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Steady-state analysis of a bistable system with additive and multiplicative noises
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An approximate Fokker-Planck equation for a general one-dimensional system driven by correlated noises is
derived; the correlation times of the correlations between the noises are nonzero. The steady-state properties of
the bistable kinetic model are analyzed. We find the followitig.In the «-D parameter planéx andD are
the additive noise and multiplicative noise intensities, respeclivéie area of the bimodal region of the
stationary probability distributiodSPD) is contracted aa is increasedA is the strength of the correlations
between noisgsbut the area of the bimodal region of the SPD is enlargetistcreasedris the correlation
time of the correlations between noise®) N\ and 7 play opposing roles in the transition of the SPD of the
system.(3) For the case of perfectly correlated noigks-1), there is not the phenomenon of the critical ratio
(/D =1) which was shown by Wu, Cao, and KBhys. Rev. E50, 2496(1994]. (4) The change of the mean
of the state variable is very remarkable in the smalhd large\ regimes.(5) The normalized variance of the
state variable increases with increasindut decreases with increasiing[S1063-651X96)10205-9

PACS numbd(s): 05.40:+j

[. INTRODUCTION plicit equation for the probability distribution to first order in
the correlation times by making use of the method of ordered
Recently, the study of dynamical systems with correlationoperator cumulants.
noise terms has attracted attention in the field of stochastic In this paper, we will discuss the stochastic systehn
systemg 1-9]. On the level of the Langevin-type description with (2), and assume that the correlation times of the corre-
of dynamical systems, the presence of correlations betwedations betweerg(t) and »(t) are nonzero. Here we assume
the noises changes the dynamics of the system. A typical

case with correlation noise terms is described by the follow-  Y22tt')=(&O) 7(t"))=yau(t.t")=(n(1) &(t"))
ing stochastic differential equation: \yaD vl
, = exg —|t— T
X(t)=f(x) +g1(x) £(t) +g2(x) (1), (N T
where &(t) and 7(t) are Gaussian white noises with zero —2NVaDé(t—t') as 7—0, (4)
mean, and . . . .
where 7 is the correlation time of the correlations between
yu(t,t ) =(&(t) Et'))y=2D 8(t—t"), &1t) and %(t), and\ is the strength of the correlations be-
(2) tween 1) and %(t). Attention is restricted here to the
Yo t,t") =({n(t) p(t"))=2as(t—t"). steady-state regime of the stochastic system. The paper is

arranged as follows. In Sec. Il the approximate Fokker-
Most previous studies have been based on the assumpti®anck equation(AFPE) for the general one-dimensional
that correlations betweeg(t) and 7(t) are proportional to  system(1) with (2) and(4) will be derived. By virtue of the
Dirac delta functions oft(—t") [4-9]: AFPE, we study the single bistable kinetic process driven by
correlated additive and multiplicative noise with nonzero
(EO ") =(n(&(t))=2NJaDs(t—t') (0<N<1).  correlation time, and obtain the steady-state distribution
(3 functions of the system in Sec. Ill. Finally, several conclu-

That is, the correlation times of the correlations betwégh sions are given in Sec. 1V.

and 7(t) are zero. However, in certain situations the corre-
lation times of the correlations betweéft) and »(t) may be

nonzero. A general equation satisfied by the probability distribution

It must be pointed out that Fox has discussedof the proces$l) with (2) and(4) is given by[10,7]
N-component stochastic processes with correlations between

the noises in Ref[1], where the correlation times of the _d d
correlations between noises are nonzero. He obtained an exg; © %)=~ 72 FOOP(X1) = = g1 (X){&(1) (x(t) —x))

II. APPROXIMATE FOKKER-PLANCK EQUATION

P
*Mailing address. ~ 7% 9200(7(1) 8(x(H) = X)), (5)
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where

P(x,t)=(8(x(t) =X)). (6)

The average if5) may be calculated for Gaussian noises
7(t) and &(t) by a functional formula, the Novikov theorem

[11]:

S(8(x(t)—x))

k,I1=1,2,
e

(7)

t
<§kq’[§1:§2]>:f0dt'7k|

where ®[¢;,4,] is a functional of ¢ and ¢, and

ya={L (1) (1)) are its correlation functions. In our situa-

tion, ¢; and{, are the noiseg(t) and 7(t). According to(7)
we have

8(8(x(t) —x))
o)

5(5(x( )—X))
ooty

t
<§(t)5(x(t)—x)>=fodt'nl(t,t’)

f dt’ yp(t

d
=D 2 g100P(xD)

aD

T

ﬁxfdt exd —[t—t'|/7]

