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An approximate Fokker-Planck equation for a general one-dimensional system driven by correlated noises is
derived; the correlation times of the correlations between the noises are nonzero. The steady-state properties of
the bistable kinetic model are analyzed. We find the following.~1! In thea-D parameter plane~a andD are
the additive noise and multiplicative noise intensities, respectively!, the area of the bimodal region of the
stationary probability distribution~SPD! is contracted asl is increased~l is the strength of the correlations
between noises!, but the area of the bimodal region of the SPD is enlarged ast is increased~t is the correlation
time of the correlations between noises!. ~2! l andt play opposing roles in the transition of the SPD of the
system.~3! For the case of perfectly correlated noises~l51!, there is not the phenomenon of the critical ratio
~a/D51! which was shown by Wu, Cao, and Ke@Phys. Rev. E50, 2496~1994!#. ~4! The change of the mean
of the state variable is very remarkable in the smallt and largel regimes.~5! The normalized variance of the
state variable increases with increasingt, but decreases with increasingl. @S1063-651X~96!10205-9#

PACS number~s!: 05.40.1j

I. INTRODUCTION

Recently, the study of dynamical systems with correlation
noise terms has attracted attention in the field of stochastic
systems@1–9#. On the level of the Langevin-type description
of dynamical systems, the presence of correlations between
the noises changes the dynamics of the system. A typical
case with correlation noise terms is described by the follow-
ing stochastic differential equation:

ẋ~ t !5 f ~x!1g1~x!j~ t !1g2~x!h~ t !, ~1!

where j(t) and h(t) are Gaussian white noises with zero
mean, and

g11~ t,t8!5^j~ t !j~ t8!&52Dd~ t2t8!,
~2!

g22~ t,t8!5^h~ t !h~ t8!&52ad~ t2t8!.

Most previous studies have been based on the assumption
that correlations betweenj(t) andh(t) are proportional to
Dirac delta functions of (t2t8) @4–9#:

^j~ t !h~ t8!&5^h~ t !j~ t8!&52lAaDd~ t2t8! ~0<l<1!.
~3!

That is, the correlation times of the correlations betweenj(t)
andh(t) are zero. However, in certain situations the corre-
lation times of the correlations betweenj(t) andh(t) may be
nonzero.

It must be pointed out that Fox has discussed
N-component stochastic processes with correlations between
the noises in Ref.@1#, where the correlation times of the
correlations between noises are nonzero. He obtained an ex-

plicit equation for the probability distribution to first order in
the correlation times by making use of the method of ordered
operator cumulants.

In this paper, we will discuss the stochastic system~1!
with ~2!, and assume that the correlation times of the corre-
lations betweenj(t) andh(t) are nonzero. Here we assume

g12~ t,t8!5^j~ t !h~ t8!&5g21~ t,t8!5^h~ t !j~ t8!&

5
lAaD

t
exp@2ut2t8u/t#

→2lAaDd~ t2t8! as t→0, ~4!

wheret is the correlation time of the correlations between
j(t) andh(t), andl is the strength of the correlations be-
tween j(t) and h(t). Attention is restricted here to the
steady-state regime of the stochastic system. The paper is
arranged as follows. In Sec. II the approximate Fokker-
Planck equation~AFPE! for the general one-dimensional
system~1! with ~2! and~4! will be derived. By virtue of the
AFPE, we study the single bistable kinetic process driven by
correlated additive and multiplicative noise with nonzero
correlation time, and obtain the steady-state distribution
functions of the system in Sec. III. Finally, several conclu-
sions are given in Sec. IV.

II. APPROXIMATE FOKKER-PLANCK EQUATION

A general equation satisfied by the probability distribution
of the process~1! with ~2! and ~4! is given by@10,7#

]

]t
P~x,t !52

]

]x
f ~x!P~x,t !2

]

]x
g1~x!^j~ t !d~x~ t !2x!&

2
]

]x
g2~x!^h~ t !d~x~ t !2x!&, ~5!
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where

P~x,t !5^d~x~ t !2x!&. ~6!

