in an anticausal world it be-
comes overwhelmingly probable to observefinal equilibrium
microstates that evolved from nonequilibrium steady states
that violate the second law. Although this behavior is not
seen in the macroscopic world,anticausalbehavior is per-
mitted by the solution of the time reversible laws of dynam-
ics, and we demonstrate, using computer simulation, how to
find phase space trajectories which exhibitanticausalbehav-
ior.

II. CAUSAL AND ANTICAUSAL CONSTITUTIVE
RELATIONS

Consider the component of the linear response at timet1,
dB(t1), of a system characterized by a response function
L(t1 ,t2). The response is due to the application of an exter-
nal forceF, acting for an infinitesimal timedt2~.0!, at time
t2,

dB~ t1!5L~ t1 ,t2!F~ t2!dt2 . ~1!

This is the most general scalar linear relation between the
response and the force components. If the response of the
system is independent of the time at which the experiment is
performed@i.e., if the same response is generated when both
times appearing in~1! are translated by an amount
t : t2→t21t, t1→t11t#, it is trivial to show that the re-
sponse functionL(t1 ,t2) is solely a function of the differ-
ence between the times at which the force is applied and the
response is monitored,

dB~ t1!5L~ t12t2!F~ t2!dt2 . ~2!

The invariance of the response to time translation is called
the assumption of stationarity. Equation~2! does not in fact
describe the results of actual experiments because it allows
the response at timet1 to be influenced not only by forces in
the past,F(t2), wheret2,t1 , but also by forces that have not
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yet been applied,t2.t1 @8#. We therefore distinguish be-
tween the causal and anticausal response components,

dBC~ t1![1LC~ t12t2!F~ t2!dt2 , t1.t2 ,
~3!

dBA~ t1![2LA~ t12t2!F~ t2!dt2 , t1,t2 .

Of course in actual laboratory experiments the anticausal re-
sponse cannot easily be seen. Below, we will prove that
LC(t)5LA(2t).

Considering the response at timet to be a linear superpo-
sition of influences due to the external field at all possible
previous~or future! times gives

BC~ t !5E
2`

t

LC~ t2t1!F~ t1!dt1 ~4!

for the causal response, and

BA~ t !52E
t

1`

LA~ t2t1!F~ t1!dt1 ~5!

for the anticausal response.

III. GREEN-KUBO RELATIONS FOR THE CAUSAL AND
ANTICAUSAL LINEAR RESPONSE FUNCTIONS

To make this discussion more concrete we will discuss
Green-Kubo relations for shear viscosity@1#. Analogous re-
sults can be derived for each of the Navier-Stokes transport
coefficients. We assume that the regression of fluctuations in
a system at equilibrium, whose constituent particles obey
Newton’s equations of motion, are governed by the Navier-
Stokes equations. We consider the wave vector dependent
transverse momentum density

J'~ky ,t ![(
i
pxi~ t !e

ikyyi ~ t !, ~6!

wherepxi is thex component of the momentum of particlei ,
yi is they coordinate of particlei , andky is they component
of the wave vector. The~Newtonian! equations of motion
can be used to calculate the rate of change of the transverse
momentum density. They give

J̇'5 ikyF(
i
pxipyie

ikyyi1 1
2(
i , j

yi j Fxi j

12eikyyi j

ikyyi j
eikyyiG

[ ikyPyx~ky ,t !. ~7!

In this equationFxi j is thex component of the force exerted
on particle i by particle j , yi j[yj2yi , and Pyx is the yx
component of the pressure tensor.

We now consider the response of the pressure tensor to a
strain rateg, applied to the fluid fort.0 in the causal system
and fort,0 in the anticausal system. Since the pressure ten-
sor is related to the time derivative of the transverse momen-
tum current by~7!, and the strain rate is related to the Fourier
transform of the transverse momentum density by
g(ky ,t)52 ikyJ'(ky ,t)/r, the most general linear, station-
ary, and causal constitutive relation can be written as

J̇'~ky ,t !5
2ky

2

r E
0

t

hC~ky ,t2s!J'~ky ,s!ds, t.0,

~8!

wherehC is the causal response function~or memory func-
tion! andr is the density. The corresponding anticausal re-
lation is

J̇'~ky ,t !5
ky
2

r E
t

0

hA~ky ,t2s!J'~ky ,s!ds, t,0, ~9!

wherehA is the anticausal response function. Note that be-
causet,0, we find that the argument (t2s) in ~9! is less
than zero, and we are indeed exploring the response of the
system to a strain rate that is yet to be imposed.