()> ®

<5(x(t) X) 5(t)

The response functiofix(t)/5»(t") in (8) can be given from
Eq. (1):
ox(t)

t
ngz(x(t ))ex;{ft,ds[f (x(s))+91(x(s))é(s)

+92(x(s)n(s)] |, ©)

in which f’, g;, andg, denote the firsk derivatives off,
0:, andg,, respectively. Substitutin¢d) into (8), we get

5787

d
(ED6X(1)=X))=~D — G (0P(x)

AaD
T (9X

ftdt’ exd —|t—t'|/7]
><<92(X(t’))5(x(t)—X)

t
Xexr{ Jt,dS[f’(X(s))+gi(x(5))§(5)

+95(x(s)) ()]

>. (10

Following Fox’s approacil2], we observe that

d - d
at g2(X(1))=g,(x(1)) P X(t)

=g (x (D) F(x(1)+ g1 (X(1))£(1)
+92(x(1) 7(1)]

92( (1)
T ga(x(1)

+92(x(1) 7(t) ]g2(x(1)).

[Fx(1))+ga(x(1)&(t)
11
This yields the formal expression

g5(x(s))
ga(x(s))

gx(x(t"))= gz(x(t))ex;{ ftt' ds

X[F(x(s))+9g1(x(s))&(s) +ga(x(s) m(s)]|.
(12

When this expression is inserted intb0), we obtain

aD
(£ () —0) =D~ g1(x)P(x, t)_T\/_—gz(X(t)) [(at exi—t-viia

><< 5(><(t)—><)exp[ f:,dS[f’(X(s))+gi(X(s))§(s)—

JaD 4

g2(x(s))
02(x(s))

g5(x(s))
g2(x(s))

f(x(s))— g1(X(8))&(s)

|

A
~-D —91(X)P(X t)—T—gz(x(t))f dt’ exd —[t—t'|/7]

(13

t !
><< 5(x(t)—x)exp[ Lds( f7(x(s))— gjgg; f(x(s))m,
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where the&(s) terms have been neglected, which can be
shown to be self-consistently valid.3]. It has also been

assumed that is sufficiently large compared ta

In this paper we consider the stochastic process in the

steady-state regime; the ansatz of Hanefgal. [14] can be

used herd15,16. We argue that at steady state the last ex-

ponential in(13) is approximated by15]

t , _92( (9)
exr{ Jt,d3<f (x(s)) 5,((9) f(x(s ))H

~ex[{(t—t’)<f’(xs)—gzi ;f( s)”

wherex, denotes the steady-state value(gr{t)). Inserting
this approximation intg13) and performing the remainintg

integral yields

d
(£ 8((H) =)= =D — g:00P(xD)

AaD

(14

S 1A (%)

0
X& g2(X)P(x,t).

Similarly, the averagén(t) 8(x(t) —x)) in (5) can be cal-

culated:

0
(n(DSX(D)=X)=~a 7 G(X)P(x,t)

AVaD

—[92(Xs)/92(xs) 1 (%) ]

(19

11 (%) —[91(X6) /91 (Xs) IF (Xs)]

d
X G100P(x).

Substituting (15) and (16) into (5), we finally obtain the

AFPE corresponding t@l) with (2) and (4):

JP(x,t) J
pr =—— f(x)P(x t)+ D — gl(x)

. x@
1= f"(Xs) —[92(Xs)/92(Xs) 1T (Xs) ]
0 0

X_ 91(X) gz(X)P(X t)

J

ta— gz(X) 92(X)P(X t)

. MaD
1- T[f’(Xs)—[gi(xs)/gl(xs)]f(xs)]

- gz(X) gl(X)P(X t).

The AFPE is valid for the following conditions:

(16)

gl(X)P(X t)

17

o gh(xe) }
1—7f'(Xg) 00%0) f(xg) |>0 (18
and
. ' gl( s) } .

these provide the constraint an

Ill. STEADY-STATE DISTRIBUTION FUNCTIONS
OF THE BISTABLE SYSTEM

Now we consider a popular example, the single bistable
kinetic system, and assume the dimensionless form

x=ax—bx3+x&(t)+n(t) (a>0, b>0) (20

with (2) and(4). This is a special case of E€L) with
f(x)=ax—bx3,

91(¥)=x, G(x)=1, (21

and the steady-state valué=a/b. Therefore the AFPE of
the system(20) is obtained by substituting?1) into (17):

JdP(x,t)
ot

__ bx3)P t+Da i P(x,t
= &X(ax X*)P(X,1) &Xxﬁxx(x,)

MNaD a9 32

1+2a75x& P(x, t)+a el P(x,t)

w—

1+2a X

— xP(x t). (22

Note that #2a7>0 for all 7. Thus there exists no restriction
on 7 in this case. The stationary probability distribution
(SPD of the system can be obtained frq@2) and is given

by

b
Ps(X)=N4[Dx?+ 2\ VaDx+ a]ﬁll’zexy{ -5

XZ
N 2\ aDb N + D/ ax
—\2

X+ f,arctan———

D? J1-2\2 J1

for 7=0, 0sA<1, (293

b
Py(X)=N,[Dx?>+2aDx+ a]BZ‘“zex;{ — = x?