The average in~5! may be calculated for Gaussian noises
h(t) andj(t) by a functional formula, the Novikov theorem
@11#:

^zkF@z1 ,z2#&5E
0

t

dt8gkl

d„d~x~ t !2x!…

dz l
, k,l51,2,

~7!

where F@z1,z2# is a functional of z1 and z2 and
gkl5^zk(t)z l(t8)& are its correlation functions. In our situa-
tion, z1 andz2 are the noisesj(t) andh(t). According to~7!
we have

^j~ t !d~x~ t !2x!&5E
0

t

dt8g11~ t,t8!
d„d~x~ t !2x!…

dj~ t8!

1E
0

t

dt8g21~ t,t !
d„d~x~ t !2x!…

dh~ t8!

52D
]

]x
g1~x!P~x,t !

2
lAaD

t

]

]x E0
t

dt8 exp@2ut2t8u/t#

3K d„x~ t !2x…
dx~ t !

dh~ t8!L . ~8!

The response functiondx(t)/dh(t8) in ~8! can be given from
Eq. ~1!:

dx~ t !

dh~ t8!
5g2„x(t8)…expF E

t8

t

ds[ f 8„x(s)…1g18„x(s)…j(s)

1g28„x~s!…h~s!] G , ~9!

in which f 8, g18 , andg28 denote the firstx derivatives off ,
g1, andg2, respectively. Substituting~9! into ~8!, we get

^j~ t !d„x~ t !2x…&52D
]

]x
g1~x!P~x,t !

2
lAaD

t

]

]x E0
t

dt8 exp@2ut2t8u/t#

3K g2„x~ t8!…d„x~ t !2x…

3expF E
t8

t

ds@ f 8„x~s!…1g18„x~s!…j~s!

1g28„x~s!…h~s!#G L . ~10!

Following Fox’s approach@12#, we observe that

d

dt
g2„x~ t !…5g28„x~ t !…

d

dt
x~ t !

5g28„x~ t !…@ f „x~ t !…1g1„x~ t !…j~ t !

1g2„x~ t !…h~ t !#

5
g28„x~ t !…

g2„x~ t !…
@ f „x~ t !…1g1„x~ t !…j~ t !

1g2„x~ t !…h~ t !#g2„x~ t !…. ~11!

This yields the formal expression

g2„x~ t8!…5g2„x~ t !…expF E
t

t8
ds

g28„x~s!…

g2„x~s!…

3@ f „x~s!…1g1„x~s!…j~s!1g2„x~s!…h~s!#G .
~12!

When this expression is inserted into~10!, we obtain

^j~ t !d„x~ t !2x…&52D
]

]x
g1~x!P~x,t !2

lAaD

t

]

]x
g2„x~ t !…E

0

t

dt8 exp@2ut2t8u/t#

3K d„x~ t !2x…expF E
t8

t

dsF f 8„x~s!…1g18„x~s!…j~s!2
g28„x~s!…

g2„x~s!…
f „x~s!…2

g28„x~s!…

g2„x~s!…
g1„x~s!…j~s!G G L

'2D
]

]x
g1~x!P~x,t !2

lAaD

t

]

]x
g2„x~ t !…E

0

t

dt8 exp@2ut2t8u/t#

3K d„x~ t !2x…expF E
t8

t

dsS f 8„x~s!…2
g28„x~s!…

g2„x~s!…
f „x~s!…D G L , ~13!
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where thej(s) terms have been neglected, which can be
shown to be self-consistently valid@13#. It has also been
assumed thatt is sufficiently large compared tot.