It is straightforward to use standard techniques to evaluate
the Green-Kubo relations for the causal and anticausal shear
viscosity coefficients. In the anticausal case it is important to
remember that the usual Laplace transform

F̃~s![E
0

1`

F~ t !e2stdt, t>0 ~10!

is inappropriate, and needs to be replaced by an anti-Laplace
transform

F̂~s![E
2`

0

F~ t !estdt, t<0. ~11!

@Note: F̂(s)5* 0
`F(2t)e2stdt5F̃8(s), t>0, where

F8(t)[F(2t).# Using the fact that the anti-Laplace trans-
form of a time derivative isF̂̇(s)5F(0)2sF̂(s), and that
the anti-Laplace transform of a convolution is the product of
the anti-Laplace transforms of the convolutes, one can easily
derive the following relations for the shear viscosity and the
anticausal shear viscosity:

C̃~ky ,s!5
C~ky,0!

s1
ky
2h̃C~ky ,s!

r

, Ĉ~ky ,s!5
C~ky,0!

s1
ky
2h̃A~ky ,s!

r

,

~12!

where

C~ky ,t ![^J'~ky ,t !J'~2ky,0!&, ;t. ~13!

More useful relations for the viscosity coefficients, espe-
cially at k50, can be obtained by utilizing the equilibrium
stress autocorrelation function

N~ky ,t ![
1

VkBT
^Pyx~ky ,t !Pyx~2ky,0!&, ;t. ~14!

Using the fact thatN̂52 Ĉ̈/ky
2VkBT, one can show@1,9#
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h̃C~ky ,s!5
Ñ~ky ,s!

12ky
2Ñ~ky ,s!/rs

,

h̃A~ky ,s!5
N̂~ky ,s!

12ky
2N̂~ky ,s!/rs

. ~15!

At zero wave vector, we find that the causal and anti-
causal memory functions are both given by the equilibrium
autocorrelation function of the pressure tensor,

hC~ t !5hA~2t ! where t.0

[h~ t ! 5
V

kBT
^Pyx~ t !Pyx~0!&, ;t ~16!

where we have usedPyx(t)V5limk→0Pyx(ky ,t). Since equi-
librium autocorrelation functions are symmetric in time, one
does not have to distinguish between the positive and nega-
tive time domains. This proves, at least for shear viscosity,
our contention made in Sec. II thatLC(t)5LA(2t).

Using Eqs.~7!–~9! and taking the zero wave vector limit,
we obtain the causal response of theyx component of the
pressure tensor,

PyxC~ t !52E
0

t

h~ t2s!g~s!ds, t.0, ~17!

and the anticausal response is

PyxA~ t !5E
t

0

h~ t2s!g~s!ds, t,0. ~18!

In the linear regime close to equilibrium the entropy pro-
duction per unit time,dS/dt, is given by

dS

dt
52Pyx~ t !g~ t !V, ~19!

whereg(t) is the time dependent strain rate. From Eqs.~17!
and ~18!, it is easy to see that if we conduct two shearing
experiments, one on a causal system with a strain rate history
gC(t) and one on an anticausal system with
gA(t)56gC(2t), then

dS~ t !

dt U
A

5
2dS~2t !

dt U
C

. ~20!

This proves that if the causal system satisfies the second law
of thermodynamics, then the anticausal system must violate
that law, and vice versa.

IV. EXAMPLE: THE MAXWELL MODEL OF VISCOSITY

In this section we examine the consequences of the causal
and anticausal responses by considering the Maxwell model
for linear viscoelastic behavior@1#. If we consider the causal
response of a system to a two step strain rate ramp,

gC~ t !5a, 0,t,t1 ,
~21!

gC~ t !5b, t1,t,t2 ,

then use the Maxwell memory kernel

h~ t !5G`e
2utu/t, ;t ~22!

in ~17! and the fact that the causalhC and anticausalhA
Maxwell shear viscosities in the zero frequency limit are

hC5hA5G`t5h, ~23!

we find that the causal response is

PxyC~ t !52ah~12e2t/t!, 0,t,t1 ,
~24!

PxyC~ t !52ah~e2~ t2t1!/t2e2t/t!2bh~12e2~ t2t2!/t!,

t1,t,t2 .