2D
2\aDb 0
+ > X— 2 for 7=0, A=1,
D Dx+ \aD
(24)
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FIG. 1. The critical curves in the-D parameter plane plotted /G- 4. The SPD of the bistable kinetic model E@5) for

from Eq. (30) for 7=0.1.1=0.1, 0.5, and 0.9, respectively. a=D=0.5,A=0.5.7=0.1, 0.5, and 1.2, respectively.
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0.0 FIG. 5. The SPD of the bistable kinetic model Eg5) for the
0.0 0.2 0.4 05 0.8 0.0 case of perfectly correlated noisés=1) with a=D=0.5. 7=0.1,
0 0.5, and 1.2, respectively.
FIG. 2. The critical curves in the-D parameter plane plotted 0.6 ' ! '
from Eq. (30) for A=0.7. 7=0.1, 0.5, and 1.2, respectively.
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FIG. 3. The SPD of the bistable kinetic model BE@5) for case ofa/D=1; «=0.5, D=0.5. Curveb, the case ofa/D<1;
a=D=0.5,7=0.7.7A=0.1, 0.5, and 0.9, respectively. a=0.45,D=0.5. Curvec, the case olW/D>1; «=0.55,D=0.5.
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. g FIG. 7. The mean of the state varialfbe) as
v , a function of\ with a=D=0.5. 7=0.1, 0.5, and
“1.5X10 7 1.2, respectively.
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A
5 W oszs 2\ ’_an+ B3—112 b , T.r;iscristicézltgrunrq\./ﬁezegarating the unimodal and bimodal re-
= - T i i [
st(X) 3| DX 1+2ar o ex 2D X g Y
A2aD (a—D)3
2\\aDb A 2 =0. (30)
+ = X+ f;arctan 4(1+2ar) 270
D(1+2a7) =~ \[(1+2ar)?—\? _ _
The moments of the state variableare given by
N+ (1+2a7)yD/ax
— for 7#0, O<A<1, N e
V(1+2ar)s—X\ (xM= X"P(x)dx. (3D

(25
where
_ (ba+aD)—4b\?a
v 2D? '
(26)
4ban?—3ba—aD
el: D2 ’
_—3ba+aD
Pa=—pr
(27
JaD(ba—aD)
0=z
_ (ba+aD)(1+2ar)’—4b\?a
s 2D?(1+2ar)? ’
(28)
_2ba[2)\*—(1+2a7)?] a ba
37 D%(1+2a7)? D D%

andN,, N,, andN;3 are the normalization constants for Egs.
(23), (24), and(25), respectively. It must be pointed out that
the correlation timer must be zero when the strength of the
correlations between noisasis zero. Therefore the param-
eter\ is nonzero in Eq(25). The extrema of the SP[25)
are determined by the following equation of third order:

AaD o

3_(a_ =
bx°—(a D)X+1+2a7 .

(29

The mean and normalized variance of the state variable are
given by the numerical integrations of E®1). The mean of
the state variable is

(X)= J'j:xPst(x)dx (32

and the normalized variance of the state variable is

x= () _ (x*)

OT TR

1. (33

IV. STEADY-STATE ANALYSIS: CONCLUSIONS

When the correlation time is zero, the SPD’§(23) and
(24)] have been discussed in RET] (in whicha=1, b=1),
and will not be recounted here. Our aim in this paper is to
discuss the steady-state properties of the bistable system
when the correlation time is nonzero. By virtue of the results
Egs.(30), (25), (32), and(33) obtained above, we have plot-
ted the critical curves in the-D plane in Figs. 1 and 2, the
curves of the SPD in Figs. 3—6, and the curves of the mean
and variance of the state variable in Figs. 7-10. Here, we
takea=1 andb=1 for simplicity. The conclusions that can
be drawn from these figures are as follows.

(i) The presence of correlation between the noises causes
the critical curve separating the unimodal and bimodal re-
gions in thea-D parameter plane to be affected not only by
\, the strength of the correlation between noises, but also by
7, the correlation time of the correlation between noises, as
can be seen from Figs. 1 and 2.