In this paper we consider the stochastic process in the
steady-state regime; the ansatz of Hanggiet al. @14# can be
used here@15,16#. We argue that at steady state the last ex-
ponential in~13! is approximated by@15#

expF E
t8

t

dsS f 8„x~s!…2
g28„x~s!…

g2„x~s!…
f „x~s!…D G

'expF ~ t2t8!S f 8~xs!2
g28~xs!

g2~xs!
f ~xs! D G , ~14!

wherexs denotes the steady-state value of^x(t)&. Inserting
this approximation into~13! and performing the remainingt8
integral yields

^j~ t !d„x~ t !2x…&52D
]

]x
g1~x!P~x,t !

2
lAaD

12t@ f 8~xs!2@g28~xs!/g2~xs!# f ~xs!#

3
]

]x
g2~x!P~x,t !. ~15!

Similarly, the averagêh(t)d„x(t)2x…& in ~5! can be cal-
culated:

^h~ t !d„x~ t !2x…&52a
]

]x
g2~x!P~x,t !

2
lAaD

12t@ f 8~xs!2@g18~xs!/g1~xs!# f ~xs!#

3
]

]x
g1~x!P~x,t !. ~16!

Substituting ~15! and ~16! into ~5!, we finally obtain the
AFPE corresponding to~1! with ~2! and ~4!:

]P~x,t !

]t
52

]

]x
f ~x!P~x,t !1D

]

]x
g1~x!

]

]x
g1~x!P~x,t !

1
lAaD

12t@ f 8~xs!2@g28~xs!/g2~xs!# f ~xs!#

3
]

]x
g1~x!

]

]x
g2~x!P~x,t !

1a
]

]x
g2~x!

]

]x
g2~x!P~x,t !

1
lAaD

12t@ f 8~xs!2@g18~xs!/g1~xs!# f ~xs!#

3
]

]x
g2~x!

]

]x
g1~x!P~x,t !. ~17!

The AFPE is valid for the following conditions:

12tF f 8~xs!2
g28~xs!

g2~xs!
f ~xs!G.0 ~18!

and

12tF f 8~xs!2
g18~xs!

g1~xs!
f ~xs!G.0; ~19!

these provide the constraint ont.

III. STEADY-STATE DISTRIBUTION FUNCTIONS
OF THE BISTABLE SYSTEM

Now we consider a popular example, the single bistable
kinetic system, and assume the dimensionless form

ẋ5ax2bx31xj~ t !1h~ t ! ~a.0, b.0! ~20!

with ~2! and ~4!. This is a special case of Eq.~1! with

f ~x!5ax2bx3, g1~x!5x, g2~x!51, ~21!

and the steady-state valuex s
25a/b. Therefore the AFPE of

the system~20! is obtained by substituting~21! into ~17!:

]P~x,t !

]t
52

]

]x
~ax2bx3!P~x,t !1D

]

]x
x

]

]x
xP~x,t !

1
lAaD

112at

]

]x
x

]

]x
P~x,t !1a

]2

]x2
P~x,t !

1
lAaD

112at

]2

]x2
xP~x,t !. ~22!

Note that 112at.0 for all t. Thus there exists no restriction
on t in this case. The stationary probability distribution
~SPD! of the system can be obtained from~22! and is given
by

Pst~x!5N1@Dx
212lAaDx1a#b121/2expF2

b

2D
x2

1
2lAaDb

D2 x1
l

A12l2
u1arctan

l1AD/ax
A12l2 G

for t50, 0<l,1, ~23!

Pst~x!5N2@Dx
212AaDx1a#b221/2expF2

b

2D
x2

1
2AaDb

D2 x2
u2

Dx1AaD
G for t50, l51,

~24!
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FIG. 1. The critical curves in thea-D parameter plane plotted
from Eq. ~30! for t50.1.l50.1, 0.5, and 0.9, respectively.

FIG. 2. The critical curves in thea-D parameter plane plotted
from Eq. ~30! for l50.7. t50.1, 0.5, and 1.2, respectively.

FIG. 3. The SPD of the bistable kinetic model Eq.~25! for
a5D50.5, t50.7.l50.1, 0.5, and 0.9, respectively.