If we now consider the corresponding anticausal experiment
with strain rate histories given by

gA~ t !5a, 2t1,t,0,
~25!

gA~ t !5b, 2t2,t,2t1 ,

we find that the anticausal response is

PxyA~ t !5ah~12et/t!, 2t1,t,0,
~26!

PxyA~ t !5ah~e~ t1t1!/t2et/t!1bh~12e~ t1t2!/t!,

2t1,t,2t2 .

From Eqs.~24! and ~26!, it is clear that

PxyA~ t !52PxyC~2t !. ~27!

These response functions are shown graphically in Fig. 1. A
two step strain rate ramp witha51.0, b50.5, t152, and
t254 was considered. Equations~24! and ~26! were used to
predict the causal and anticausal responses, respectively, of
thexy component of the pressure tensor. Values ofG`540.0
andt50.05 were used in the model. These values were ob-
tained from approximate fits to computer simulation data
~see Sec. V!.

The data in Fig. 1 show that for the causal response,Pxy
is zero at equilibrium~t<0! and decreases when the field is
applied until the steady state value is obtained. It remains at
the steady value untilt52, at which time the strain rate is
reduced. Since this system is causal, no change inPxy occurs
until after the strain rate is reduced, when it increases until
the system reaches a different steady state. We display the
anticausal response fromt524, where it is in an antisteady
state. Justbeforethe strain rate is increased~at t522!, Pxy
increases to another antisteady state value. Using Eq.~19! we
see that the causal response is entropy increasing and satis-
fies the second law, whereas the anticausal response is en-
tropy decreasing and violates the second law.

V. PHASE SPACE TRAJECTORIES FOR SHEAR FLOW

We now examine the causal and anticausal responses on a
microscopic scale, and consider the relative probability of
observing causal and anticausal trajectories by studying a
thermostatted system ofN particles under shear. In this sys-
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tem the external field is the shear rate]ux/]y5g(t) ~the y
gradient of thex-streaming velocity! and the shear stress
2Pxy times the system volumeV is the dissipative flux2J
@1#. The equations of motion for the particles are given by
the so-called@1# thermostatted Sllod equations

q̇i5pi /m1 igyi , ṗi5Fi2 igpyi2api . ~28!

At arbitrary strain rates these equations give an exact de-
scription of adiabatic Couette flow. This is because the adia-
batic Sllod equations for a step function strain rate
]ux(t)/]y5g(t)5gQ(t), are equivalent@1# to Newton’s
equations after the imposition of a linear velocity gradient at
t50 @i.e., dqi(0

1)/dt5dqi(0
2)/dt1igyi#. At a low Rey-

nolds number, the momentapi are peculiar momenta, anda

is determined using Gauss’s principle of least constraint to
keep the internal energyH05(p i

2/2m1F(q) fixed @1#.
Thus

a52gF(
i51

N

pxipyi /m2 1
2(
i , j

N

xi j Fyi j G Y(
i51

N

pi
2/m

52PxygV Y(
i51

N

pi
2/m, ~29!

whereFyi j is the y component of the intermolecular force
exerted on particlei by j andxi[xj2xi .

The thermostatted Sllod equations of motion~28! and~29!
are time reversible@1#. Therefore for everyi segmentG( i )(t),

FIG. 1. The~a! causal and~b! an-
ticausal response ofPxy to a two step
strain rate ramp determined using the
Maxwell model for linear viscoelastic
behavior with G`540 and t50.05
~solid line!. In both cases the time de-
pendence of the strain rate is shown
as a dashed line.
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~0,t,t!, there exists a conjugate trajectory segment
G( i K)(t), ~0,t,t! with the property thatPxy„G( i K)(t)…5
2Pxy„G( i )(2t)…, ~0,t,t!. Thus thet-averaged shear stress
^Pxy&t,(i )[1/t* 0

tPxy„G( i )(s)…ds for segmenti is equal and
opposite to that for its conjugate:^Pxy&t,(i K)52^Pxy&t,(i )
@7#. We note that since the solution of the equations of mo-
tion is a unique function of the initial conditions, the conju-
gate segment is also unique.