(i) Whenr is fixed, the area of the bimodal region in Fig.

1 contracts a& increases. However, whenis fixed, the area
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FIG. 8. The mean of the state varialile) as
a function of r with «=D=0.5.A=0.1, 0.5, and
0.9, respectively.

0.0 0.5 1.5

of the bimodal region in Fig. 2 is enlarged asncreases.

This shows that the strength of the correlation between
noises and the correlation time of the correlation between

noises play opposing roles in the transition of the SPD.

(iii) Because of the different roles in the transition of the
SPD for 7 and \, we can see that the SPD of the bistable
system experiences the transition from a bimodal to a uni
modal structure a& increaseqFig. 3), but experiences the
transition from a unimodal to a bimodal structure af-
creasegFig. 4).

(iv) For the case of perfectly correlated noigks-1), the
SPD (24) (i.e., =0) which has been discussed in RET]
exhibits divergence at=—(«/D)Y? and the SPD’s corre-
sponding toa/D>1 and a/D<1 exhibit a very different
shape of divergence; therefore the rati® =1 plays the role
of a critical ratio. However, when the correlation time is

nonzero, the above pictures of the SPD change. The SPD,

(25) does not exhibits divergence in the regiomp<x<+wx
due to

4aD D=0
(1+27)2 ¢

in the factor

1X10%

2.0

2.5

B3—112

The SPD experiences the transition from a unimodal to a
bimodal structure whenr increases as shown in Fig. 5.
Moreover, from Fig. 6 we can see that there is not the phe-
nomenon of the critical ratio, namely, when the parameters
andD take values in the neighborhood @D, the SPD’s
corresponding tavD>1 anda/D<1 do not exhibit a very
different shape.

(v) When the intensity of the additive noise is equal to
that of the multiplicative noise, the mean of the state variable
is plotted in Fig. 7 as a function of and as a function of
in Fig. 8. It is obvious that the mean of the state variable is
negative. The mean increases with increasingout de-
creases with increasing; it is very remarkable for smak
d largen (e.g., 7=0.1, 0.9<\<1.0 in Fig. 7 and\=0.9,
0<7<0.2 in Fig. 8. The above behaviors of the mean are
determined by the SPI®5) of the system according to Eq.
(32.

When the noises are uncorrelated=0, r=0), the SPD
exhibits a symmetric bimodal structure far=D [7]. How-
ever, when the noises are correlated, the symmetry of the
SPD is destroyed as shown in Figs. 3—5. The SBB is

6 X104t

5X104t

4X104F

A (D)

IX104}

X104

X104

FIG. 9. The normalized variance,(0) of the
state variable as a function afwith «a=D =0.5,
7=0.1, 0.5, and 1.2, respectively.

0.0
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IX10%
2X10%

1X10%}

FIG. 10. The normalized varianeg(0) of the
state variable as a function afwith =D =0.5.
A=0.1, 0.2, and 0.9, respectively.

affected not only by the intensities of noises but also by thdarge A (e.g.,7=0.1, 0.9<A\<1.0 in Fig. 7 and\=0.9, 0<7
strength of correlation between noises and the correlatior<0.2 in Fig. 8.

time of correlation between noises. First, the presence of (vi) The normalized variance,(0) of the state variable is
correlation between noises shifts the SPD to the left; the SPRIlotted as a function ok in Fig. 9 and as a function af in

appearing inx<<0 is greater than that ir>0. Therefore the

Fig. 10. The normalized variance increases with increasing

mean of the state variable is negative. Second, because that decreases with increasing This also shows that the

SPD is shifted fronx>0 tox<0 by increasing\. as shown in
Fig. 3, but fromx<0 to x>0 by increasingr as shown in

effects of the strength of the correlation between noises and
the correlation time on the normalized variance are different.

Fig. 4, the mean of the state variable increases with increasn addition, because the value of the mean is very small as

ing 7, and decreases with increasing Third, because the

shown in Figs. 7 and 8, the value of the normalized variance

effects of r and\ on the change of the SPD are opposed tois very large as shown in Figs. 9 and 10.
each other and the two effects cancel each other out, the

curves of the meate.g.,7=0.5 and 1.2 in Fig. 7 and=0.1
and 0.5 in Fig. 8are smooth. However, whexis large and
7is small, the effect ok on the SPD plays the leading role.
The SPD appears nearly completelyxaO (e.g.,A=1 and
7=0.1in Fig. 5, and the extremum of the SPD shifts to the
left. Therefore the mean is very remarkable for smadind
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