FIG. 4. The SPD of the bistable kinetic model Eq.~25! for
a5D50.5,l50.5. t50.1, 0.5, and 1.2, respectively.

FIG. 5. The SPD of the bistable kinetic model Eq.~25! for the
case of perfectly correlated noises~l51! with a5D50.5. t50.1,
0.5, and 1.2, respectively.

FIG. 6. The SPD of the bistable kinetic model Eq.~25! for the
case of perfectly correlated noises~l51! with t50.5. Curvea, the
case ofa/D51; a50.5, D50.5. Curveb, the case ofa/D,1;
a50.45,D50.5. Curvec, the case ofa/D.1; a50.55,D50.5.
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Pst~x!5N3FDx21 2lAaDx

112at
1aGb321/2

expF2
b

2D
x2

1
2lAaDb

D2~112at!
x1

l

A~112at!22l2
u3arctan

3
l1~112at!AD/ax

A~112at!22l2 G for tÞ0, 0,l<1,

~25!

where

b15
~ba1aD!24bl2a

2D2 ,

~26!

u15
4bal223ba2aD

D2 ,

b25
23ba1aD

2D2 ,

~27!

u25
AaD~ba2aD!

D2 ,

b35
~ba1aD!~112at!224bl2a

2D2~112at!2
,

~28!

u35
2ba@2l22~112at!2#

D2~112at!2
2

a

D
2
ba

D2 ,

andN1, N2, andN3 are the normalization constants for Eqs.
~23!, ~24!, and~25!, respectively. It must be pointed out that
the correlation timet must be zero when the strength of the
correlations between noisesl is zero. Therefore the param-
eterl is nonzero in Eq.~25!. The extrema of the SPD~25!
are determined by the following equation of third order:

bx32~a2D !x1
lAaD

112at
50. ~29!

The critical curve separating the unimodal and bimodal re-
gions is determined by

l2aD

4~112at!2
2

~a2D !3

27b
50. ~30!

The moments of the state variablex are given by

^xn&5E
2`

1`

xnPst~x!dx. ~31!

The mean and normalized variance of the state variable are
given by the numerical integrations of Eq.~31!. The mean of
the state variable is

^x&5E
2`

1`

xPst~x!dx ~32!

and the normalized variance of the state variable is

l2~0!5
Šx2^x&‹2

^x&2
5

^x2&

^x&2
21. ~33!

IV. STEADY-STATE ANALYSIS: CONCLUSIONS

When the correlation timet is zero, the SPD’s@~23! and
~24!# have been discussed in Ref.@7# ~in which a51, b51!,
and will not be recounted here. Our aim in this paper is to
discuss the steady-state properties of the bistable system
when the correlation time is nonzero. By virtue of the results
Eqs.~30!, ~25!, ~32!, and~33! obtained above, we have plot-
ted the critical curves in thea-D plane in Figs. 1 and 2, the
curves of the SPD in Figs. 3–6, and the curves of the mean
and variance of the state variable in Figs. 7–10. Here, we
takea51 andb51 for simplicity. The conclusions that can
be drawn from these figures are as follows.

~i! The presence of correlation between the noises causes
the critical curve separating the unimodal and bimodal re-
gions in thea-D parameter plane to be affected not only by
l, the strength of the correlation between noises, but also by
t, the correlation time of the correlation between noises, as
can be seen from Figs. 1 and 2.

~ii ! Whent is fixed, the area of the bimodal region in Fig.
1 contracts asl increases. However, whenl is fixed, the area

FIG. 7. The mean of the state variable^x& as
a function ofl with a5D50.5. t50.1, 0.5, and
1.2, respectively.
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of the bimodal region in Fig. 2 is enlarged ast increases.
This shows that the strength of the correlation between
noises and the correlation time of the correlation between
noises play opposing roles in the transition of the SPD.