We have previously shown that for shear flow conjugate
segments may be generated by using a phase space mapping
known as a Kawasaki orK map @1#. A K map of a phaseG
is defined as a time-reversal map which is followed by ay
reflection. In the case of shear flow theK map leaves the
strain rate unchanged but changes the sign of the shear stress,
that is MKG5MK(x,y,z,px ,py ,pz ,g)5(x,2y,z,2px ,py ,
2pz ,g)[G(K) @1#. It is straightforward to show that the
Liouville operator for the system ~28! and ~29!,
iL ~G,g![(@q̇i~G!•]/]qi1ṗi~G!•]/]pi#, has the property that
under aK mapMKiL ~G,g!5iL ~G(K),g (K))52 iL ~G,g! @1#.
If we assume a strain rate history such thatgK(2t)5g(t)
;t, then it follows that if aK map is carried out on an
arbitrary phaseG at t50 then evolutionforward in time from
G(K) under a strain rategK(t) is equivalent to time evolution
backwardsin time fromG under the strain rate historyg(t)
~t,0!,

Pxy„2t,G,g~2t !…5exp@2 iL „G,g~2t !…t#Pxy~G!

52Pxy„t,G
~K !,gK~ t !…. ~30!

We note that if we do not assume thatgK(2t)5g(t) ;t,
then there is no general method for generating conjugate tra-
jectory segments. This is because propagators with different
strain rates do not commute, and the inverse propagator must
therefore retrace the strain rate history of the conjugate
propagator in inverse historical order.

If the original segmentG(t) was causal with systematic
increases in shear stress2Pxy occurringafter increases in
strain rate, then the forward mapped segmentG(K)(t) ~t.0!

will necessarily be anticausal with systematic increases in
shear stress occurringbeforethe corresponding increases in
strain rate,gK(t) ~t.0!.

We will now indicate in more detail how to construct the
conjugate segmenti (K) from an arbitrary phase space trajec-
tory segmenti @7#. The construction is illustrated in Fig. 2
for the case where the strain rate remains the same for the
duration of the trajectory. A trajectory of length 2t is gener-
ated by solving the equations of motion. The conjugate seg-
ment is then constructed by applying aK map to the phase at
the midpoint of the segment~t5t! MKG~2!5G5. We then
advance in time from the point~G~5!!, to t52t, by solving the
equations of motion and also go backwards in time from the
K-mapped pointt5t, to t50. A conjugate trajectory of
length 2t is thereby produced. This construction has previ-
ously been described in more detail@7#.

Clearly, the mapped trajectory is a solution of the equa-
tions of motion for the system. When theK map is carried
out at t50, the shear stress is inverted, and Eq.~30! shows
that Pxy~t1t,G!52Pxy~t2t,G(K)! and similarly
Pxy~t2t,G!52Pxy~t1t,G(K)!; therefore, for every point on
the original trajectory there is a unique point on the mapped
trajectory with opposite shear stress. Thet-averaged shear
stress of the conjugate trajectory is opposite to that of the
original trajectory, that iŝ Pxy& t,(i K)52^Pxy&t,(i ) . Thus if
the original segment satisfied the second law, then the con-
jugate segment violates the second law, and vice versa.

In a causal world, which is described by causal
macroscopic constitutive relations such as~4!, observed
segments are overwhelmingly likely to satisfy the second
law. We can show this by discussing the ratio of probabilities
of finding the initial phases,G~1! andG~4! in Fig. 2, which
generate these conjugate segments. In a causal world, the
probabilities of observing the segmentsG~1,3! and G~4,6!
are of course proportional to the probabilities of observing
the initial phases which generate those segments.@Note that
we denote the trajectoryt segmentG( i )→G( j )5Gi~t! by
G( i j ).# It is convenient to consider a small phase space
volume V„G( i )~0!… about an initial phaseG( i )~0!. Because

FIG. 2. Pxy for trajectory seg-
ments from a simulation of 200
disks atT51.0 andn50.8. A con-
stant strain rate ofg51.0 is ap-
plied at t50. The trajectory seg-
ment G~1,3! was obtained from a
forward time simulation. Att52,
a K map was applied toG~2! to
give G~5!. Forward and reverse
time simulations from this point
give the trajectory segmentG~5,6!
andG~5,4!, respectively. If one in-
verts Pxy in Pxy50 and inverts
time about t52, one transforms
the Pxy(t) values for the antiseg-
mentG~4,6! into those for the con-
jugate segmentG~1,3!.

5812 53DENIS J. EVANS AND DEBRA J. SEARLES



the initial phases are distributedmicrocanonically, the
probability of observing ensemble members inside
V„G( i )~0!…, is proportional toV„G( i )~0!…. From the Liouville
equation d f~G,t!/dt53Na~G!f ~G,t!1O~1! and the fact
that, for sufficiently small volumes,V„G(t)…;1/f „G(t),t…,
we can make the following observations:

V25V1~t!5V1~0! expF2E
0

t

3Na~s;G1!dsG
and

V35V1~2t!5V1~0! expF2E
0

2t

3Na~s;G~1!!dsG ,
wherea~s;G~1!! denotesa(s) computed along a segment that
begins, ats50, atG~1!~0!.

Since the segmentG~4,6! is related toG~1,3! by a K map
which is applied att5t, and the Jacobian of theK mapping
is unity, V25V5 , V35V4 , andV1(0)5V6 . However, since

V1~0! and V4 are volumes att50 and the distribution of
initial phases is microcanonical, we can compute the ratio of
probabilitiesmi* , mi of observing, in a causal world,t50
phases withinV4~0! and V1. This ratio is just the volume
ratio

m i* /m15V4 /V1~0!5V1~2t!/V1~0!

5expF E
0

2p

23Na~s;G~1!!dsG , ;t. ~31!

Thus if the world is causal and we assume segment
1~[G~1,3!! satisfies the second law, then̂a&t,~1,3!.0 and
m1*m1→0 ~i.e., we overwhelmingly observe segment 1 rather
than the antisegment 1* which violates the second law!.
Conversely, if segment 1 violates the second law, then
^a&t,~1,3!,0 andm1*m1→` ~i.e., we overwhelmingly see seg-
ment 1* rather than antisegment 1 which violates the second
law!. Equation~31! has recently been verified by numerical
simulations of a system undergoing shear flow@7#.

FIG. 3. P̄xy ~solid line! from nonequilibrium mo-
lecular dynamics simulations of 56 particles at
T51.0 and n50.8 undergoing shear flow. The
dashed line gives the time dependence of the strain
rate. In ~a!, P̄xy was determined using 100 trajecto-
ries whose initial phases were selected from an equi-
librium distribution, and to which a two step strain
rate was applied.~b! showsP̄xy for their conjugate
trajectories. The conjugate trajectories were obtained
by applying aK map to the phase of the trajectory at
t52, simulating forward and backward in time from
this point and translating in time so that the conju-
gate trajectory ends att50. Note that the strain rate
history of the conjugate trajectory is reversed.
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In an anticausal world where effects precede their causes,
the probabilities of observing the segmentsG~1,3! andG~4,6!
are proportional to the probabilities of observing thefinal
phases generated by those segments. The system will be at
equilibrium at the end point~rather than the beginning! of
the trajectory segments and antisegments. It is trivial to see
that in an anticausal world it would be overwhelmingly more
probable to observe segments that violate the second law
than segments that satisfy the second law. We do not make
that argument here because it is a rather obvious extension of
the argument given above for causal systems. Put simply, in
order for a group of trajectory segments to have a large final
equilibrium volume they have to violate the second law with
an expanding~rather than shrinking! volume element.

VI. SIMULATION RESULTS

We can demonstrate the relationships between the conju-
gate pair trajectories, the second law of thermodynamics, and
causal and anticausal responses using numerical simulations

of the system described by Eqs.~28! and ~29!. Figure 2
shows the response ofPxy for a trajectory and its conjugate
when a constant strain rate is applied. The response was
determined using nonequilibrium molecular dynamics simu-
lations of 200 disks in two Cartesian dimensions. The disks
interact via the short range potential of Weeks, Chandler, and
Andersen@10#,

f~r !5 H4~r2122r26!11,
0,

r,21/6

r.21/6. ~32!

Shearing periodic boundary conditions were used to mini-
mize boundary effects@1#. The system was maintained at a
constant kinetic temperature ofT51.0 and the particle den-
sity wasn5N/V50.8. An initial phase was selected from an
equilibrium distribution, and a strain rate ofg51.0 was ap-
plied to the system att50. A trajectory segment was gener-
ated by simulating forward in time tot54. The conjugate
trajectory was constructed using the scheme described above.
Examination of the trajectories shows thatPxy~t1t! for the

FIG. 4. The same as Fig. 3, but with a different
two step strain rate ramp.~a! showsP̄xy for trajec-
tories sampled from an equilibrium distribution at
t50, and ~b! shows P̄xy for conjugate trajectories
generated from the trajectories in~a!. In both cases
the time dependence of the strain rate is shown by a
dashed line.
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trajectory satisfying the second law is equal in magnitude but
opposite in sign toPxy(t2t) for the trajectory violating the
second law, wheret is the time at which theK map is ap-
plied ~t52!. These results therefore verify the relationship
betweenPxy of trajectories satisfying the second law and
conjugate trajectories violating the second law given by Eq.
~30!.