~iii ! Because of the different roles in the transition of the
SPD for t and l, we can see that the SPD of the bistable
system experiences the transition from a bimodal to a uni-
modal structure asl increases~Fig. 3!, but experiences the
transition from a unimodal to a bimodal structure ast in-
creases~Fig. 4!.

~iv! For the case of perfectly correlated noises~l51!, the
SPD ~24! ~i.e., t50! which has been discussed in Ref.@7#
exhibits divergence atx52(a/D)1/2, and the SPD’s corre-
sponding toa/D.1 and a/D,1 exhibit a very different
shape of divergence; therefore the ratioa/D51 plays the role
of a critical ratio. However, when the correlation time is
nonzero, the above pictures of the SPD change. The SPD
~25! does not exhibits divergence in the region2`,x,1`
due to

4aD

~112t!2
24aD,0

in the factor

SDx21 2AaD

112t
x1a D b321/2

.

The SPD experiences the transition from a unimodal to a
bimodal structure whent increases as shown in Fig. 5.
Moreover, from Fig. 6 we can see that there is not the phe-
nomenon of the critical ratio, namely, when the parametersa
andD take values in the neighborhood ofa5D, the SPD’s
corresponding toa/D.1 anda/D,1 do not exhibit a very
different shape.

~v! When the intensity of the additive noise is equal to
that of the multiplicative noise, the mean of the state variable
is plotted in Fig. 7 as a function ofl and as a function oft
in Fig. 8. It is obvious that the mean of the state variable is
negative. The mean increases with increasingt, but de-
creases with increasingl; it is very remarkable for smallt
and largel ~e.g., t50.1, 0.9,l,1.0 in Fig. 7 andl50.9,
0,t,0.2 in Fig. 8!. The above behaviors of the mean are
determined by the SPD~25! of the system according to Eq.
~32!.

When the noises are uncorrelated~l50, t50!, the SPD
exhibits a symmetric bimodal structure fora5D @7#. How-
ever, when the noises are correlated, the symmetry of the
SPD is destroyed as shown in Figs. 3–5. The SPD~25! is

FIG. 9. The normalized variancel2~0! of the
state variable as a function ofl with a5D50.5,
t50.1, 0.5, and 1.2, respectively.

FIG. 8. The mean of the state variable^x& as
a function oft with a5D50.5. l50.1, 0.5, and
0.9, respectively.
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affected not only by the intensities of noises but also by the
strength of correlation between noises and the correlation
time of correlation between noises. First, the presence of
correlation between noises shifts the SPD to the left; the SPD
appearing inx,0 is greater than that inx.0. Therefore the
mean of the state variable is negative. Second, because the
SPD is shifted fromx.0 tox,0 by increasingl as shown in
Fig. 3, but fromx,0 to x.0 by increasingt as shown in
Fig. 4, the mean of the state variable increases with increas-
ing t, and decreases with increasingl. Third, because the
effects oft andl on the change of the SPD are opposed to
each other and the two effects cancel each other out, the
curves of the mean~e.g.,t50.5 and 1.2 in Fig. 7 andl50.1
and 0.5 in Fig. 8! are smooth. However, whenl is large and
t is small, the effect ofl on the SPD plays the leading role.
The SPD appears nearly completely inx,0 ~e.g.,l51 and
t50.1 in Fig. 5!, and the extremum of the SPD shifts to the
left. Therefore the mean is very remarkable for smallt and

largel ~e.g.,t50.1, 0.9,l,1.0 in Fig. 7 andl50.9, 0,t
,0.2 in Fig. 8!.

~vi! The normalized variancel2(0) of the state variable is
plotted as a function ofl in Fig. 9 and as a function oft in
Fig. 10. The normalized variance increases with increasingt
but decreases with increasingl. This also shows that the
effects of the strength of the correlation between noises and
the correlation time on the normalized variance are different.
In addition, because the value of the mean is very small as
shown in Figs. 7 and 8, the value of the normalized variance
is very large as shown in Figs. 9 and 10.
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