The causality of the response is more clearly demon-
strated in Figs. 3 and 4, where the response ofPxy to differ-
ent strain rate ramps is shown.Pxy(t) was averaged over 100
individual trajectories to reduce the fluctuations in the steady
state, and gaveP̄xy , a partially averaged response. In these
simulations 56 disks were used. The initial phases of the
trajectories shown in Figs. 3~a! and 4~a! were sampled from
the equilibrium distribution att50. Figure 3~a! shows the
response of the shear stress of these trajectories to a strain
rate ofg51.0 applied att50, and reduced tog50.5 at the
midpoint of the trajectory~t52!. To ensure that the high
symmetry of the strain rate ramp does not influence the re-
sults, an alternative step strain rate ramp was considered. The
response when the strain rate is reduced fromg51.0 to
g50.5 at t51 was simulated, and is shown in Fig. 4~a!. In
both cases,P̄xy is zero at equilibrium and decreases to a
steady state value after the field is applied. After the strain
rate is reduced,P̄xy increases to a different steady state
value.

The conjugate trajectories are shown in Figs. 3~b! and
4~b!. They were constructed as described above and trans-
lated in time to begin att524. At this time, the system is in
an antisteady state, andP̄xy maintains its antisteady state
value until justbeforethe the strain rate is changed, when it
increases to a different antisteady state value.

These response curves demonstrate that trajectories satis-
fying the second law only respond to the change in the strain
rateafter it is imposed and therefore they arecausal. Con-
versely, the conjugate trajectories violating the second law
respond to the step in the strain ratebeforeit is made, so they
areanticausal. Close inspection of the graphs reveals that at
all points along individual pairs of conjugate trajectories,
Pxy(t) trajectory52Pxy(2t)conjugate trajectory, which follows
from Eq. ~30!.

The system used in the simulations corresponds to that
examined using the Maxwell model in Sec. IV. Figure 3
shows the response, determined by nonequilibrium molecu-
lar dynamics simulation, to the same two step strain rate
ramp which was used to model the response shown in Fig. 1.
Comparison of these response curves indicates that the sys-
tem is reasonably well represented by the Maxwell model.

VII. CONCLUSION

We have derived a Green-Kubo relation for an anticausal
linear transport coefficient. By comparing this relation with
the corresponding relation for the conjugate causal transport
coefficient we observe that if the causal transport coefficient
satisfies the second law of thermodynamics, then the anti-
causal transport coefficient necessarily violates the second
law. Further, we give an argument that in reversible, deter-
ministic systems it is overwhelmingly improbable either to
find causal steady states that violate the second law or to find
anticausal states that satisfy the second law. This argument is
based on the Boltzmann ansatz that at equilibrium in the
microcanonical ensemble the probability of observing mi-
crostates within a given volume is proportional to the mag-
nitude of that volume.

We have thus shown that there is a deep connection be-
tween causality and the second law of thermodynamics. We
cannot violate the second law for long and still satisfy cau-
sality.

Finally we would like to remark that for dilute gases an
analogous state of affairs exists with regard to the calculation
of transport coefficients from the Boltzmann equation. The
Boltzmann equation is time irreversible and leads to trans-
port coefficients that satisfy the second law. This is analo-
gous to Green-Kubo relations that satisfy the second law for
linear transport coefficients in fluids of arbitrary density—
Sec. III. In 1960 Cohen and Berlin@11# showed that if the
molecular chaosassumption of Boltzmann is assumed to ap-
ply to post-collisional distributions rather than~as Boltz-
mann assumed! to pre-collisionaldistributions, one can de-
rive ananti-Boltzmannequation~our terminology!. This use
of Boltzmann’s molecular chaos assumption for precolli-
sional and post-collisional distributions is analogous to our
use of Boltzmann’s ansatz before and after the strain rate
ramps—Sec. V. The anti-Boltzmann equation derived by Co-
hen and Berlin obeys an anti-H theorem@11# which violates
the second law. Consequently the anti-Boltzmann equation
also leads to negative values for the Navier-Stokes transport
coefficients.
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